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A beak size locus in Darwin’s finches
facilitated character displacement
during a drought
Sangeet Lamichhaney,1 Fan Han,1 Jonas Berglund,1 Chao Wang,1

Markus Sällman Almén,1 Matthew T. Webster,1 B. Rosemary Grant,2

Peter R. Grant,2 Leif Andersson1,3,4*

Ecological character displacement is a process of morphological divergence that reduces
competition for limited resources. We used genomic analysis to investigate the genetic
basis of a documented character displacement event in Darwin’s finches on Daphne Major
in the Galápagos Islands: The medium ground finch diverged from its competitor, the large
ground finch, during a severe drought. We discovered a genomic region containing the
HMGA2 gene that varies systematically among Darwin’s finch species with different beak
sizes. Two haplotypes that diverged early in the radiation were involved in the character
displacement event: Genotypes associated with large beak size were at a strong selective
disadvantage in medium ground finches (selection coefficient s = 0.59). Thus, a major
locus has apparently facilitated a rapid ecological diversification in the adaptive radiation
of Darwin’s finches.

S
imilar species potentially compete for lim-
ited resources when they encounter each
other through a change in geographical
ranges. As a result of resource competi-
tion, theymay diverge in traits associated

with exploiting these resources (1, 2). Darwin
proposed this as the principle of character di-
vergence [now known as ecological character
displacement (3, 4)], a process invoked as an
important mechanism in the assembly of com-
plex ecological communities (5, 6). It is also an
important component of models of speciation
(6, 7). However, it has been difficult to obtain un-
equivocal evidence for ecological character dis-
placement in nature (8, 9). The medium ground
finch (Geospiza fortis) and large ground finch
(G. magnirostris) on the small island of Daphne
Major provide one example where rigorous crite-
ria have been met (10). Beak sizes diverged as a
result of a selective disadvantage to medium
ground finches with large beaks when food avail-
ability declined through competition with large
ground finches during a severe drought in
2004–2005 (11).
Size-related traits can pose problems for the

analysis of selection, and Darwin’s finch beaks
are no exception, as beak size and body size are
strongly correlated (r = 0.7 to 0.8) (11). We used
a combination of multiple regression and se-
lection differential analysis to investigate the
2004–2005 selection event. Statistically, these
produced much stronger associations between

survival and beak size (S = –1.02, P < 0.0001)
than between survival and body size (S = –0.67,
P < 0.05). Thus, body size was possibly subject
to selection, but beak size was a more impor-
tant factor affecting the probability of survival
independent of body size (11, 12). However, the
genetic basis of the selected traits remains un-
known. Beak dimensions and overall body size of
the medium ground finch are highly heritable
(13), but no gene(s) regulating body size have
been identified. Furthermore, although some
signaling molecules affecting beak dimensions
in Darwin’s finches have been identified (14),
only one regulatory gene, ALX1, is known and
it regulates variation in beak shape (15), which
was not associated with survival in 2004–2005.
We performed a genome-wide screen for

loci affecting overall body size in six species of
Darwin’s finches that primarily differ in size
and size-related traits: the small, medium, and
large ground finches, and the small, medium,
and large tree finches (Fig. 1, A and B, and table
S1). Ground finches and tree finches diverged
about 400,000 years ago and exhibit ongoing
gene flow within and between the two groups
(15). By combining species of similar size in dif-
ferent taxa, we minimized phylogenetic effects
when contrasting the genomes of species dif-
fering in size. We then genotyped individuals
of the Daphne population of medium ground
finches that succumbed or survived during the
drought of 2004–2005. This approach allowed
us to identify a locus with major effect on beak
size variation that played a key role in the char-
acter displacement episode.
We sequenced 10 birds from each of the six

species (total 60 birds) to ~10× coverage per
individual, using 2 × 125–base pair paired-end
reads. The sequences were aligned to the refer-
ence genome from a female medium ground
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finch (12). We combined these data with se-
quences from 120 birds, including all species of
Darwin’s finches and two outgroup species (15),

to call 44,767,199 variable sites within or be-
tween populations after stringent variant calling.
We constructed a maximum-likelihood phylo-

genetic tree on the basis of all 180 genome se-
quences (Fig. 1C). This tree was almost identical
to our previous tree (15).
A genome-wide fixation index (FST) scan com-

paring large, medium, and small ground finches
and tree finches (Table 1) identified seven inde-
pendent genomic regions with consistent ge-
netic differentiation (ZFST > 5) in each contrast
(Fig. 2A and table S2). One of these regions
(~525 kb in size) showed the strongest differen-
tiation in all three contrasts. The region included
four genes: high mobility AT-hook 2 (HMGA2),
methionine sulfoxide reductase B3 (MSRB3), LEM
domain-containing protein 3 (LEMD3), andWNT
inhibitory factor 1 (WIF1). This signal was also
detected in FST screens comparing large, medium,
and small birds separately within ground and
tree finches (fig. S1). HMGA2 is a chromatin-
associated protein that appears to lack intrinsic
transcriptional activity but potentiates the ef-
fect of other transcription factors (16). Because

SCIENCE sciencemag.org 22 APRIL 2016 • VOL 352 ISSUE 6284 471

Fig. 1. Illustration of morphological di-
versity in triplets of ground finches and
tree finches, and phylogeny. (A and B)
Beak size and body weight comparisons
of large, medium, and small ground finches
(A) and tree finches (B); beak size is
the sum of the beak length, depth, and
width averages of a population. The
estimates of beak and body size are the
population averages; each dot represents a
population from a specific island in the Galápagos archipelago. (C) Maximum-
likelihood tree using all polymorphic autosomal sites. The estimated diver-
gence time, with its 95% confidence interval based on nuclear sites (15)
between warbler and nonwarbler finches, is shown in thousands of years; the
corresponding estimate for this split on the basis of mitochondrial DNA cyto-
chrome b sequences is 1.4 ± 0.2 million years (15). (D) Maximum-likelihood
tree from the 525-kb region around HMGA2. All nodes having full local support

on the basis of the Shimodaira-Hasegawa test are marked by asterisks. For
sharp-beaked ground finches and medium cactus finch from Genovesa, the
revised taxonomy as proposed in (15) is used: 1northern sharp-beaked ground
finch from Wolf and Darwin (Geospiza septentrionalis); 2central sharp-beaked
ground finch from Pinta, Santiago, and Fernandina (G. difficilis); 3eastern sharp-
beaked ground finch from Genovesa (G. acutirostris); 4medium cactus finch
from Genovesa (G. propinqua).

Table 1. Summary of 60 samples of large, medium, and small ground finches and tree finches
used for whole-genome sequencing.

Common name Species No. of

samples

Island ID

Large ground finch Geospiza magnirostris 10 Daphne LGF
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Medium ground finch Geospiza fortis 10 Santa Cruz MGF
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Small ground finch Geospiza fuliginosa 10 Santiago SGF
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Large tree finch Camarhynchus psittacula 8 Pinta LTF
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

1 Marchena
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

1 Isabela
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Medium tree finch Camarhynchus pauper 10 Floreana MTF
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Small tree finch Camarhynchus parvulus 10 Santa Cruz STF
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .
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Fig. 2. Screening for signature of selection affecting body size and beak size. (A)
Genome-wide screen for genetic differentiation between large and small ground finches
and tree finches (top), large and medium ground finches and tree finches (middle), and
medium and small ground finches and tree finches (bottom) using normalized FST values
calculated in 15-kb windows. Candidate genes in or near regions with normalized FST > 5 in
all three comparisons are highlighted. (B) Distribution of individual SNP FST values in the
contrast between large versus small ground finches and tree finches for the 525-kb
HMGA2 region. (C) PhastCons sequence conservation score for SNPs with FST > 0.8 in
(B); gene content and transcriptional orientation are indicated. (D) Genotypes at 17 SNPs
from the HMGA2 region with FST > 0.8 and PhastCons score > 0.8 [(B) and (C)] across
species. Average body weight (in grams) for each species and abbreviations for islands are
given in table S1. (E) Linear regression analysis of body size, beak size, and beak shape
scores among 133 medium ground finches according to HMGA2 genotype; L and S

represent alleles present in birds with large and small beaks, respectively. The distribution of respective morphometric scores in each genotype class is
shown as a boxplot together with P values, r2 scores, and linear regression slopes (b ± SE) from the regression analyses. (F) Survival (% ± SE) according
to HMGA2 genotype among 71 medium ground finches experiencing the severe drought in 2004–2005.
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a loss-of-function mutation inHmga2 causes the
pygmy phenotype in mice that exhibits severe
growth retardation (17) and because HMGA2 has
been associatedwith variation inheight, craniofacial
distances, and primary tooth eruption in humans
(18, 19), HMGA2 was identified as a candidate
gene. We refer to this region as theHMGA2 locus
but note that it includes three additional genes
that may contribute to phenotypic effects (12).
We constructed a maximum-likelihood phylo-

genetic tree on the basis of this ~525-kb region,
which revealed two major haplotype groups as-
sociated with size; 98% of small birds (body
weight <16 g) clustered into one group and 82%
of the large birds (body weight >17 g) clustered
into the other (Fig. 1D). The split between the
two haplotypes occurred before the divergence
of warbler and nonwarbler finches at the base
of the phylogeny (Fig. 1D), about 1 million years
ago (Fig. 1C).
We calculated FST values per SNP (single-

nucleotide polymorphism) for all SNPs within
the ~525-kbHMGA2 region (Fig. 2B). There were
1327 SNPs with strong genetic differentiation
(FST > 0.8) spread across the region, but only one
of these was coding (a missense mutation in
MSRB3), which implies that most or all muta-
tions causing the association with phenotype
are regulatory. We identified 17 SNPs showing
high genetic divergence between large and small
ground finches and tree finches (FST > 0.8) at
nucleotide sites in highly conserved regions
across birds andmammals (PhastCons score > 0.8)
(Fig. 2C). Six of these 17 SNPs cluster at the 3′
end of HMGA2. A comparison with the outgroup
species (Loxigilla noctis and Tiaris bicolor) shows
that the haplotype present in small birds is
associated with the derived allele at a majority
of these 17 SNPs (13/17; P = 0.05, binomial test).
Large birds were homozygous for haplotypes be-
longing to one group, whereas the majority of
small birds were homozygous for haplotypes be-
longing to the other group (Fig. 2D). Segregation
is mainly observed in species with intermediate
size (medium ground and tree finches).
Large, medium, and small ground finches and

tree finches differ markedly both in body and
beak size (Fig. 1, A and B, and table S1). Hence,
we investigated whether the HMGA2 locus is
primarily associated with variation in body size,
beak size, or both. As this locus shows segrega-
tion (Fig. 2D) in medium ground finches—a spe-
cies with considerable diversity in both body and
beak size (10)—we genotyped an additional 133
individuals of this species for a haplotype diag-
nostic SNP (A/G) at nucleotide position 7,003,776
base pairs in scaffold JH739900, ~2.3 kb down-
stream of HMGA2. This SNP showed a highly
significant association with beak size, a signif-
icant association with body size, and no associ-
ation with beak shape among medium ground
finches (Fig. 2E). The locus appears to have an
additive effect on beak size, where heterozygotes
show an intermediate phenotype relative to the
two homozygous classes, and linear regression
analysis explains as much as 27% of the pheno-
typic variance in this population.

Six other loci showed consistent associations
with overall size, but the genetic differentiation
was not as pronounced as for the HMGA2 locus
(Fig. 2A). Interestingly, PLAG1 and SUPT3H have
previously been associated with height in hu-
mans (www.ebi.ac.uk/gwas), and IGFBP2 en-
codes a protein that binds insulin-like growth
factor I and II in plasma (Fig. 2A). All six loci
were segregating in medium ground finches,
but none showed a significant association with
beak size, body size, or beak shape variation (fig.
S2B). The results suggest that the phenotypic ef-
fects of these loci are small relative to the effect
of the HMGA2 locus.
We genotyped adiagnostic SNP for theHMGA2

locus in medium ground finches on Daphne
Major that experienced the severe drought in
2004–2005 (n = 71; 37 survived and 34 died)
(11). Differential mortality resulted in charac-
ter displacement through a strong reduction in
average beak size. As expected, more SS indi-
viduals (associated with small beaks) survived,
and more LL individuals (large beaks) died, with
heterozygotes showing intermediate survival,
consistent with an additive genetic effect (Fig.
2F). The frequency of the S allele was 61% and
37% among those that survived and those that
died, respectively (P = 0.005, Fisher’s exact test,
two-sided), with a selection coefficient against
LL homozygotes as high as s = 0.59 ± 0.15. A
linear regression analysis indicated that the
shift in allele frequency at this locus explains
about 30% of the phenotypic shift in beak size
due to natural selection (12). Within genotypic
classes, survival was nonrandom. Individuals
with small beaks survived better than those with
large beaks among the LL homozygotes (F1,18 =
4.9, P = 0.04) and among heterozygotes (F1,30 =
10.1, P = 0.003). SS homozygotes showed no
significant association (F1,17 = 0.55, P = 0.47),
probably because so few individuals died (n =
5). Thus, we conclude that the relationship be-
tween HMGA2 and fitness was mediated en-
tirely by the effect of this locus on beak size or
associated craniofacial bones or muscles; devel-
opmental research will be necessary to reveal the
underlyingmechanism for the association. There
is no evidence of pleiotropic effects of the gene
on other, unmeasured, traits affecting fitness
(table S5). Survivors were smaller in body size
(11), but our analysis provides no additional in-
sight into the genetic basis of body size variation
(Fig. 2E) (12).
Introgressive hybridization can increase ge-

netic variation and facilitate or enhance an evo-
lutionary response to selection and adaptation
(20, 21), but the actual genes conferring a se-
lective advantage are rarely known (7, 22). Pre-
vious field studies have documented rare but
recurring introgressive hybridization on Daphne
Major betweenmediumground finches and small
ground finch immigrants (23). Although the sam-
ple sizes are small, it appears that the HMGA2*S
allele is fixed in the small ground finch (n = 14;
fig. S2A). Positive selection for the S allele sug-
gests that introgression from the small ground
finch contributed to the genetic response to di-

rectional selection and character displacement
in the medium ground finch.
Our results provide evidence of two loci with

major effects on beakmorphology across Darwin’s
finches. ALX1, a transcription factor gene, has
been associated with beak shape (15), and here
we find that HMGA2 is associated with beak
size. ALX1 and HMGA2 are 7.5 Mb apart on
chromosome 1 in chicken and zebra finch, and
probably also in Darwin’s finches, as expected on
the basis of the very high degree of conserved
synteny among birds (24). Beak size and beak
shape are involved in all the major evolution-
ary shifts in the adaptive radiation of Darwin’s
finches (1). They are also subject to strong selec-
tion in contemporary time. In the character dis-
placement episode discussed above, beak size
was subject to strong directional selection: The
standardized selection differential of –0.66 for
sexes combined is an exceptionally high value.
We have shown that theHMGA2 locus played a
critical role in this character shift. The selec-
tion coefficient at the HMGA2 locus (s = 0.59 ±
0.14) is comparable in magnitude to the selec-
tion differential on the phenotype and is higher
than other examples of strong selection, such as
loci associated with coat color in mice (s < 0.42)
(25). The main implication of our findings is that
a single locus facilitates rapid diversification. The
lack of recombination between the twoHMGA2
haplotypes, together with abundant polygenic var-
iation and ecological opportunity (2, 5), may
help to explain rapid speciation in this young
adaptive radiation (1).
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HUMAN GENOMICS

Health and population effects of rare
gene knockouts in adult humans with
related parents
Vagheesh M. Narasimhan,1 Karen A. Hunt,2* Dan Mason,3* Christopher L. Baker,4*
Konrad J. Karczewski,5,6* Michael R. Barnes,7 Anthony H. Barnett,8 Chris Bates,9
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Examining complete gene knockouts within a viable organism can inform on gene function.
We sequenced the exomes of 3222 British adults of Pakistani heritage with high parental
relatedness, discovering 1111 rare-variant homozygous genotypes with predicted loss of
function (knockouts) in 781 genes. We observed 13.7% fewer homozygous knockout
genotypes than we expected, implying an average load of 1.6 recessive-lethal-equivalent
loss-of-function (LOF) variants per adult. When genetic data were linked to the individuals’
lifelong health records, we observed no significant relationship between gene knockouts
and clinical consultation or prescription rate. In this data set, we identified a healthy
PRDM9-knockout mother and performed phased genome sequencing on her, her child, and
control individuals. Our results show that meiotic recombination sites are localized away
from PRDM9-dependent hotspots. Thus, natural LOF variants inform on essential genetic
loci and demonstrate PRDM9 redundancy in humans.

C
omplete gene knockouts, typically caused
by homozygous loss-of-function (LOF) geno-
types, have helped researchers identify the
function of many genes, predominantly
through studies in model organisms and

of severe Mendelian-inherited diseases in
humans. However, information on the conse-
quences of knocking out most human genes is
still lacking. Naturally occurring complete gene
knockouts offer the opportunity to study the
effects of lifelong germline gene inactivation
in living humans. A survey of LOF variants in
adult humans revealed ~100 predicted LOF geno-
types per individual, describing ~20 genes that
carry homozygous predicted LOF alleles and
hence are likely to be completely inactivated (1).
Almost all of these homozygous genotypes were
located at common variants with allele frequency
>1%, in genes whose loss is likely to have weak or
neutral effects on fitness and health (1). In con-

trast, rare predicted LOF genotypes were usually
heterozygous and, thus, their overall effect on
gene function is not known. A large exome se-
quencing aggregation study [conducted by the
Exome Aggregation Consortium (ExAC)] of pre-
dominantly outbred individuals identified 1775
genes with homozygous predicted LOF genotypes
in 60,706 individuals (2). Furthermore, 1171 genes
with complete predicted LOF were identified in
104,220 Icelandic individuals (3), and modest
enrichment for homozygous predicted LOF geno-
types was shown in Finnish individuals (4). How-
ever, even in these large samples, homozygous
predicted LOF genotypes tend to occur at variants
of moderate allele frequency (~1%). Hence, these
approaches will not readily assess knockouts in
most genes, which are lacking such variants.
To identify knockouts created by rare homo-

zygous predicted loss-of-function (rhLOF) variants,
we sequenced the exomes of 3222 UK-dwelling

adults of Pakistani heritage who were character-
ized as healthy, type 2 diabetic, or pregnant (5).
These individuals have a high rate of parental
relatedness (often through parents who are first
cousins); thus, a substantial fraction of their auto-
somal genome occurs in long homozygous re-
gions inferred to be identical by descent from a
recent common ancestor (autozygous). We linked
each person’s genotype to their health care and
epidemiological records, with the aims of (i) de-
scribing the properties and assessing the health
effects of naturally occurring knockouts in an
adult population; (ii) understanding the archi-
tecture of gene essentiality in the human genome,
through the characterization of the population
genetics of LOF variants; and (iii) conducting
a detailed study of a PRDM9 gene knockout,
which plays a role in human meiotic recombi-
nation (6).
On average, 5.6% of the coding genome was

autozygous, much higher than the percentage
in outbred populations with European heritage
(Fig. 1A and fig. S4). We identified, per individ-
ual, an average of 140.3 nonreference predicted
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