Renforcement physique Induction

 Le	niveau	de	difficu	ılté (en	calcul	est	représenté	par	l'éche	elle 💳	
-		٠.										

— Le niveau d'astuce à mettre en œuvre est représenté par l'échelle

 Le nombre de connaissances	transversales	en	physique	à	${\it mettre}$	en	œuvre	est	représen	té
par l'échelle										

Exercice 1: L'induction d'une f.e.m dans une bobine

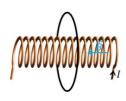
Une bobine contient 200 spires circulaires de rayon $5\,\mathrm{cm}$. Un champ magnétique uniforme orienté perpendiculairement au plan de la bobine est activé et passe linéairement de $0\,\mathrm{T}$ à $0.6\,\mathrm{T}$ en $0.9\,\mathrm{s}$. Déterminer le module de la force électromotrice induite dans la bobine.

Exercice 2: L'induction d'une f.e.m dans une bobine 2

Une bobine contient N spires circulaires de rayon R. Un champ magnétique uniforme orienté perpendiculairement au plan de la bobine est activé et varie dans le temps selon la loi $B = B_{max}e^{-\frac{t}{\tau}}$ où τ est une constante. Déterminer le module de la force électromotrice induite dans la bobine.

Exercice 3: L'induction d'une f.e.m dans une bobine 3

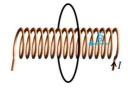
Une bobine contient N spires circulaires de rayon R. Un champ magnétique uniforme orienté perpendiculairement au plan de la bobine est activé et varie dans le temps selon la loi $B = B_{max} \frac{1}{1+bt^2}$ où b est une constante. Déterminer le module de la force électromotrice induite dans la bobine.


Exercice 4: L'induction d'une f.e.m dans une spire

Une spire carré de coté a posé dans le plan 0xy est soumise à un champ magnétique d'expression $\vec{B} = B_0 \left(\frac{t}{t_0}\right) \frac{y}{y_0} \hat{u}_z$. L'angle inférieur gauche de la spire est à l'origine du repère.

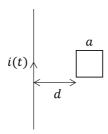
- 1. Déterminer l'expression de la force électromotrice.
- 2. Déterminer le sens de circulation du courant électrique dans la spire.

Exercice 5 : Courant induit par un solénoïde


Une spire de rayon r entoure un solénoïde considéré infini de rayon R. On note n le nombre de spire par unité de longueur du solénoïde. L'évolution temporelle du courant dans le solénoïde est tel que $i = i_0 \cos(\omega t)$.

- 1. Déterminer à l'aide du théorème d'ampère l'expression du champ magnétique produit par le solénoïde considéré infini en fonction de μ_0 , n et i.
- 2. Déterminer l'expression de la force électromotrice induite dans la spire.

Exercice 6 : f.e.m induite par un solénoïde


Une spire de rayon r entoure un solénoïde considéré infini de rayon R parcouru par un courant $i(t) = i_0 e^{-\frac{t}{\tau}}$.

- 1. Déterminer l'expression de la force électromotrice induite dans la spire à l'intérieur et à l'extérieur du solénoïde.
- 2. Déterminer le sens de circulation du courant électrique dans la spire.

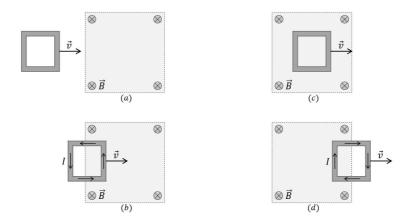
Exercice 7: f.e.m induite par un fil

Un fil électrique considéré infini est parcouru par un courant $i(t) = i_0 e^{-\frac{t}{\tau}}$.

- 1. Déterminer à l'aide du théorème d'Ampère l'expression du champ magnétique produit par le fil électrique.
- 2. Déterminer l'expression de la force électromotrice induite dans la spire carré de coté a situé à une distance d du fil.
- 3. Même question si le courant qui se propage dans le fil a pour expression $i = i_0 \cos(\omega t)$.

Exercice 8 : Détermination de l'expression du champ électrique

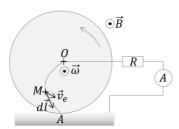
Soit un champ magnétique d'expression $\vec{B} = B_0 \cos(kz - \omega t)\hat{u}_y$.


- 1. Déterminer l'expression du rotationnel du champ électrique induit.
- 2. Sachant que $E_z = 0$, déterminer l'expression de la composante E_x du champ électrique induit.

Exercice 9: Tige en rotation

Une tige conductrice de longueur l est en rotation à la vitesse angulaire constante ω autour d'un pivot situé à l'une de ses extrémités. Un champ magnétique uniforme \vec{B} est orienté perpendiculairement au plan de rotation dans le sens de $\vec{\omega}$. Déterminez la f.e.m induite entre les extrémités de la tige.

Exercice 10 : Carré conducteur


Nous considérons un conducteur carré de coté a et de résistance R qui passe à la vitesse $\vec{v} = v\hat{u}_x$ dans une région de champ magnétique uniforme $\vec{B} = -B\hat{u}_z$ de largeur 2a.

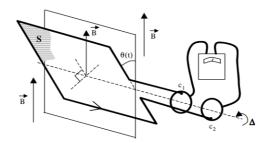
1. Déterminer l'intensité du courant électrique qui passe dans le conducteur dans les cas de figure (a), (b), (c) et (d). On néglige l'auto-induction.

Exercice 11 : Roue de Barlow génératrice

Une roue de Barlow est un disque conducteur de rayon R mobile autour d'un axe fixe noté Oz et placé dans un champ magnétique uniforme $\vec{B} = B\hat{u}_z$. La roue est en contact avec un bain conducteur et est mise en rotation à la vitesse angulaire constante ω .

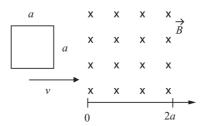
- 1. Déterminer le sens du courant en utilisant le champ électromoteur de Lorentz.
- 2. Déterminer l'expression de la vitesse \vec{v}_e du point M en fonction de $\vec{\omega}$ et \overrightarrow{OM} .
- 3. En utilisant $(\vec{a} \wedge \vec{b}) \wedge \vec{c} = \vec{b}(\vec{a}.\vec{c}) \vec{c}(\vec{a}.\vec{b})$, montrer que la f.e.m induite dans le circuit a pour expression $(\vec{B}.\vec{\omega})\frac{R^2}{2}$.
- 4. La roue est connectée à une résistance R_{el} . En déduire l'expression du courant électrique.

Exercice 12: Spire en rotation


Une spire de rayon R tourne avec la vitesse angulaire ω constante dans un champ magnétique \vec{B} uniforme.

- 1. Déterminer l'expression de la force électromotrice induite dans la spire.
- 2. Déterminer le courant maximal qui circule dans la spire d'une résistance de $20\,\Omega$ avec $\omega=5\,\mathrm{rad}\,\mathrm{s}^{-1},\ R=5\,\mathrm{cm}$ et $B=20\,\mu\mathrm{T}.$

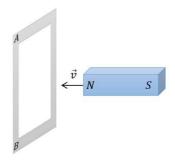
Exercice 13: Alternateur


Une spire de cuivre de surface S tourne autour d'un axe Δ dans un champ magnétique \vec{B} uniforme. Les contacts c_1 et c_2 de la spire tournent dans deux bagues isolées l'une de l'autre et qui sont connectées à un voltmètre. La vitesse angulaire ω de rotation de la spire est constante.

- 1. Déterminer l'expression de la force électromotrice induite dans la spire.
- 2. En déduire le sens du courant.
- 3. Tracer le graphe de e(t).

Exercice 14 : f.e.m induite dans un spire carrée

Une spire carré de coté a se déplace à la vitesse constante v dans une région où un règne un champ magnétique uniforme.



1. Tracer le graphe de la force électromotrice induite en fonction du temps. Détailler les calculs.

Exercice 15 : Loi de Lenz ____ __

On considère la situation représentée sur la figure ci-dessous.

- 1. Le courant est-il orienté de A vers B ou de B vers A?
- 2. Même question en inversant les pôles de l'aimant.
- 3. Même question en inversant le sens du vecteur vitesse.

