Fluide TD 6 : Viscosité

Consignes: Justifier toutes les réponses. Une réponse correcte non justifiée est considérée comme fausse en devoir. Soigner la rédaction des réponses et respecter les notations de l'énoncé.

1 Les savoir-faire

Savoir déterminer une force de frottement fluide sur un solide

Exercice 1: Action longitudinale d'un fluide sur une conduite

Un fluide de coefficient de viscosité dynamique η est en écoulement stationnaire dans une conduite cylindrique d'axe Oz de section circulaire de diamètre D. Soit D_V le débit volumique du fluide. Le profil de vitesse dans la conduite est donné par l'expression $\vec{v} = v(r)\hat{u}_z$ avec $v(r) = \frac{32D_V}{\pi D^4} \left(\frac{D^2}{4} - r^2\right)$ où r est la distance d'un point à l'axe de la conduite. Déterminer la force exercée par le fluide sur une portion de conduite de longueur L.

Exercice 2 : Glissement sur un plan incliné

Un bloc de masse $M=200\,\mathrm{g}$ glisse sur un plan incliné d'un angle $\alpha=20^\circ$ par rapport au plan horizontal. Ce plan est recouvert d'un film d'huile de viscosité dynamique $\eta=8\times 10^{-3}\,\mathrm{N\,s\,m^{-2}}$ et d'épaisseur $e=5\times 10^{-6}\,\mathrm{m}$. On suppose que le profil de vitesse du film de fluide entre le bloc et le plan est linéaire. La surface de contact est de $S=2\times 10^{-2}\,\mathrm{m^2}$. L'objectif est de calculer la vitesse limite de glissement notée v_{lim} du bloc.

- 1. Montrer que le champ de vitesse a pour expression $v = v_{lim} \frac{y}{e}$.
- 2. Appliquer le principe d'inertie au bloc pour en déduire que $v_{lim} = \frac{Mge\sin\alpha}{S\eta}$. Faire l'application numérique.

Savoir étudier la chute d'une bille dans un fluide visqueux en écoulement laminaire

Exercice 3: Vitesse de chute d'une bille dans l'eau

Nous étudions la chute d'une petite bille en acier de rayon $r=1\,\mu\mathrm{m}$ et de masse volumique $\rho=8000\,\mathrm{kg\,m^{-3}}$ dans l'eau. La vitesse de chute de la petite bille est suffisamment faible pour pouvoir modéliser les frottements par la formule de Stokes $\vec{f}=-6\pi\eta r\vec{v}$ où $\eta=1.0\times10^{-3}\,\mathrm{Pa}\,\mathrm{s}$ est la viscosité dynamique de l'eau. On utilise un axe Oz orienté positivement vers le bas.

- 1. Montrer que la projection sur l'axe Oz du principe fondamental de la dynamique appliqué à la bille s'écrit $\frac{dv}{dt} + \frac{v}{\tau} = \frac{\Delta \rho}{\rho} g$ avec $\tau = \frac{2r^2 \rho}{9\eta}$.
- 2. On considère que la bille a une vitesse initiale nulle. Montrer que la solution de l'équation différentielle de la question précédente s'écrit $v = \frac{\Delta \rho}{\rho} g \tau \left(1 e^{-t/\tau}\right)$.
- 3. Calculer la valeur numérique de τ .
- 4. Déterminer l'expression de la vitesse dans le cas $t << \tau$ en faisant un DL à l'ordre 1 de l'exponentielle.
- 5. Quelle est l'expression de la vitesse limite de la bille pour $t >> \tau$?
- 6. Calculer la valeur de la vitesse limite de chute de la bille.

Savoir déterminer l'équation de diffusion de la quantité de mouvement

Exercice 4 : Diffusion de la quantité de mouvement

On considère un écoulement parallèle à un plan dont le champ de vitesse est donnée par $\vec{v} = v(z,t)\hat{u}_x$.

- 1. Appliquer le principe fondamental de la dynamique à une portion de fluide d'épaisseur dz et de surface S en l'absence d'autres forces que les forces de viscosité.
- 2. Montrer que vous obtenez une équation de la forme $\frac{\partial v}{\partial t} = D \frac{\partial^2 v}{\partial z^2}$ où D est le coefficient de diffusion. En déduire l'expression du coefficient de diffusion de la vitesse.
- 3. Quelle est la solution de l'équation précédente en régime permanent?

2 La mise en œuvre

Exercice 5: Glissement d'un cylindre dans un tube

Un cylindre de masse volumique ρ , de rayon R_1 et de longueur L glisse dans un tube vertical cylindrique de rayon $R_2 > R_1$ et dont la surface intérieure est recouverte d'un film d'huile de viscosité dynamique η . R_2 et R_1 sont proches et nous faisons l'hypothèse que le profil de vitesse entre le cylindre et le tube est linéaire. Déterminer l'expression de la vitesse limite du cylindre en fonction de R_1 , R_2 , g, ρ et η .

Exercice 6: Écoulement entre deux cylindres

L'écoulement incompressible d'un fluide de viscosité dynamique η entre deux cylindres concentriques, de rayons R_1 et R_2 , tournant autour de leur axe commun aux vitesses angulaires Ω_1 et Ω_2 peut être décrit par le champ de vitesse $\vec{v} = \left(Ar + \frac{B}{r}\right)\hat{u}_{\theta}$.

- 1. Déterminer les constantes A et B en écrivant la continuité entre la vitesse du fluide et des cylindres en R_1 et R_2 .
- 2. Déterminer la force tangentielle exercée par le fluide sur le cylindre intérieur de hauteur H. On donne $d\overrightarrow{F}=\eta r\frac{\partial(v/r)}{\partial r}dS\widehat{u}_{\theta}$.

Exercice 7: Oscillations forcées

On considère, dans un récipient rempli d'un liquide de masse volumique ρ et de viscosité dynamique η , un plateau vibrant de surface S et de cote z=0. Ce plateau oscille horizontalement avec une vitesse $\vec{v}_0=v_0\cos(\omega t)\hat{u}_x$. Il est suffisamment large pour pouvoir négliger les phénomènes qui se produisent au niveau des bords et on peut admettre qu'en régime permanent, le liquide au-dessus du plateau oscille avec une vitesse $\vec{v}(z,t)=v_m(z)\cos(\omega t+\phi(z))\hat{u}_x$. On suppose également que le niveau supérieur du liquide est largement au-dessus du plateau et que la pression est indépendante de x.

- 1. Déterminer l'équation de diffusion dont v(z,t) est solution.
- 2. Déterminer v(z,t) en injectant $\underline{v} = v_m(z)e^{i(\omega t + \phi(z))}$ dans l'équation de diffusion.
- 3. Déterminer l'expression de la profondeur de pénétration des vibrations.