Fluide $\operatorname{TD} 4:$ Cinématique des fluides - partie 2 - réponses

1 Les savoir-faire

Connaître la signification physique de la divergence et du rotationnel du champ de vitesse

Exercice 1: Champ de vitesse 1

- 1. $div \vec{v} = a_1 + b_1$.
- 2. $\overrightarrow{rot} \overrightarrow{v} = \overrightarrow{0}$.
- 3. La particule fluide se dilate.

Exercice 2 : Champ de vitesse 2

- 1. Déterminer l'expression de $div \overrightarrow{v} = 0$.
- 2. Déterminer l'expression de $\overrightarrow{rot} \overrightarrow{v} = \overrightarrow{0}$.
- 3. La particule se déforme sans changer de volume.

Exercice 3: Champ de vitesse 3

- 1. $div \overrightarrow{v} = 0$.
- $2. \overrightarrow{rot} \overrightarrow{v} = 2a_3 \widehat{u}_z.$
- 3. la particule tourne autour de l'axe ${\cal O}z$ sans changer de volume.

Savoir utiliser le potentiel des vitesses

Exercice 4 : Étude cinématique des ondes de gravité

- 1. $div \overrightarrow{v} = 0$
- 2. $\overrightarrow{rot} \overrightarrow{v} = \overrightarrow{0}$
- 3. $\vec{v} = \vec{\nabla} \phi$.
- 4. $\frac{d^2f}{dz^2}f k^2f = 0$.
- 5. La composante verticale de la vitesse est nulle en z=0 d'où $\frac{\partial \phi}{\partial z}(z=0)=0$ en z=0.
- 6. $f = A(e^{kz} e^{-kz}) = 2A\cosh(kz)$. On utilise la relation $\vec{v} = \vec{\nabla}\phi$ pour obtenir v_x et v_z .

2 La mise en œuvre

Exercice 5 : Exemple de potentiel des vitesses

- 1. $\vec{v} = \frac{K}{r} \hat{u}_{\theta}$.
- 2. Les équipotentielle et les lignes de courant sont orthogonales. Les équipotentielles sont des lignes droites radiales. Les lignes de courants sont des cercles.
- 3. $\phi = v_0 x$.
- 4. graphe.

Exercice 6 : Écoulement dans un driède droit

- 1. Écoulement incompressible car \overrightarrow{div} $\overrightarrow{v}=0$ et irrotationnel car \overrightarrow{rot} $\overrightarrow{v}=\overrightarrow{0}$.
- 2. $\phi = -k\frac{x^2}{2} + k\frac{y^2}{2}$

Exercice 7: Écoulement entre deux cylindres

L'écoulement d'un fluide entre deux cylindres concentriques, de rayons R_1 et R_2 , tournant autour de leur axe commun aux vitesses angulaires Ω_1 et Ω_2 peut être décrit par le champ de vitesse $\vec{v} = \left(Ar + \frac{B}{r}\right) \hat{u}_{\theta}$.

1. $div \overrightarrow{v} = 0$. Il faut caluler le rotationnel en cylindrique...