Fluide

TD 4 : Cinématique des fluides - partie 1 : réponses

1 Les savoir-faire

Savoir utiliser la dérivée particulaire

Exercice 1 : Utilisation de la dérivée particulaire

1.

$$\frac{DP}{Dt} = (\vec{v}.\vec{\nabla})P$$

$$= (u_0 + bx)\frac{\partial}{\partial x}P - by\frac{\partial}{\partial y}P$$

$$= -(u_0 + bx)(\rho u_0 b + \rho b^2 x) + by\rho b^2 y$$

Savoir déterminer l'accélération d'une particule fluide

Exercice 2 : Utilisation de la dérivée particulaire

1.
$$\frac{D\vec{v}}{Dt} = k^2(x\hat{u}_x + y\hat{u}_y) = k^2\overrightarrow{OM}$$
.

$$2. \ \frac{D\vec{v}}{Dt} = \vec{0}.$$

$$3. \ \frac{D\vec{v}}{Dt} = \frac{x}{1+bt}bky\hat{u}_y + k^2x^2y\hat{u}_y.$$

$$4. \ \frac{D\vec{v}}{Dt} = -k^2 \overrightarrow{OM}.$$

Savoir identifier une ligne d'émission, une trajectoire et une ligne de courant

Exercice 3 : Différentes images d'un écoulement

- 1. Lignes d'émission.
- 2. Trajectoires.

Savoir déterminer l'expression d'une ligne de courant et d'une trajectoire

Exercice 4 : Écoulement dans un dièdre droit

- 1. Les lignes de courants sont données par $\vec{v} \wedge d\overrightarrow{OM} = \vec{0}$ soit $\begin{pmatrix} -kx \\ ky \\ 0 \end{pmatrix} \wedge \begin{pmatrix} dx \\ dy \\ dz \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ d'où kxdy = -kydx et dz = 0. L'équation dz = 0 implique z = cst, les linges de courant sont donc contenu dans un plan z = cast. On sépare les variables pour obtenir $\frac{dy}{y} = -\frac{dx}{x}$ qui donne $\ln\left(\frac{xy}{x_0y_0}\right) = 0$ où le point (x_0, y_0) est un point choisi arbitrairement. La ligne de courant que nous avons déterminé passe par ce point et est donc donnée par $xy = x_0y_0$.
- 2. L'équation de la trajectoire est donnée par $\frac{dx}{dt} = -kx$ et $\frac{dy}{dt} = ky$ où x et y sont les composantes de la position de la particule, donc, x et y dépendent du temps. Nous obtenons $x = x_0 e^{-kt}$ et $y = y_0 e^{kt}$. On élimine le temps entre les deux équations horaires pour obtenir la trajectoire qui est donnée par $xy = x_0 y_0$.
- 3. L'équation de la trajectoire s'identifie avec la ligne de courant puisque nous sommes en régime permanent. On obtient l'équation d'une hyperbole équilatère.

Savoir déterminer l'accélération d'une particule fluide dans un système de coordonnées non cartésiennes

Exercice 5: Tornade!

On utilise la forme suivante de la dérivée particulaire :

$$\frac{D\vec{v}}{Dt} = \frac{\partial \vec{v}}{\partial t} + \vec{\nabla} \left(\frac{v^2}{2}\right) + \overrightarrow{rot} \ \vec{v} \wedge \vec{v}$$

Le champ de vitesse ne dépend pas explicitement du temps, le terme $\frac{\partial \vec{v}}{\partial t}$ est donc nul. En effet, ce terme est la dérivée en un point fixe et en un point fixe, les vecteurs unitaires sont fixes. Nous avons donc :

1. • pour r < a:

$$\frac{D\vec{v}}{Dt} = \vec{\nabla} \left(\frac{r^2 \Omega^2}{2} \right) + 2\Omega \hat{u}_z \wedge r\Omega \hat{u}_\theta$$

$$= -r\Omega^2 \hat{u}_r \quad \text{accélération centripète}$$

• pour r > a:

$$\begin{array}{rcl} \frac{D\vec{v}}{Dt} & = & \overrightarrow{\nabla} \left(\frac{\Omega^2 a^4}{2r^2} \right) \\ & = & -\frac{\Omega^2 a^4}{r^3} \widehat{u}_r \quad \text{accélération centripète} \end{array}$$

Il y a bien continuité de l'accélération à r = a.

2 La mise en œuvre

Exercice 6 : Écoulement dans un plan

Soit un écoulement bidimensionnel dont le champ de vitesse $\vec{v}(\vec{r},t) = -ky\hat{u}_x + kx\hat{u}_y$ dans le plan (x,y).

- 1. $\frac{D\vec{v}}{Dt} = -k^2 \overrightarrow{OM}$.
- 2. Les lignes de courants sont données par kxdx = -kydy d'où $y^2 + x^2 = y_0^2 + x_0^2$ qui est l'équation d'un cercle de rayon $\sqrt{y_0^2 + x_0^2}$. Le point (x_0, y_0) est un point choisi arbitrairement. La ligne de courant que nous avons déterminé passe par ce point.
- 3. L'équation de la trajectoire est donnée par $\frac{dx}{dt} = -ky$ et $\frac{dy}{dt} = kx$ où x et y sont les composantes de la position de la particule, donc, x et y dépendent du temps. Nous posons $\underline{r} = x + iy$ d'où $\frac{d\underline{r}}{dt} = ik\underline{r}$ soit $\underline{r} = r_0e^{ikt}$ avec $r_0 = |r_0|e^{i\varphi}$. On utilise la formule d'Euler pour développer l'exponentielle puis on identifie $x = |r_0|\cos(kt+\varphi)$ et $y = |r_0|\sin(kt+\varphi)$. Nous avons donc $x^2 + y^2 = |r_0|^2$. L'équation de la trajectoire s'identifie avec la ligne de courant puisque nous sommes en régime permanent.

Exercice 7: Accélération d'une particule fluide

1. On a:

$$\frac{D\vec{v}}{Dt} = (\vec{v}.\vec{\nabla})\vec{v} + \frac{\partial \vec{v}}{\partial t}
= -a\omega^2 e^{-ky} \sin(\omega t - ky)\hat{u}_x$$

- 2. $\frac{dx}{dt} = a\omega e^{-ky}\cos(\omega t ky)$ et $\frac{dy}{dt} = 0$. On a donc y = cst, les particules sont dans un plan y = cst et $x = .ae^{-ky}\sin(\omega t ky)$. Les particules fluides oscillent sur une ligne y = cst.
- 3. Les lignes de courant sont données par dy = 0 et dz = 0 soit y = cst et z = cst. Les valeurs de y et de z ne varient pas lorsque nous nous déplaçons le long d'une ligne de courant. Les lignes de courants sont donc des droites d'équation y = cst et z = cst.

Exercice 8 : Ecoulement dans une tuyère

L'écoulement d'un fluide dans une tuyère a pour champ de champ de vitesse $\vec{v} = (u_0 + bx)\hat{u}_x - by\hat{u}_y$.

- 1. Il faut tracer les vecteurs en chaque point demandés.
- 2. $\frac{D\vec{v}}{Dt} = u_0\hat{u}_x + b^2\overrightarrow{OM}$.

Exercice 9: Écoulement entre deux cylindres

L'écoulement d'un fluide entre deux cylindres concentriques, de rayons R_1 et R_2 , tournant autour de leur axe commun aux vitesses angulaires Ω_1 et Ω_2 peut être décrit par le champ de vitesse $\vec{v} = \left(Ar + \frac{B}{r}\right)\hat{u}_{\theta}$.

- 1. $A = \frac{\Omega_1 R_1^2 \Omega_2 R_2^2}{R_1^2 R_2^2}$ et $B = \frac{R_1^2 R_2^2}{R_2^2 R_1^2} (\Omega_1 \Omega_2)$.
- 2. Dans le cas $\Omega_1 = \Omega_2$, on a $v = \Omega r$. Le fluide tourne à la vitesse angulaire $\Omega = \Omega_1 = \Omega_2$.

3

3. On utilise la forme suivante de la dérivée particulaire :

$$\frac{D\vec{v}}{Dt} = \frac{\partial \vec{v}}{\partial t} + \vec{\nabla} \left(\frac{v^2}{2} \right) + \overrightarrow{rot} \ \vec{v} \wedge \vec{v}$$

Le champ de vitesse ne dépend pas explicitement du temps, le terme $\frac{\partial \vec{v}}{\partial t}$ est donc nul. On obtient :

$$\frac{D\vec{v}}{Dt} = \left(2Ar - \frac{2B^2}{r^2}\right)\hat{u}_r + 2A\hat{u}_z \wedge \left(Ar + \frac{B}{r}\right)\hat{u}_\theta$$

$$= -\left(\frac{2B^2}{r^3} + \frac{2AB}{r}\right)\hat{u}_r$$

Exercice 10: Étude cinématique d'une tornade

On décrit une tornade par un écoulement incompressible à symétrie cylindrique autour d'un axe Oz qui est décrit en coordonnées cylindriques par un champ de vitesses de la forme $\vec{v} = v_{\theta}(r)\hat{u}_{\theta}$ et un vecteur-tourbillon $\overrightarrow{\Omega} = \frac{1}{2}\overrightarrow{rot}\ \overrightarrow{v}$ connu. $\overrightarrow{\Omega} = \Omega_0\hat{u}_z$ est uniforme au sein de la tornade, c'est-à-dire dans le cylindre de rayon $r \leq a$ et Ω est nul pour r > a.

1. En utilisant le théorème de Stokes sur un cercle de rayon r, établir l'expression de $v_{\theta}(r)$ d'une part pour $r \leq a$ et d'autre part pour $r \geq a$. Où la norme de la vitesse est-elle maximale?