TD4 : Version Space Learning

Exercise 1:

Supervised Learning Problem

We need to classify a mushroom based on two attributes:

- A_1 : Cap shape (binary):
 - 0: Convex.
 - 1: Flat.
- A_2 : Mushroom smell (ternary):
 - 0: No smell.
 - 1: Flour smell.
 - 2: Moldy smell.

We have the following training set:

A_1	A_2	Class
1	0	Edible
0	2	Poisonous
1	1	Poisonous
0	1	Edible
1	2	Poisonous

List of Possible Hypotheses

A hypothesis h is a pair (h_1, h_2) , where:

- $h_1 \in \{0, 1, ?\}$ defines the cap shape.
- $h_2 \in \{0, 1, 2, ?\}$ defines the smell.

The hypothesis (?, ?) represents any possible value, while (\emptyset, \emptyset) is the most specific hypothesis, which covers nothing.

Initialization of Version Space

Question 1 • Give the hypothesis S_0 (the most specific hypothesis) and G_0 (the most general hypothesis).

Comparison of Hypotheses

Question 2 • Compare the hypotheses (1, ?), (?, 0), and (?, ?). Are they comparable according to the generalization-specialization relation?

Question 3 • Identify two hypotheses that are incomparable to each other.

Building the Lattice

Question 4 • Build the hypothesis lattice by representing the relationships between S_0 , G_0 , and the intermediate hypotheses. Include the empty set \perp in the structure.

Updating Hypotheses

Question 5 • From the example (1, 0), class = Edible, what hypothesis do you obtain by generalizing S_0 ?

- **Question 6** After receiving a positive example (0, 1), how should you adjust S?
- **Question 7** After receiving a negative example (1, 1), how should you adjust G?

Version Space Algorithm Process

Question 8 • Apply the algorithm by processing the examples one by one. Update S and G after each example.

Empty Lattice

Question 9 • When does the lattice become empty (\perp) and what does that mean?

Question 10 • Add two additional examples that lead to the collapse of the lattice (\perp) . Explain why this happens and its implications for learning.