
Explainability in Artificial
Intelligence

Lecture Notes

Nadjib Lazaar
Université Paris-Saclay

lazaar@lisn.fr

Introduction

Explainability in artificial intelligence is a crucial field that aims to make
the decisions of AI models understandable to humans. With the rise of
deep learning systems and complex models, understanding why a deci-
sion is made becomes fundamental for ensuring trust, transparency, and
fairness in automated systems.
In this course, we will explore various approaches to explainability and
introduce fundamental concepts such as minimal explanation sets. We
will then focus on the QuickXplain algorithm, an efficient method for
extracting a minimal subset of constraints explaining a contradiction in
a given problem.

1 Introduction
Artificial Intelligence (AI) plays a central role today in many fields such as
healthcare, finance, transportation, and security. While the performance of
AI-based systems, especially those using machine learning, is impressive, their
widespread adoption raises a key question: can we trust them?

This is where the growing need for explainability emerges. This notion
encompasses all methods, techniques, and approaches that help understand,
interpret, and justify decisions made by AI systems. Explainability has become
a technical, ethical, and legal concern.

The motivations for making AI explainable are numerous:

• Trust: A user is more likely to accept a decision if they can understand
its justification.

• Verification and validation: Experts must be able to analyze model
behavior, especially in case of malfunctions.
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• Accountability: In critical contexts (justice, medicine, autonomous trans-
port), it is necessary to identify the causes of a decision.

• Regulatory compliance: Legal texts such as the GDPR or the European
AI Act require transparency and control guarantees.

This lecture note aims to present the main approaches to explainability in
AI, from general methods to logical foundations based on constraint system
consistency. We will cover:

• motivations and legal framework (GDPR, AI Act);

• the major families of explainability methods;

• logic-based and constraint programming approaches: inconsistency, MUS/MCS/MSS,
and the QuickXplain algorithm.

2 Regulatory Framework: GDPR and AI Act
Explainability in AI is not just a technical need: it is also a legal requirement.
Two major regulations currently govern AI usage in Europe: the General Data
Protection Regulation (GDPR) and the AI Act, which is still being for-
mally adopted but already highly influential.

2.1 GDPR and the Right to Explanation
The GDPR, in effect since 2018, regulates the automated processing of personal
data. Article 22 introduces a significant restriction: an individual cannot be
subject to a fully automated decision producing legal effects, except under strict
conditions.

One of the most discussed contributions of the GDPR is the idea of a right to
explanation, although it is not explicitly stated. Article 15(1)(h) provides that
the data subject may obtain “meaningful information about the logic involved”
in an automated process.

Implications for AI:

• Obligation to disclose the purpose and logic used.

• Need to provide safeguards against bias and discrimination.

• Importance of interpretable or explainable methods.

2.2 The AI Act: Toward Specific AI Regulation
The AI Act is a European regulation under finalization (consolidated version
by the end of 2023), aiming to regulate the development and deployment of AI
systems in Europe. It introduces a risk-based classification: minimal, limited,
high, unacceptable.
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For high-risk systems, strict requirements are imposed, such as:

1. Clear and up-to-date technical documentation;

2. High-quality training data;

3. Decision traceability;

4. Explainability and transparency of results;

5. Human oversight;

6. Robustness, accuracy, and cybersecurity;

7. Risk management throughout the lifecycle.

2.3 Toward Normative Explainability
Texts like GDPR and the AI Act do not define what constitutes a good explana-
tion but establish requirements of transparency, understandability, justification,
and accountability. It is up to research to propose suitable methods depending
on the context, target audience, and associated risks.

3 Explainability Methods in Artificial Intelligence
Explainability approaches aim to make AI models understandable to humans.
Two main dimensions can be distinguished: when the explanation is produced
(before or after learning), and the level of the explanation (global or local).

3.1 Typology of Methods
Intrinsic explainability Some models are inherently interpretable. This is
the case for decision trees, logical rules, or linear models. The explanation is
directly linked to the model’s structure.

Post-hoc explainability When a model is complex (deep neural networks,
random forests, etc.), explanation methods are needed after training. The goal
is to explain a specific decision without modifying the model.

Local vs. Global Explanation

• Local: explain a specific prediction (e.g., why did this patient receive this
diagnosis?).

• Global: understand the model’s overall behavior (e.g., which features are
most important?).
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3.2 Some Classic Methods
• LIME (Local Interpretable Model-agnostic Explanations): builds a sim-

ple local model around the prediction to explain.

• SHAP (SHapley Additive exPlanations): uses game theory to assign im-
portance to each feature.

• Counterfactuals: shows what would need to change for a different pre-
diction to occur.

• Saliency maps (in computer vision): highlight areas of an image that
influenced the decision.

3.3 Limitations of Classical Approaches
These methods are useful but have limitations:

• Lack of formal rigor;

• Difficulty in verifying explanation validity or completeness;

• Sometimes hard to interpret for non-experts;

• Sensitivity to perturbations (instability).

3.4 Toward Logic-Based Explainability
In response to these limitations, another approach is emerging: logical or
symbolic explainability. It is based on formal systems (propositional logic,
constraint programming, ontologies) to produce explanations that are verifiable,
auditable, and often more understandable.

These methods can explain inconsistencies in a system (e.g., constraints
that cannot be satisfied together), by identifying minimal parts responsible for
the issue.

This framework includes the concepts of MUS (Minimal Unsatisfiable
Subsets), MCS (Minimal Correction Subsets), MSS (Maximal Satisfi-
able Subsets), and the QuickXplain algorithm, which we will explore in the
following sections.

4 Explanation by Inconsistency: MUS, MCS, and
MSS

In the context of explainable AI, especially for symbolic or constraint-based sys-
tems, a powerful approach is to explain an observed inconsistency in a system.
An inconsistency arises when a set of constraints or knowledge is unsatisfiable,
meaning that there exists no solution that satisfies the entire set.
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To understand why such an inconsistency exists, we can search for the subsets
of constraints responsible. This leads to the key notions of:

• MUS: Minimal Unsatisfiable Subsets

• MCS: Minimal Correction Subsets

• MSS: Maximal Satisfiable Subsets

These objects enable the production of minimal explanations of the in-
consistency.

4.1 Basic Notation
• Let C be a finite set of constraints or formulas.

• C is said to be unsatisfiable if there exists no assignment that satisfies
all the constraints in C.

• We write SAT(S) to denote that the subset S ⊆ C is satisfiable.

4.2 Definition of a MUS
Definition 1 (MUS). Let C be a set of constraints such that C is unsatisfiable.
A subset M ⊆ C is a MUS (Minimal Unsatisfiable Subset) if:

• M is unsatisfiable: SAT(M) = false

• ∀c ∈ M, SAT(M \ {c}) = true (minimality)

Intuition: A MUS is a minimal explanation of the inconsistency. Removing
even a single constraint is enough to resolve it.

Usefulness: Provides the user with the “minimal cause” of a conflict between
constraints (e.g., in a recommendation system, diagnosis, planning, etc.)

4.3 Definition of a MCS
Definition 2 (MCS). A subset M ⊆ C is a MCS (Minimal Correction Subset)
if:

• SAT(C \M) = true (correction)

• ∀M ′ ⊂ M, SAT(C \M ′) = false (minimality)

Intuition: A MCS is a minimal set of constraints that must be removed to
restore consistency.
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Usefulness: In knowledge engineering or diagnosis, MCSs indicate which as-
sumptions or rules must be removed to fix a conflict.

4.4 Definition of a MSS
Definition 3 (MSS). A subset S ⊆ C is a MSS (Maximal Satisfiable Subset)
if:

• SAT(S) = true

• ∀c ∈ C \ S, SAT(S ∪ {c}) = false (maximality)

Intuition: An MSS is a maximal subset of C that is still satisfiable. Adding
any remaining constraint causes inconsistency.

Usefulness: MSSs are useful for exploring maximally consistent configura-
tions, for example in constraint-based planning or consistent suggestions in a
decision support system.

4.5 Relationships Between MUS, MCS, and MSS
There is a strong relationship between these three notions:

• Every MUS is the complement of at least one MCS: if M is an MCS,
then C \M is an MSS, and its complement contains a MUS.

• Conversely, every MSS is the complement of a MCS.

• In practice, MUSs can be generated from MCSs (and vice versa), although
this can be costly.

4.6 Simple Example
Let C = {c1, c2, c3} with:

c1 : x > 0

c2 : x < 5

c3 : x < −1

The set C is unsatisfiable. We can identify:

• MUS = {c1, c3}: this subset is minimally unsatisfiable.

• MCS = {c3}: removing c3 restores consistency.

• MSS = {c1, c2}: a maximal consistent subset.
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4.7 Role in Explainability
MUS, MCS, and MSS allow us to:

• produce minimal and understandable explanations of a conflict,

• identify the responsible constraints (MUS),

• suggest solutions (MCS to remove or MSS to keep),

• formalize explanation algorithms such as QuickXplain.

5 The QuickXplain Algorithm
To efficiently identify a MUS, the QuickXplain algorithm computes a minimal
subset of constraints responsible for the inconsistency, without enumerating all
possible subsets.

5.1 General Principle
QuickXplain relies on a divide-and-conquer approach that:

• avoids testing all combinations of constraints;

• uses a satisfiability oracle to check the consistency of a set;

• returns a minimal subset X ′ ⊆ X such that X ′ ∪B is unsatisfiable.

5.2 Assumptions
• The set C = X ∪B is unsatisfiable.

• B is a set of constraints assumed to already be consistent.

• X contains the constraints suspected of being responsible for the incon-
sistency.
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5.3 Algorithm Pseudocode

Algorithm 1 QuickXplain Algorithm
Input: X (set of constraints), B (set of already verified constraints)
Output: X ′ (minimal subset of X such that X ′ ∪B is inconsistent)
if ¬SAT(B) then

return ∅ {If B is already inconsistent, return empty set}
end if
if |X| = 1 then

return X {If X is atomic, return X}
else

X1, X2 ← split(X) {Split X into two subsets X1 and X2}
X ′

1 ← QuickXplain(X1, B ∪X2)
X ′

2 ← QuickXplain(X2, B ∪X ′
1)

return X ′
1 ∪X ′

2

end if

5.4 How It Works
The algorithm works recursively by reducing the problem:

• It starts by checking whether B is already inconsistent;

• If there is only one constraint left, it constitutes the minimal explanation;

• Otherwise, X is split into two parts, and the inconsistency is explained by
testing each half in the context of the other.

5.5 Complexity
The complexity depends on the cost of satisfiability oracle calls. In the worst
case, QuickXplain makes O(n log n) calls, which is much more efficient than
exhaustive enumeration.

5.6 Advantages
• Does not require generating all MUSs;

• Produces a minimal explanation consistent with the original set;

• Well-suited for user interaction, as the explanations are progressive and
understandable.
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5.7 Applications
• Knowledge debugging (ontologies, rules, expert systems);

• System planning or configuration;

• Diagnosis, explaining conflicts in decision systems.
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