
Constraint Programming
(Solving)
Lecture Notes

Nadjib Lazaar
Université Paris-Saclay

lazaar@lisn.fr

Introduction

Constraint Programming (CP) is a declarative approach that allows
modeling and solving complex combinatorial problems. By defining a
set of variables, domains, and constraints, this approach facilitates the
expression and automatic resolution of problems without explicitly spec-
ifying a particular algorithm.

1 Introduction to Constraint Programming (CP)
Solving

CP is a declarative approach to solving combinatorial problems, in which a prob-
lem is modeled in terms of variables, domains (sets of possible values for each
variable), and constraints (relations that must be satisfied between variables).
One of the major advantages of this approach is that the solving algorithm does
not need to be explicitly defined; instead, it relies on automated techniques that
explore the space of possible solutions.

Solving a CP problem involves finding one or more values for each variable
that satisfy all imposed constraints. This search is carried out using solvers
that employ specialized algorithms to efficiently navigate the solution space and
optimize the search for valid solutions.

2 Solving Methods
CP solving techniques vary depending on the nature of the problem and its
constraints. The main methods include:

• Backtracking: This is one of the simplest yet effective methods for solv-
ing CP problems. The idea is to construct the solution incrementally,

1



verifying at each step whether the constraints are satisfied. If a constraint
is violated, the algorithm backtracks to try another possibility.

• Constraint Propagation: This technique involves propagating the ef-
fects of constraints throughout the search space to reduce variable domains
and proactively eliminate invalid solutions.

• Local Search: These techniques, such as descent algorithms or genetic
algorithms, attempt to find solutions by exploring the neighborhood of a
given solution, iterating locally, and seeking to improve the solution at
each step.

• Problem Decomposition: This approach involves dividing a complex
problem into simpler subproblems, allowing for faster and more targeted
resolution.

3 Solving Methods
CP solving techniques vary depending on the nature of the problem and its
constraints. The main methods include:

• Backtracking: This is one of the simplest yet effective methods for solv-
ing CP problems. The idea is to construct the solution incrementally,
verifying at each step whether the constraints are satisfied. If a constraint
is violated, the algorithm backtracks to try another possibility.

• Constraint Propagation: This technique involves propagating the ef-
fects of constraints throughout the search space to reduce variable domains
and proactively eliminate invalid solutions.

• Local Search: These techniques, such as descent algorithms or genetic
algorithms, attempt to find solutions by exploring the neighborhood of a
given solution, iterating locally, and seeking to improve the solution at
each step.

• Problem Decomposition: This approach involves dividing a complex
problem into simpler subproblems, allowing for faster and more targeted
resolution.

4 Solving with Backtracking
The backtracking algorithm is a search method used to solve combinatorial
problems. It explores a solution space exhaustively and backtracks when a
partial solution can no longer lead to a valid solution.

The fundamental idea is to construct a solution progressively, step by step,
verifying at each stage whether the partial solution is valid according to the
problem’s constraints. If a step leads to a situation where the constraints are

2



no longer satisfied, the algorithm backtracks and tries another possibility. The
process continues until a valid solution is found or all possibilities have been
explored.

Algorithm 1: Backtracking (BT)
Input: ⟨X,D,C⟩ (constraint network), I (partial instantiation)
Output: true if a solution is found, otherwise false
if I is a complete instantiation then

return true ; // A solution has been found
end
Select a variable Xi /∈ I;
foreach v ∈ D(Xi) do

if I ∪ {Xi ← v} is locally consistent then
if BT(⟨X,D,C⟩, I ∪ {Xi ← v}) then

return true
end

end
end
return false ; // No solution was found

4.1 Algorithm Description
1. Input: The algorithm takes as input a constraint network ⟨X,D,C⟩,

where X is a set of variables, D is the set of variable domains, and C
is the set of constraints. The algorithm also takes a partial instantiation
I of the variables, representing the current state of the solution under
construction.

2. Base Case: If the instantiation I is complete (all variables are assigned),
then a solution has been found, and the algorithm returns true.

3. Variable Selection: If the instantiation is incomplete, the algorithm
selects a variable that has not yet been instantiated (unassigned) from the
set of variables X.

4. Value Exploration: The algorithm iterates through all possible values
v in the domain D(Xi) of the selected variable Xi.

5. Local Consistency Check: Before assigning a value to Xi, the algo-
rithm checks whether the instantiation I ∪ {Xi ← v} is locally consistent,
meaning all constraints are satisfied under this partial assignment.

6. Recursive Call: If the instantiation is locally consistent, the algorithm
recursively calls BT to solve the problem with this new assignment. If
the recursion returns true, it means a solution has been found, and the
algorithm returns true.

3



7. Backtracking: If no value leads to a solution, the algorithm backtracks
and tries another value for the previous variable.

8. Return: If all possibilities have been explored without success, the algo-
rithm returns false, indicating that no solution has been found.

5 Local Consistencies in Constraint Programming
In CP, local consistency refers to a property where a part of the constraint
network is made consistent, without guaranteeing that the entire problem is
globally solved. Different levels of local consistency exist, including Arc Con-
sistency (AC) and Bound Consistency (BC).

5.1 Arc Consistency (AC)
Arc Consistency (AC) is a form of local consistency, stronger than BC. A
problem is arc-consistent if, for each binary constraint C(Xi, Xj) and each value
vi ∈ D(Xi), there exists at least one value vj ∈ D(Xj) such that the constraint
is satisfied. If not, vi is removed from D(Xi).

The AC-3 algorithm is often used to enforce arc consistency by iterating
over the constraints and removing inconsistent values. Although more compu-
tationally expensive than BC, AC enables better pruning of the search space.

5.2 Bound Consistency (BC)
Bound Consistency (BC) is another form of local consistency that considers
only the extreme values of the variable domains. A binary constraint C(Xi, Xj)
is bound-consistent if, for the minimum and maximum values of Xi, there exists
at least one value of Xj satisfying the constraint.

Unlike AC, which checks all values in a domain, BC is limited to the bounds,
making it faster but less effective in filtering out inconsistent values.

For Boolean variables, BC and AC become equivalent. Since a Boolean
domain is limited to two values, verifying BC amounts to checking all possible
values, which is precisely what AC does.

5.3 Other Levels of Local Consistency
Other forms of local consistency include:

• SAC (Singleton Arc Consistency): Ensures that each value of a vari-
able can be extended to a consistent partial solution.

• RPC (Restricted Path Consistency): Strengthens arc consistency by
considering constraints that indirectly link three variables.

• k-consistency: A problem is k-consistent if any valid instantiation of
k − 1 variables can be extended to a k-th variable while satisfying the
constraints.

4



5.4 Global Consistency and Domain Consistency
Global consistency means that the entire problem is made locally consistent
at all levels of propagation, maximizing the reduction of the search space.

Domain consistency is a weaker property that ensures each value in a
domain satisfies at least one constraint in the problem.

5.5 Global Constraints and Propagators
Global constraints involve multiple variables and allow modeling complex re-
lationships. For example, the AllDifferent constraint ensures that all variables
take distinct values.

To maintain a certain level of consistency on these constraints, solvers use
propagators, which apply specialized algorithms to enforce a specific level
of local consistency (AC, BC, or others). These techniques improve filtering
efficiency and significantly reduce search time.

6 Strategies
Once the problem has been modeled, it is necessary to choose effective strategies
to explore the solution space. Among the most commonly used strategies in
CSP, we find:

• Variable and Value Selection Heuristics: Heuristics are strategies
used to guide the search in the CSP solution space. They help make more
informed decisions regarding the order of variable selection and the values
assigned to these variables. The goal is to reduce computation time and
increase the chances of quickly finding a solution by prioritizing the most
promising choices.

1. Variable Selection Heuristics: Choosing the variable to assign
is crucial in solving CSP problems. A poor selection can lead to an
inefficient exploration of the search space. Here are some common
heuristics for variable selection: Minimum Domain (Min Dom):
This heuristic selects the variable with the smallest domain; Degree
Heuristic: Prefers the variable that is involved in the largest number
of constraints.

2. Value Selection Heuristics: Once a variable is selected, the next
heuristic determines which value to assign to it. As with variable
selection, choosing the right value can significantly influence search
efficiency. Here are some value selection heuristics: Most Con-
straining Value: This heuristic selects the value that is the most
restrictive for other variables, meaning the value that most reduces
the domains of neighboring variables; Random Value: This heuris-
tic randomly selects a value from the variable’s domain.

5



• No-good: No-goods are sets of decisions that inevitably lead to a conflict
or contradiction. When a no-good is detected, all branches of the search
space containing this configuration can be immediately pruned. For ex-
ample, in a Sudoku problem, a no-good could be a combination of values
violating the uniqueness constraint for numbers in a row.

• Conflict Detection: Conflict detection identifies constraint violations,
generating no-goods to prevent revisiting these configurations. As soon
as a conflict is detected, the algorithm backtracks and uses no-goods to
eliminate conflicting solutions in future iterations.

• Consistency: Applying different levels of consistency, such as domain
consistency or arc consistency, reduces the domains of variables by elimi-
nating invalid values, thereby reducing the number of possibilities to ex-
plore.

6


	Introduction to Constraint Programming (CP) Solving
	Solving Methods
	Solving Methods
	Solving with Backtracking
	Algorithm Description

	Local Consistencies in Constraint Programming
	Arc Consistency (AC)
	Bound Consistency (BC)
	Other Levels of Local Consistency
	Global Consistency and Domain Consistency
	Global Constraints and Propagators

	Strategies

