Constraint Programming
(Modeling)

Course Notes

Nadjib Lazaar
Université Paris-Saclay
lazaar@lisn.fr

Introduction

Constraint programming (CP) is a declarative approach used to model
and solve complex combinatorial problems. By defining a set of vari-
ables, domains, and constraints, this approach facilitates the expression
and automatic resolution of problems without explicitly specifying a par-
ticular algorithm.

1 History and Motivation

Constraint programming originated in the 1960s-1970s, particularly in artificial
intelligence, logic programming, and operations research. During this time, re-
searchers were exploring different approaches to solving combinatorial problems
more efficiently than traditional exhaustive search methods. The fundamen-
tal idea was to leverage constraints to reduce the search space and speed up
problem-solving.

In the 1980s, the first languages dedicated to constraint programming emerged,
notably CLP (Constraint Logic Programming), which combined the declar-
ative logic of Prolog with constraint management. This advancement allowed
for better structuring and automation in solving many problems in artificial
intelligence and optimization.

In the 1990s-2000s, CP underwent progressive industrialization with the ap-
pearance of generic solvers such as ILOG Solver, ECLiPSe, and Choco. These
tools facilitated the adoption of CP in various fields such as planning, logistics,
and resource optimization.

Today, CP is widely used in industry thanks to high-performance solvers
such as Gecode, Google OR-Tools, and IBM Ilog CP Optimizer. These solvers
allow for declarative modeling and the use of advanced constraint propagation
techniques and heuristic search to quickly find optimal solutions. CP continues



to evolve, particularly with its integration into hybrid approaches combining
CP and machine learning.

2 Comparison of Programming Paradigms

CP belongs to the declarative paradigm, which differs from other programming
paradigms.

Declarative programming, and particularly CP, stands out for its ability to
express problems in terms of logical relationships and constraints, leaving the
solver to determine the best possible solution. This approach is particularly
useful for combinatorial and optimization problems where traditional methods
would be too computationally expensive.



Paradigm

Description

Examples of Languages

Imperative

Describes how to solve a problem using
successive instructions

C, Java, Python (imperative mode)

Object-Oriented

Structures the code into objects and
their interactions

Java, C++, Python (object mode)

Functional Based on the evaluation of functions | Haskell, Lisp, Scala
without mutable state
Declarative Specifies the problem to be solved with- | Prolog, SQL, MiniZinc

out detailing how to solve it

Table 1: Comparison of Programming Paradigms




3 Foundations of CP

A constraint satisfaction problem (CSP) is defined by a finite set of variables,
each taking values from a finite domain, and a set of constraints expressing
relationships between these variables.

e Variables: A CSP is defined by a finite set of variables X = {1, 29, ..., 2p }.

e Domains: Each variable z; has a finite domain D(x;) containing the
values it can take.

e Constraints: Constraints are relationships between variables that restrict

the possible combinations of values.

3.1 Types of Constraints
Constraints can be defined in various ways:
e Unary constraints: These involve a single variable, such as z; # 3.
e Binary constraints: These link two variables, such as x1 # xs.
e k-ary constraints: These involve more than two variables, such as x; +

To + x3 < 10.

3.2 Constraint Definition Modes

Constraints can be specified in several ways:

e Extensionally: By explicitly listing the allowed combinations. For ex-
ample, for x1,29 € {1,2,3}:

C={(1,2),(2,3),(3,1)}
meaning that only these pairs of values are allowed for x; and xs.

e Intentionally: By defining a logical or mathematical relationship. For
example:
r1 + To = I3

imposes that the sum of x; and x5 is equal to x3.

e Global constraints: These involve many variables and facilitate con-
straint propagation. For example:

allDifferent(xy,xo, ..., Ty)

requires that all variables have distinct values.



CSP Example

Consider a map coloring problem where we need to color three regions
A, B, and C with three different colors (Red, Green, Blue), subject to
the following constraint:

e Two adjacent regions cannot have the same color.
CSP formulation:
e Variables: X = {A,B,C}
e Domains: D(A) = D(B) = D(C) = {Red, Green, Blue}
e Constraints: A# B, B£C, A#C

The solution involves assigning a color to each region while respecting
the defined constraints.

Each constraint restricts the solution space, and the final solution of the CSP
is an assignment of variables that satisfies all the constraints simultaneously.

4 CP Modeling: Modeling Strategies

Modeling is a crucial step in constraint programming (CP) because it determines
the efficiency of problem resolution. A good model relies on several strategies:

4.1 Identification of Variables and Domains

The first step is to define the variables and their domains:

e What are the key elements of the solution? These are the entities
of the problem that we need to represent as variables.

e What values can these elements take? Each variable must be asso-
ciated with a finite domain of possible values.

4.2 Defining Constraints

Once the variables are defined, the next step is to establish the relationships
between them in the form of constraints:

¢ Which relationships exist between variables? These relationships
express the restrictions we want to impose on the problem.

e What are the possible ways of defining constraints? Constraints
can be expressed intensionally (using logical conditions) or extensionally
(listing allowed combinations).



4.3 Choice of Granularity Level
It is important to adapt the modeling based on the problem:

e Does a variable represent a subproblem or an individual value?
Sometimes, a single variable can represent a set of elements.

e Should certain variables be grouped to simplify the model? A
good structuring of the variables can improve the efficiency of the solution
process.

4.4 Modeling Optimization

An effective modeling approach aims to reduce the complexity of the problem:

e Avoid redundancies. Do not define unnecessary constraints that would
complicate the model.

e Reduce complexity by limiting the number of constraints. Sim-
plifying the model improves the solution search speed.

e Consider constraint propagation to guide the search. Good prop-
agation helps eliminate inconsistent values quickly and speeds up CSP
resolution.

5 Search Space in CSP

The search space of a constraint satisfaction problem (CSP) represents the set

of all possible assignments of the problem’s variables. It plays a crucial role in

the efficiency of the resolution and can be optimized using various techniques.

5.1 Definition of the Search Space

The search space is defined as the Cartesian product of the variable domains:
E = D(z1) x D(z2) X ... x D(xy,)

Thus, if each variable has a domain of d values and there are n variables, then

the size of the search space is d™.

5.2 Reducing the Search Space

The raw search space can be immense, but it is reduced by constraints that
filter out invalid assignments. Several techniques help optimize this reduction:

e Constraint propagation: eliminating impossible values before exploring
the search space.



e Heuristics for variable and value selection: strategies to efficiently
explore the search space.

e Problem decomposition: breaking the problem into smaller subprob-
lems to restrict the search space.

e Local search: partial exploration of the space to quickly find approximate
solutions.

5.3 Impact of Constraints on the Search Space

Constraints directly influence the size and structure of the search space:

e Strict constraints: significantly reduce the search space, making the
resolution easier but risking eliminating viable solutions.

e Soft constraints: leave more options open but make the search more
complex.

e Global constraints: allow expressing complex relationships in a single
constraint and improve resolution efliciency.

Proper management of the search space is essential to efficiently solve a CSP,
avoiding exhaustive exploration and favoring intelligent search techniques.

6 Symmetry Breaking in CSP

Symmetry breaking is an essential technique in CSP that reduces the search
space by eliminating equivalent solutions. A symmetry occurs when there are
multiple solutions that are identical except for a simple rearrangement of values.

6.1 Why Break Symmetries?

Symmetric problems have multiple equivalent solutions, which can slow down
the search by unnecessarily exploring redundant configurations. By adding ad-
ditional constraints to eliminate these duplications, we reduce computation time
and improve solver efficiency.

6.2 Symmetry Breaking Methods

Various approaches exist to manage symmetries:

e Adding symmetry-breaking constraints: imposing restrictions to
force a unique representation among symmetric solutions. Example: fixing
a pivot variable (z1 < 23) to avoid unnecessary permutations.

e Reducing the search space: adjusting search heuristics to avoid re-
exploring the same configurations.

e Dynamic filtering: removing symmetric solutions during the search us-
ing specialized algorithms.



6.3 Example of Symmetry Breaking

Consider the n-queens problem, where we need to place n queens on an n X
n chessboard such that no two queens attack each other. This problem has
multiple symmetric solutions due to rotation or reflection. We can break these
symmetries by imposing that the first queen is placed in the left half of the
chessboard:

Symmetry Breaking Example

n-Queens Problem: Symmetry-breaking constraints applied:
e Fix the first queen on the first row.
e Require that the column of the first queen be less than n/2.

e Eliminate solutions obtained by rotation or reflection.

J

Applying these techniques reduces the number of configurations explored
and accelerates the resolution of the CSP.

7 Redundant Constraints in CSP

Redundant constraints are constraints added to a CSP that do not change the set
of valid solutions but help accelerate the resolution by enhancing propagation.

7.1 Why Add Redundant Constraints?

Although a redundant constraint does not alter the set of solutions, it can:
e Improve constraint propagation and reduce the search space.

e Eliminate inconsistent values more quickly and avoid unnecessary explo-
rations.

e Facilitate convergence to a solution by providing additional information
to the solver.

7.2 Examples of Redundant Constraints

e Sum of variables: In a problem where x1,x2,z3 are required to take
different values (allDifferent(z1,x2,x3)), a redundant constraint like
T1 + x2 + 3 = 6 can improve propagation.

e Implicit symmetry: In an object placement problem on a grid, a con-
straint requiring the sum of the object indices to be even can speed up
the search without changing the set of solutions.



e Propagation optimization: In a scheduling problem, adding additional
precedence constraints can limit the assignments explored by the solver.

The addition of redundant constraints must be done with caution, as too
many constraints can slow down the resolution instead of speeding it up. A
good problem analysis helps identify the most relevant constraints to add.

8 Channeling Constraints

Channeling constraints allow the introduction of auxiliary variables to simplify
the modeling of a problem by establishing a correspondence between different
representations of the same concept.

8.1 Why Use Channeling Constraints?
Adding auxiliary variables and channeling constraints is useful to:
e Facilitate the expression of certain complex constraints.
e Improve constraint propagation and accelerate the search for solutions.

e Provide an equivalent alternative that simplifies the problem resolution.

8.2 Types of Channeling Constraints
Channeling constraints are often used to link different formulations of a problem:

e Correspondence between boolean and integer variables: A boolean
variable b; can be introduced to indicate whether an integer variable x;
takes a given value.

b=1 < x;=v

e Alternative representation of a constraint: Two sets of variables
can be defined to represent the same information in different ways, with
channeling constraints ensuring their consistency.

e Decomposition of a global constraint: A complex constraint can be
transformed into several local constraints linked by auxiliary variables.

Using channeling constraints is a powerful technique for structuring and
simplifying a constraint satisfaction problem while optimizing its resolution.

9 Global Constraints in Modeling

Global constraints are predefined constraints that capture frequent structures
in CSPs. They allow for efficient modeling of complex relationships without the
need to enumerate all equivalent elementary constraints.



9.1 Why Use Global Constraints?

Global constraints offer several advantages in modeling:
e They allow for expressing a problem in a more compact and readable way.
e They improve constraint propagation, thus reducing the search space.

e They avoid the need to explicitly formulate sets of equivalent constraints.

9.2 Key Global Constraints for Modeling

Here are some commonly used global constraints in CSP modeling:

e allDifferent(x1,x2,...,x,): imposes that all variables take distinct val-
ues. This constraint is useful in scheduling and planning problems.

e sum(x; + 2 + ... + &, = 5): imposes a given sum over a set of variables.
It is frequently used in assignment and optimization problems.

e element(i, [v1, 2, ..., Un], ): imposes that the variable z takes the value at
position 7 in a list. This constraint is useful for modeling choices dependent
on an index.

e circuit(xy,xa,...,2,): imposes that a set of variables defines a Hamilto-
nian circuit, commonly used in routing problems.

e globalCardinality(z1, &2, ..., Tn, [A1, -y G ), [D1, -, Dim]): Testricts the fre-
quency of occurrence of values in a set of variables. It is often used in
balanced distribution problems.

Global constraints are powerful tools that make modeling more intuitive and
improve the performance of solvers in CSPs.

10



	History and Motivation
	Comparison of Programming Paradigms
	Foundations of CP
	Types of Constraints
	Constraint Definition Modes

	CP Modeling: Modeling Strategies
	Identification of Variables and Domains
	Defining Constraints
	Choice of Granularity Level
	Modeling Optimization

	Search Space in CSP
	Definition of the Search Space
	Reducing the Search Space
	Impact of Constraints on the Search Space

	Symmetry Breaking in CSP
	Why Break Symmetries?
	Symmetry Breaking Methods
	Example of Symmetry Breaking

	Redundant Constraints in CSP
	Why Add Redundant Constraints?
	Examples of Redundant Constraints

	Channeling Constraints
	Why Use Channeling Constraints?
	Types of Channeling Constraints

	Global Constraints in Modeling
	Why Use Global Constraints?
	Key Global Constraints for Modeling


