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Introduction

Version Space Learning is a supervised learning approach proposed by
Tom Mitchell. It is based on the principle of filtering hypotheses accor-
ding to training examples to restrict the search space to a set of compa-
tible solutions. This method is particularly useful in contexts where prior
knowledge is limited and where the goal is to learn a precise conceptual
representation.

1 Context and History
Machine Learning (ML) is currently dominated by connectionist approaches,

particularly deep neural networks. These models, inspired by the functioning of
the human brain, adjust thousands of parameters to capture regularities in data.
However, this approach is not the only existing one in machine learning.

Before the rise of neural networks, learning was often seen as a symbo-
lic process, based on logical rules and the manipulation of explicit concepts.
Among these approaches, Version Space Learning (VSL), proposed by Tom
Mitchell in 1978, holds an important place in supervised learning. This
model is based on the idea of refining a set of candidate hypotheses over succes-
sive observations, maintaining a boundary between the most general and
the most specific hypotheses.

VSL belongs to concept learning methods, where the objective is to learn
a rule or category from positive and negative examples. Unlike neural networks,
which learn implicit representations in the form of weights, VSL directly mani-
pulates concepts expressible in propositional logic.

2 A Symbolic Learning Approach
Symbolic learning relies on the manipulation of logical structures and

the deduction of explicit rules. Unlike connectionist methods, which are based
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on numerical optimization, symbolic models seek to extract interpretable
concepts from data.

Version Space Learning belongs to this symbolic tradition, where the
goal is to manipulate a set of hypotheses and refine them based on the ob-
served data. This approach allows for understandable and interpretable
models, a major advantage in fields where explainability is crucial (healthcare,
law, finance).

3 Concept Learning
Concept learning is a fundamental approach in machine learning, where the

goal is to identify a decision rule that distinguishes positive instances from
negative instances. It is a specific case of binary classification.

3.1 Problem Definition
A binary classification problem is also called a concept learning problem.

The goal is to learn a target function :

f : X → {0, 1} (1)

where :
— X represents the instance space, i.e., the set of objects or examples under

consideration.
— f(x) = 1 means that the instance x ∈ X belongs to the positive class.
— f(x) = 0 means that x belongs to the negative class.
The set of positive instances, denoted C, is defined as :

C = f−1(1) = {x ∈ X | f(x) = 1} (2)

In other words, a concept is simply a subset C ⊆ X containing all the
positive instances. Its complement, X \ C, represents the negative instances.
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Characteristic Connectionist Learning Symbolic Learning

Representation Neural networks, synaptic weights Logical rules, symbolic structures

Interpretability Black box, hard to explain Explainable, clear concepts

Required Data Large volumes, need for annotations Can work with few examples

Approach Approximate, probabilistic Deductive, rule-based

Abstraction Capabi-
lity

Learns statistical patterns Can generalize with few examples

Need for Background
Knowledge

No Yes, often

Table 1 – Comparison between connectionist and symbolic learning
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3.2 Hypotheses and Constraints
Learning concepts is generally based on certain hypotheses :
— Noise Hypothesis : It is assumed that the training examples are ac-

curate, meaning there are no errors or ambiguities in the labeling of the
data.

— Well-defined Concept Hypothesis : It is assumed that the target
concept is well-defined and can be learned from a finite set of examples.

— Closed World Hypothesis : Anything not specifically mentioned as
positive is assumed to be negative.

However, these hypotheses are restrictive in real-world contexts where data
may contain noise (mis-labeled examples, inaccurate sensors, etc.), and where
the target concept may be more complex than expected.

3.3 Illustration and Example
Example 1 : Shape Recognition
Suppose that the instance space X is a set of geometric shapes, and the

target concept is "circles." In this case :
— The concept C is defined as :

C = {x ∈ X | x is a circle} (3)

— All other shapes (squares, triangles, etc.) belong to the negative set X\C.
Example 2 : Email Classification
Consider another example where the goal is to classify emails as spam or

non-spam (ham). Here :
— The instance space X represents all the received emails.
— The concept C corresponds to the emails considered spam.
— The complement X \ C contains all the non-spam emails.
In an ideal case, a concept learning algorithm would learn a function f that

correctly predicts whether an email is spam or not, based on characteristics such
as the presence of certain keywords, the structure of the message, or the sender.

3.4 Connection with Learning Hypotheses
Concept learning relies on fundamental hypotheses that guide generaliza-

tion :
— Stationarity Hypothesis : The distributions of positive and negative

instances remain stable over time.
— Representativity Hypothesis : The training examples are represen-

tative of the overall problem.
— No Ambiguity Hypothesis : Each instance belongs either to the po-

sitive class or the negative class, but never to both at the same time.
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4 Version Space Lattice
In concept learning, the hypothesis space typically forms an ordered struc-

ture that can be represented as a lattice. This organization helps better un-
derstand how an algorithm explores the hypothesis space to identify the target
concept.

4.1 Definition of the Version Space
The version space is the set of hypotheses that are consistent with the set

of training examples observed so far.

V S = {h ∈ H | h(x) = f(x) for all observed examples x} (4)

where :
— H is the set of all possible hypotheses.
— h(x) is the prediction of the hypothesis h for an instance x.
— f(x) is the true label of the instance x.
Thus, the version space consists of all hypotheses that are consistent with

the training examples.

4.2 General-Specific Order and Lattice
Hypotheses in H can be ordered according to a general-to-specific or-

dering. We say that a hypothesis h1 is more general than a hypothesis h2,
denoted :

h1 ≥ h2 (5)

if and only if h1 covers at least all the instances covered by h2 :

∀x ∈ X, h2(x) = 10,⇒ h1(x) = 1 (6)

This order induces a lattice structure, where :
— The most general hypothesis (denoted ⊤) accepts all instances.
— The most specific hypothesis (denoted ⊥) rejects all instances.
— Each hypothesis is positioned in the lattice according to its generality

relative to others.

4.3 Lattice Bounds : Maximum and Minimum Hypotheses
In the version space elimination algorithm (Version Space Learning), two

sets of hypotheses are manipulated :
— G-set (General) : the set of the most general hypotheses still consistent

with the examples.
— S-set (Specific) : the set of the most specific hypotheses consistent with

the examples.
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The version space can be viewed as the set of hypotheses located between
these two bounds :

S ⊆ V S ⊆ G (7)

5 Formal Foundations of Version Space Learning
Learning by VSL (Version Space Learning) is a symbolic learning approach

based on maintaining a set of hypotheses compatible with the observed data.
This method allows progressively restricting the hypothesis space until a single
model (or a restricted subset of models) is identified.

5.1 Definitions and Notations
— Let X be the example space and H be the hypothesis space.
— A hypothesis h ∈ H is a classification function h : X → {0, 1}, where

h(x) = 1 means that x is classified as positive.
— A set of training examples is given by D = {(xi, yi)}Ni=1, where xi ∈ X

and yi ∈ {0, 1} is the associated label.
— The set of hypotheses compatible with D is called the Version Space

and is denoted V S(D).

Before introducing the boundaries of the version space, it is essential to
understand the inclusion relationship between hypotheses. A hypothesis h is a
subset of another hypothesis h′ (denoted h ⊂ h′) if and only if h imposes stricter
conditions on the classification of examples than h′. In other words, any instance
accepted by h is also accepted by h′, but the reverse is not necessarily true. This
inclusion relationship is fundamental to defining the boundaries of the version
space.

Définition 1 (Boundaries of the Version Space) The version space is cha-
racterized by two sets called boundaries :

— The specific boundary S contains the most specific hypotheses that
correctly classify all the observed positive examples :

S = {h ∈ H | h(x) = 1, ∀(x, 1) ∈ D and ∄h′ ∈ H,h′ ⊂ h}.

— The general boundary G contains the most general hypotheses that
do not incorrectly classify any negative example :

G = {h ∈ H | h(x) = 0, ∀(x, 0) ∈ D and ∄h′ ∈ H,h ⊂ h′}.

6 Example of Hypothesis Space
Consider a classification task where each example is described by three at-

tributes :
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— Color : Red (R) or Blue (B)
— Shape : Circle (C) or Square (S)
— Size : Large (G) or Small (P)
The hypothesis space H includes all possible combinations of these attribute

values, including both general and specific hypotheses.

Hypothesis Color Shape Size

hgen (General hypothesis) ? ? ?
h1 R ? ?
h2 ? C ?
h3 R C ?
h4 R C G

hspec (Specific hypothesis) R C G

Table 2 – Example of the hypothesis space H

The hypothesis hgen represents the most general case where all examples
are accepted, while hspec is the most restrictive, accepting only one specific
configuration of attributes.

6.1 Version Space Learning Algorithm
The algorithm follows an iterative process where it updates the sets S and

G based on the observed examples.
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Algorithme 1 : Version Space Learning Algorithm
Input : A training set D with attributes and class labels
Output : The sets S and G defining the version space

Initialization :
S ← most specific hypothesis (e.g., an empty set or a specific instance)
G← most general hypothesis (e.g., (?, ?, ..., ?))

foreach example (X, y) ∈ D do
if y is positive (accepted example) then

foreach g ∈ G do
if g does not cover X then

Remove g from G
end

end
foreach s ∈ S do

if s does not cover X then
Generalize s minimally to cover X

end
end
Remove from S any hypothesis that is more general than another

else if y is negative (rejected example) then
foreach s ∈ S do

if s covers X then
Remove s from S

end
end
foreach g ∈ G do

if g covers X then
Specialize g to exclude X

end
end
Remove from G any hypothesis that is more specific than
another

end
end
return S,G

6.2 Convergence and Properties
— The algorithm guarantees convergence to a unique hypothesis h∗ if and

only if S = G.
— If S and G do not converge to a unique hypothesis, it means the available

data is insufficient to identify a single model.
— The version space can be used to generate new queries or ask strategic

questions to distinguish between candidate hypotheses.
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7 Why Study Version Space Learning ?
Although neural networks dominate machine learning today, understanding

symbolic approaches is crucial for several reasons :
1. Explainability and Interpretability : Unlike neural models, methods

like VSL and ILP allow easy explanation of decisions.
2. Learning with few data : Symbolic methods require less data to learn

general concepts.
3. Utilizing background knowledge : They can be integrated with exis-

ting knowledge bases.
4. Complementarity with modern AI : Today, there is a resurgence of

neuro-symbolic approaches, combining neural networks and sym-
bolic models.

8 Applications and Challenges
Version Space Learning is particularly useful in domains with limited data

and where generalization must be carefully controlled. Its applications include :
— Learning concepts in supervised classification.
— Extracting explainable rules from data.
— Planning and robotics, where generalization constraints are crucial.
However, the method suffers from limitations, particularly its sensitivity to

errors and inefficiency when the hypothesis space becomes too large. This is
where ILP (Inductive Logic Programming) and other more robust approaches
can be considered.
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