Monte Carlo Tree Search
(MCTS)

Lecture Notes

Nadjib Lazaar
University of Paris-Saclay
lazaar@lisn.fr

Introduction

Monte Carlo Tree Search (MCTS) is a combinatorial optimization al-
gorithm for decision-making in games and other domains. It relies on
random simulations to explore decision spaces and identify optimal ac-
tions. This algorithm is widely used in games like Go, Chess, and video
games.

1 History and Evolution of MCTS

MCTS is a tree exploration method combining statistical simulations based on
Monte Carlo techniques with tree search approaches. It was initially developed
to solve complex problems, particularly in perfect-information games such as
Go.

Monte Carlo Methods: The concept of "Monte Carlo" originated from
probabilistic methods developed in the 1940s as part of the Manhattan Project.
These techniques were designed to estimate approximate solutions to problems
where exhaustive search was infeasible.

1.1 Development of MCTS in the 2000s

Early Ideas: The idea of combining Monte Carlo simulations with tree search
emerged in the 1990s, driven by the need to enhance performance in strategic
games.

Key Advances (2006—2008):



e 2006: MCTS was formalized in research on combinatorial games by Coulom,
who introduced the concept of using Monte Carlo simulations to guide
search.

e 2008: The Upper Confidence Bounds for Trees (UCT) algorithm, pro-
posed by Kocsis and Szepesvari, marked a major milestone by integrating
an exploration-exploitation policy inspired by multi-armed bandits.

1.2 Major Applications

The Game of Go: One of the most significant breakthroughs for MCTS was
its application to the game of Go, where classical algorithms like Minimax failed
due to the immense combinatorial complexity. MCTS-based programs, such as
CrazyStone and MoGo, achieved competitive levels of play.

The Era of Artificial Intelligence: MCTS was also a key component in
systems like AlphaGo (2016), which combined MCTS with neural networks to
defeat the best human Go players.

1.3 Current Research and Evolution

Today, MCTS remains an active research area, with applications extending be-
yond traditional games to fields such as:

e Planning in artificial intelligence.
e Autonomous decision-making systems.
e Resource optimization in computer networks.

MCTS continues to play a central role in the development of modern Al algo-
rithms.

2 Key Concepts of MCTS

MCTS operates through four main steps, repeated to explore the game tree:

1. Selection: Traversing the existing tree by selecting nodes with the highest
potential based on a criterion (such as UCBI).

2. Expansion: Adding new nodes to explore possible actions not yet simu-
lated.

3. Simulation: Running a simulated game from a node to a terminal state,
often with randomly chosen actions.

4. Backpropagation: Updating node statistics (rewards and visits) along
the path back to the root.



3 Selection Criterion: UCB1

In MCTS, the selection of actions to explore is based on balancing explo-
ration (examining less-explored actions to discover potentially better options)
and exploitation (focusing on actions already showing promise). This balance
is managed using the Upper Confidence Bound 1 (UCB1) criterion.

3.1 UCB1 Formula
The formula for UCBLI is:

UCBI1(a;) = Wi In

% i

where:
e w;: Cumulative reward obtained by following action a;.
e n,;: Number of times action a; has been simulated.

N: Total number of simulations performed from the root.

e ¢: A control parameter, often empirically tuned, adjusting the balance
between exploration and exploitation.

3.2 Interpretation of Terms

e First Term: Exploitation
The first term 7% represents the average reward obtained for action i,
favoring actions that have performed well so far.

e Second Term: Exploration
In N

uzs

grows when n; is small, promoting exploration.

The second term ¢ encourages exploration of less-tried actions. It

e Parameter c
The parameter ¢ plays a crucial role in balancing exploration and exploita-
tion:

— Large c: Greater emphasis on exploration, suitable for uncertain en-
vironments.

— Small ¢: Prioritizes exploiting actions already showing promise.

3.3 Advantages of UCB1
Key advantages of UCB1 include:

e Simplicity and effectiveness in balancing exploration and exploitation.



e Asymptotic guarantees that the most promising actions are sufficiently
explored.

e Dynamic adaptability to the total number of simulations N, making it

robust across various problems.

3.4 Limitations and Extensions

While effective, UCB1 has some limitations:
e Requires careful tuning of ¢ in complex reward distributions.
e Assumes normalized rewards, which may not hold in all applications.

Extensions, such as UCB-Tuned and domain-specific criteria, have been pro-
posed to address these challenges.

4 MCTS Algorithm



Algorithm 1: MCTS Algorithm

©

10

11

12
13
14
15

16
17
18
19

20

21
22
23
24
25

26

27
28
29
30

Input: sg: Initial state; n: Number of iterations.
Output: bestAction: The best action to take from the root state.
begin
fort+ 1 ton do
s + Selection(sg)
s’ < Expansion(s)
result < Simulation(s’)
Backpropagation(s’, result)

return BestAction(sg)

Function Selection(s):
while Vs’ € child(s) : isVisited(s') do
L s < BestUCB-Child(s)

return s // Return the first unexplored node or the most
promising leaf node

Function Expansion(s):

pick s € child(s) : —isVisisted(s')

if s’ # nil then setAsVisited(s')

return s’ // Return the newly created child node

Function Simulation(s):

while —isLeaf(s) do
pick s’ € child(s)

L 5+ s

return EVAL(s)

Function Backpropagation(s, score):
while s # nil do
update _nbVisits(s)
update _reward(s,score)
s < parent(s)

return // Backpropagation is complete

Function BestAction(root):
8% 4= argmax, ¢ pia(s) (nOVisits(s'))
a* + a; : T(sp,a;) = s*
return a* // Return the action corresponding to the most
visited child of root




	History and Evolution of MCTS
	Development of MCTS in the 2000s
	Major Applications
	Current Research and Evolution

	Key Concepts of MCTS
	Selection Criterion: UCB1
	UCB1 Formula
	Interpretation of Terms
	Advantages of UCB1
	Limitations and Extensions

	MCTS Algorithm

