
The Minimax Algorithm
Lecture Notes 3

Nadjib Lazaar
University of Paris-Saclay

lazaar@lisn.fr

The Minimax algorithm is a decision-making method used in two-player
zero-sum games, where each player seeks to maximize their own gains while
minimizing those of their opponent. It relies on a recursive exploration of the
game tree to determine the best action at each step, assuming both players play
optimally.

1 History and Background of the Minimax Algo-
rithm

The Minimax algorithm has its roots in game theory, a field of applied mathe-
matics. It was formalized in the 1920s and 1930s by the mathematician John
von Neumann.

1.1 Origins and Early Work
The Minimax algorithm was introduced by John von Neumann in the 1920s.
He laid the groundwork for game theory in his pioneering work, which estab-
lished the foundations of the Minimax algorithm. In 1928, von Neumann pro-
posed that two-player zero-sum games (where one player’s gain is the other’s
loss) could be modeled and solved using optimal strategies.

1.2 Game Theory
Game theory was formally established with the publication of the book Theory of
Games and Economic Behavior in 1944, co-authored by John von Neumann
and Oskar Morgenstern. This work defined the framework of game theory as
a standalone mathematical discipline, addressing strategic decision-making in
competitive environments. Von Neumann demonstrated that zero-sum games
could be solved with an optimal strategy, which corresponds to the Minimax
algorithm.

1



1.3 Formalization of Minimax
The principle of Minimax is based on the idea that each player selects a strategy
that minimizes the potential gain of the opponent while maximizing their own
gain. This decision-making approach proved crucial for solving two-player games
where each participant aims to optimize their chances while anticipating the
opponent’s moves.

1.4 Early Computer Programs
The Minimax algorithm was employed to solve two-player games such as chess
and checkers. In 1951, the computer program Turochamp, developed by Alan
Turing and D. G. Champernowne, was one of the first to use a rudimentary
version of the Minimax algorithm to play chess. This marked an initial step in
using AI to simulate complex strategy games.

1.5 Optimizations and Improvements
Over time, it became evident that the combinatorial explosion in large games
made the Minimax algorithm impractical without enhancements. In the 1950s,
Allen Newell, Herbert A. Simon, and John McCarthy introduced opti-
mization techniques such as alpha-beta pruning, which reduces the number of
nodes explored in the decision tree while guaranteeing the same result. This
optimization made the algorithm more efficient, enabling it to handle larger
decision trees.

1.6 Modern Applications
Today, the Minimax algorithm is still widely used in zero-sum games like chess
and checkers. However, its principles have also inspired similar approaches in
other fields of AI, including robotics, military strategy, and finance. Techniques
derived from Minimax continue to be taught in AI and game theory courses.

1.7 Conclusion
The Minimax algorithm represents one of the earliest applications of game the-
ory in computer science. From its initial applications in strategy games, it has
evolved into a cornerstone of autonomous decision-making systems. Its devel-
opment and subsequent improvements have driven significant advances in AI,
and its legacy remains deeply embedded in modern technologies.

2 The Algorithm
The algorithm alternates between two types of steps:

• MAX Steps: Represent the decisions of the main player (Player 1), who
seeks to maximize their gain.

2



Algorithm 1: Minimax Algorithm

Input: s: current state; d: max depth;
player1: Indicates whether it is the maximizing player’s turn.
Output: bestValue: The utility value for the current state.

1 begin
2 if isLeaf(s) ∨ d = 0 then
3 return Eval(s)

4 if player1 then
5 bestValue ← −∞
6 foreach s′ ∈ child(s) do
7 bestValue ← max (bestValue, Minimax(s′, d− 1, false))

8 return bestValue

9 else
10 bestValue ← +∞
11 foreach s′ ∈ child(s) do
12 value ← Minimax(s′, d− 1, true)
13 bestValue ← min(bestValue, Minimax(s′, d− 1, true))

14 return bestValue

15 Function Eval(s):
16 if isLeaf(s) then return score(s) // Return the exact score
17 value ← 0
18 foreach f ∈ feature(s) do
19 value ← value + cost(f)

20 return value

• MIN Steps: Represent the decisions of the opponent (Player 2), who
seeks to minimize the main player’s gain.

Each node in the game tree is evaluated using a utility function, and the
node values are propagated to the root according to the following rules:

• A MAX node takes the maximum value among its children.

• A MIN node takes the minimum value among its children.

The Minimax algorithm works recursively by exploring future game states.
If the current state is a leaf of the tree (end of the game) or the maximum
depth d is reached, the evaluation function Eval returns a value representing
the utility of that state. When it is the maximizing player’s turn (player1 =
true), the algorithm initializes a variable bestValue to −∞, then evaluates each
possible move and updates this value with the maximum result from recursive
calls. Conversely, when it is the minimizing player’s turn (player1 = false),
bestValue is initialized to +∞ and updated with the minimum result from

3



recursive calls. The goal is to anticipate the opponent’s moves to optimize
decisions. The evaluation function Eval can either provide an exact score for
terminal states or estimate a value based on specific characteristics of the state:

• Accuracy for leaf nodes: When a state s is a leaf, it means the game
has ended at that state (win, loss, or draw). In this case, the function
Eval(s) returns an exact score based on the game’s rules, as the outcome
is definitively determined. For instance, in a game like chess, a win might
be represented by a high score, a loss by a low score, and a draw by a
neutral score. These scores directly reflect the true value of the state for
the maximizing player.

• Estimation for non-terminal nodes: When s is not a leaf, the game
is not yet finished, and the outcome still depends on future decisions. In
this case, the function Eval(s) must provide an estimate of the quality of
the state, often based on specific characteristics (heuristics). For example,
in chess, this estimate might consider the number and quality of pieces,
control of the center, or the safety of the king. These heuristics provide
a reasonable approximation but do not guarantee perfect accuracy since
they do not account for all possible move sequences from that state.

3 Complexity
The Minimax algorithm takes a depth d as a parameter, which limits the search
to a certain height in the game tree. In the worst case, this depth d corresponds
to the full height of the tree, meaning that all possible game states are explored
down to the leaves. The time complexity of the algorithm is then given by
O(nd), where n is the branching factor, i.e., the average number of possible
actions at each step of the game, and d is the maximum depth explored.
Thus, the larger n or d are, the greater the total number of states to explore
grows exponentially. This rapid growth makes the algorithm time-consuming
for games where the branching factor or depth are large, which can make it
impractical without optimizations such as alpha-beta pruning.

4 Limitations and Extensions
Although the Minimax algorithm guarantees an optimal strategy when play-
ers play perfectly, it suffers from combinatorial explosion due to the size of the
search tree. To overcome these limitations and improve its efficiency, several
optimizations and extensions can be implemented:

• Alpha-Beta Pruning: This method reduces the number of nodes ex-
plored by eliminating branches that cannot affect the final result. It
maintains two values (α for the best guaranteed score for the maximizing

4



player, and β for the minimizing player) and interrupts the exploration of
unnecessary branches when the limits are exceeded, while maintaining an
optimal strategy.

• Move Sorting: The order in which moves are explored can influence the
efficiency, particularly with alpha-beta pruning. Sorting promising moves
first maximizes pruning opportunities and reduces the necessary work.

• Memoization (Transposition Table): By using a transposition table
to store the results of already evaluated states, we avoid recalculating the
same values multiple times in the search tree. This is particularly useful
in games where states can frequently repeat, such as chess.

• Endgame Databases: Certain winning or drawn positions in the endgame
can be precomputed and stored in a database. When a state corresponds
to a known position, the algorithm can immediately consult the database
to determine the best move.

• Good Move Sequences: Identifying and memorizing patterns or ef-
fective move sequences for certain game configurations helps guide the
algorithm towards fast and accurate solutions, thus limiting exhaustive
exploration.

• Heuristics: When the search tree is too deep, it is common to limit the
search to a fixed depth d and use a heuristic function to evaluate interme-
diate nodes. This function can incorporate specific game characteristics,
such as piece quality in chess or control of strategic areas on a board.

• Pattern-Based Pruning: Recognizing and exploiting frequent patterns
or specific game configurations for pruning or rapid evaluation helps reduce
complexity without affecting search accuracy.

These optimizations and extensions, when used together, make the Mini-
max algorithm more efficient by reducing the number of nodes explored and
guiding the search toward the most promising solutions, thereby mitigating the
limitations of combinatorial explosion.

5 Illustration of the Minimax Algorithm and the
Eval Function: Example on Tic-Tac-Toe

To illustrate how the Minimax algorithm works, let’s consider the example of
the game of Tic-Tac-Toe. We assume that two players, X (Player 1) and O
(Player 2), alternate their turns. The game ends when a player wins or when
there are no more available spaces.

5



State si: Consider the following intermediate board:

X O
X O

In this turn, X must play. The goal is to maximize the value of the game
state by choosing an optimal move. The Eval function is used to evaluate the
quality of each possible state.

Definition of the Eval Function

The Eval function is based on two elements:

1. Features extracted from the board, with values assigned based on their
importance.

2. A scoring function applied to the terminal leaves of the game.

These two elements are detailed in the tables below:

Feature Value
Winning rows/columns/diagonals for X or O +1
Almost winning rows/columns/diagonals for X +3
Almost winning rows/columns/diagonals for O -3
Center controlled by X +2
Center controlled by O -2

Table 1: Features used to evaluate an intermediate state in Tic-Tac-Toe

Terminal State (Leaf) Score
Immediate victory for X +∞
Immediate victory for O −∞
Draw (full board without a winner) 0

Table 2: Scores assigned to terminal leaves in Tic-Tac-Toe

Rows/columns/diagonals are considered winnable if they contain only X’s,
O’s, or are empty. A row is almost winning when it contains exactly two X’s
or two O’s and no opposing pieces.

Analysis of State si

From the given board, we identify the present features:

1. Winnable Rows:

• Row 3 (_,_,_) is winnable for X or O: +1.

6



2. Winnable Columns:

• Column 1 (X,_,_) is winnable for X or O: +1.

• Column 3 (_, O,_) is winnable for X or O: +1.

3. Winnable Diagonals:

• Diagonal 2 (_, X,_) is winnable for X or O: +1.

4. Almost Winning Diagonals for X:

• Diagonal 1 (X,X,_): +3.

5. Center Controlled:

• Central square controlled by X: +2.

Total Eval Score for State si:

eval(s) = +1(row 3) + 1(column 1) + 1(column 3)

+1(diagonal 2) + 3(almost winning diagonal 1) + 2(center controlled) = +9

Minimax Execution

X (Player 1, maximizing) examines the possible moves. Let’s assume the avail-
able moves are:

• s1: X plays at (3,3):
X O

X O
X

eval(s1) = +∞ (immediate win for X).

• s2: X plays at (3,2):
X O

X O
X

eval(s2) = +8.

• s3: X plays at (3,1):
X O

X O
X

eval(s3) = +13.

7



Game Branching Factor Depth Estimated Size

Tic-Tac-Toe 3 9 26,830
Connect Four 7 42 1014

Checkers 8 50 1020

Othello (Reversi) 10 60 1058

Chess 35 80 10120 (Shannon’s number)
Go 250 300+ 10170

Table 3: Examples of game tree sizes for different games

Optimal Choice for X: The algorithm chooses s1 because it immediately
maximizes the score by guaranteeing a win (eval(s1) = +∞).

6 Alpha-Bêta Pruning
The Alpha-Bêta algorithm, or Alpha-Bêta pruning, was designed to improve
the efficiency of the Minimax algorithm, widely used for decision-making in
combinatorial games such as chess. Its foundational ideas were first introduced
in the 1940s and 1950s.

Formal mentions of Alpha-Bêta pruning first appeared in the work of John
McCarthy and other pioneers of AI. However, the true development and for-
malization of the algorithm are attributed to two independent groups: Allen
Newell and Herbert Simon on one side, and researchers like Arthur Samuel
on the other, during the 1950s and 1960s.

The key idea is to prune (i.e., avoid exploring) branches of the decision tree
that cannot influence the final result. This optimization significantly reduces
the number of nodes evaluated, allowing deeper exploration with the same com-
putational resources.

Over the decades, the Alpha-Bêta algorithm has played a central role in
the development of AI-based game systems, including famous programs like
IBM’s Deep Blue. Its importance lies in its simplicity and efficiency, making it
a standard for many two-player games.

6.1 The Alpha-Bêta Algorithm
The Alpha-Bêta algorithm is an optimization of the Minimax algorithm that
significantly reduces the number of nodes to explore in the game tree. In prac-
tice, it prunes branches that cannot affect the final decision, thereby improving
the efficiency of the Minimax algorithm while guaranteeing the same results.

The algorithm relies on two values, α and β, which serve as bounds to
determine whether a branch can be pruned:

• α represents the maximum value the maximizing player (Player 1) is will-
ing to accept.

8



• β represents the minimum value the minimizing player (Player 2) is willing
to accept.

When the algorithm explores a node, it updates these bounds, and if the
value of a node exceeds α or β, it is no longer necessary to explore its descen-
dants, as they cannot influence the final decision.

6.2 Principle of the Alpha-Bêta Algorithm
The Alpha-Bêta algorithm follows a process similar to Minimax but with
dynamic bounds that enable pruning irrelevant branches of the game tree. The
process is as follows:

• When exploring a MAX node, if the value of a child exceeds β, the explo-
ration of this subtree can be stopped (pruning), as the MIN player (Player
2) would never allow this value to be reached.

• When exploring a MIN node, if the value of a child is less than α, the
exploration of this subtree can be stopped, as the MAX player would
never accept this value.

Explanation of the Alpha-Bêta Algorithm

The Alpha-Bêta algorithm uses two bounds, α and β, to represent the best
possible values for the maximizing player (player1) and the minimizing player,
respectively.

• α: The best value found so far for the maximizing player.

• β: The best value found so far for the minimizing player.

The algorithm recursively explores the game tree following these steps:

1. Termination Condition: If the current state s is a terminal state (e.g.,
a win, loss, or draw) or if the maximum depth d is reached, the function
returns the evaluation value of the current state, provided by the Eval
function.

2. Maximizing Player’s Turn:

• The best value (bestValue) is initialized to −∞.

• For each successor state s′, the algorithm calls Alpha-Bêta recur-
sively.

• If the returned value is greater than or equal to β, pruning is applied
because the minimizing player will never allow this branch to be
chosen.

• Otherwise, α is updated if a better choice is found.

9



3. Minimizing Player’s Turn:

• The best value (bestValue) is initialized to +∞.

• For each successor state s′, the algorithm calls Alpha-Bêta recur-
sively.

• If the returned value is less than or equal to α, pruning is applied
because the maximizing player will never allow this branch to be
chosen.

• Otherwise, β is updated if a better choice is found.

Advantages of Pruning Alpha-Bêta pruning avoids exploring unneces-
sary branches of the tree, reducing the number of nodes evaluated:

• In the best case (with properly ordered successors), the algorithm can
reduce the complexity from O(bd) to O(bd/2), where b is the branching
factor and d is the depth.

• This allows deeper exploration of the tree with the same computational
resources.

Result At the end, the algorithm returns the optimal utility value for the
current state s, enabling the player to make the best possible decision based on
the specified depth and pruning rules.

6.3 Complexity
The Alpha-Bêta algorithm improves the time complexity of the Minimax al-
gorithm by pruning unnecessary branches of the game tree. The time complexity
in the best case (optimal pruning) is O(n

d
2 ), where n is the branching factor

and d is the maximum depth. In the worst case (no pruning), the complexity
remains O(nd), which is equivalent to Minimax.

In practice, pruning significantly reduces computation time, especially for
large game trees.

6.4 Limitations and Extensions
Despite its efficient pruning, the Alpha-Bêta algorithm remains sensitive to the
combinatorial explosion in games with a large number of possibilities. However,
it performs better than Minimax for large game trees.

Possible extensions of this algorithm include:

• Adaptive Evaluation: Using game-specific evaluation functions for large-
scale games.

• Parallel Optimization: Leveraging parallel computing resources to ex-
plore different subtrees simultaneously.

10



Algorithm 2: Alpha-Bêta Algorithm

Input: s: current state; d: max depth maximale;
player1: Indicates wheter it is the maximizing player’s turn;
α: max value for player 1; β: min value for player 2.
Output: bestValue: The utility value for the current state.

1 begin
2 if isLeaf(s) ∨ d = 0 then
3 return Eval(s)

4 if player1 then
5 bestValue ← −∞;
6 foreach s′ ∈ child(s) do
7 bestValue ← max (bestValue,

Alpha-Bêta(s′, d− 1, false, α, β));
8 if bestValue ≥ β then
9 return bestValue; // prunning

10 if bestValue > α then
11 α← bestValue;

12 return bestValue

13 else
14 bestValue ← +∞;
15 foreach s′ ∈ child(s) do
16 bestValue ← min(bestValue,

Alpha-Bêta(s′, d− 1, true, α, β));
17 if bestValue ≤ α then
18 return bestValue; // prunning

19 if bestValue < β then
20 β← bestValue;

21 return bestValue

11


	History and Background of the Minimax Algorithm
	Origins and Early Work
	Game Theory
	Formalization of Minimax
	Early Computer Programs
	Optimizations and Improvements
	Modern Applications
	Conclusion

	The Algorithm
	Complexity
	Limitations and Extensions
	Illustration of the Minimax Algorithm and the Eval Function: Example on Tic-Tac-Toe
	Alpha-Bêta Pruning
	The Alpha-Bêta Algorithm
	Principle of the Alpha-Bêta Algorithm
	Complexity
	Limitations and Extensions


