
L3-Magistère de Physique Fondamentale
L3 ENS Paris-Saclay

QUANTUM MECHANICS II
Partial examination — March 6, 2023.

Duration: 2 hours

Books and mobile phones are forbidden.
Lecture notes given by the teachers, personal notes and calculators are allowed.

The examination is composed of three independent exercises.

Exercise A – Singlet and triplet states

Two spin-1/2 particles are in a singlet state |ψ0,0〉, with total spin S = 0 and quantum number
M = 0.

1. We consider the basis {|+〉, |−〉} of the Hilbert space of a spin-1/2. Introduce the so-called
tensor-product basis of the total Hilbert space of two spins and write the singlet state in this
basis. You can answer this question without explaining your reasoning.

2. Consider the operators:

S(1)
x ⊗ S(2)

x S(1)
y ⊗ S(2)

y S(1)
z ⊗ S(2)

z . (1)

Write the expectation value of each of the three operators on |ψ0,0〉.

Consider now the triplet state |ψ1,0〉 of two spin-1/2, with total spin S = 1 and quantum number
M = 0.

3. Write the state |ψ1,0〉 in the tensor-product basis. You can answer this question without
explaining your reasoning.

4. Compute the expectation value of each of the three operators in Eq. (1) on |ψ1,0〉.

5. Compare the results obtained at points 2. and 4. Could you have anticipated this result?
Justify your answer in one line.

Exercise B – A highly-excited state of the hydrogen atom

A hydrogen atom is prepared in the energy level |1, 0, 0〉, with usual quantum-number notation
|n, l,m〉. A theorist and an experimentalist are interested in preparing it in the energy level |60, 2, 0〉.
To this goal they have prepared an apparatus that can send electromagnetic waves with wavevector
~k parallel to the x axis ûx and which are linearly polarized, with the electric field ~E(~r, t) parallel to
the z axis ûz. In principle, their experimental apparatus based on lasers allows for a wide tunability
of the frequency of the radiation ω, and they can even send bichromatic radiation composed of two
frequencies ω1 and ω2.

The atom is placed at the origin of the Cartesian axes and in the following we will neglect the
motion of the proton and the spins of the electron and of the proton. In the framework of the
electric-dipole approximation, the light-matter coupling Hamiltonian reads:

Hlm = +q ~̂r · ~E(0, t). (2)
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where ~̂r is the position of the electron and q > 0 is the elementary charge.
A direct transition.
The first strategy that they devise is that of inducing a direct transition with monochromatic

radiation.

1. Using the notion of selection rules, show that an electromagnetic transition from the energy level
|1, 0, 0〉 to |60, 2, 0〉 is not possible in the framework of first-order time-dependent perturbation
theory.

A two-step transition with an intermediate state.
As a second strategy, they think at preparing the state |60, 2, 0〉 with a two-step process and using

radiation with two frequencies ω1 and ω2. The idea is that the first frequency can be used to drive
the transition to an intermediate state |n, l,m〉 and that the second frequency can subsequently drive
the transition to the desired final state |60, 2, 0〉.

2. Using first-order time-dependent perturbation theory and the notion of selection rules, identify
all states |n, l,m〉 to which a transition from |1, 0, 0〉 is possible. Show that the state |30, 1, 0〉
belongs to this set.

3. Consider now a transition from the state |30, 1, 0〉 to the final state |60, 2, 0〉. Is this transition
possible (always according to first-order time-dependent perturbation theory)? To solve this
question, it can be useful to look at the explicit formulas for the spherical harmonics listed here
below and in particular to express cos2 θ as a linear combination of two spherical harmonics.

4. Consider now a three-level model with the basis vectors |1, 0, 0〉, |30, 1, 0〉 and |60, 2, 0〉. The
dynamics of the experimental apparatus proposed above can be described by the Hamiltonian:

H(t) =

 −EI W1e
iω1t 0

W ∗1 e
−iω1t − EI

302
W2e

iω2t

0 W ∗2 e
−iω2t − EI

602

 . (3)

Explain briefly the physical significance of all the matrix elements.

5. The state vector can be represented as a three-component vector, for which we propose the
following ansatz:

|Ψ(t)〉 =

 c1(t)
c2(t)e−iω1t

c3(t)e−i(ω1+ω2)t

 . (4)

Show that the differential equations obeyed by the ci(t) do not depend on time.

6. The initial state is |1, 0, 0〉: what are the initial conditions for the ci(t)?

7. A simple analytical solution of the problem can be derived when:

~ω1 = EI

(
− 1

302
+ 1

)
, ~ω2 = EI

(
− 1

602
+

1

302

)
, W1 = W2 ∈ R. (5)

Show that the problem can be recast as an effective Schrödinger equation with the effective
state vector and Hamiltonian:

|Ψeff(t)〉 =

c1(t)
c2(t)
c3(t)

 ; Heff =

 0 W 0
W 0 W
0 W 0

 ; W ∈ R. (6)
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8. The eigenvalues of Heff are

λ1 =
√

2W, λ2 = 0, λ3 = −
√

2W, (7)

and the respective eigenvectors are:

|v1〉 =
1√
5

√2
1√
2

 ; |v2〉 =
1√
2

 1
0
−1

 ; |v3〉 =
1√
5

√2
−1√

2

 . (8)

Solve the dynamics of the system: what is the state vector |Ψ(t)〉 at time t?

9. Compute the probability of finding the system in the level |60, 2, 0〉 at time t. What its maximal
value as a function of time? Would you say that the two physicists achieved their goal?

Exercise C – A perturbed square potential well

We consider an electron (mass m) moving in a two-dimensional plane and trapped in an infinite
potential well:

V (x, y) =

{
0 if x ∈ [0, a] AND y ∈ [0, b];

+∞ otherwise.
(9)

The two lengths a and b are very similar but different, we will thus parametrise b = a+ ε with ε� a.
The eigenvalues and eigenvectors of the associated Hamiltonian are:

en,n′ =
~2π2n2

2ma2
+

~2π2n′2

2mb2
; ψn,n′(x, y) =

√
4

ab
sin
(nπx

a

)
sin

(
n′πy

b

)
; n, n′ ∈ {1, 2, 3 . . .} .

(10)
In this exercise we neglect the spin of the electron.

At time t = 0 the system is in the ground state |Ψg〉 (characterised by quantum numbers n =
n′ = 0) and a time-dependent potential of the form

W (x, y, t) = ε0
x

a
sin(ωt) for t ≥ 0 (11)

is switched on, where ε0 is a typical energy scale. We are interested in characterising the time
evolution of the system; in particular, at a time τ ≥ 0 we measure the energy of the system and we
want to investigate whether the system will be in an excited energy level. To this goal, we will use
the time-dependent perturbation theory.

1. Using first-order time-dependent perturbation theory, write the probability Pg→f (τ) of mea-
suring the system in an excited energy level |Ψf 〉 at time τ . One or more integrals are expected
to appear, you do not need to solve them.

The effect of the frequency ω.
We now consider the transition from the ground state |Ψg〉 to the excited state |Ψe〉 with quantum

numbers n = 2 and n′ = 1.

2. Consider the transition probability Pg→e(τ): solve only the integral over time that you wrote
at point 1 and show that it is the sum of two terms. Give a physical interpretation of both
terms. Explain why when one is interested in describing a transition to |Ψe〉, one of the two
terms can be neglected.

3. Plot Pg→e(τ) as a function of τ and characterize the values of its maxima and minima, as
well as the values of τ at which they are attained. The following integral can be useful:∫ π

0 x sin(2x) sin(x)dx = −8/9.
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4. The frequency ω can be tuned but we want to remain in a regime where maxτ Pg→e(τ) is much
smaller than 1 in order to be able to use time-dependent perturbation theory. Give a condition
on ω so that this is obtained.

5. The blind application of time-dependent perturbation theory identifies a frequency ω0 such
that maxτ P0→1(τ) diverges to the infinity. What is this frequency? Is this result physical?

6. What happens to the system when the oscillation takes place exactly at the frequency ω0? You
can answer this question with qualitative arguments since the rigorous calculation is rather
long.

Numerical application

7. Consider an electron in a semiconductor, whose mass is renormalised by the ionic lattice,
and takes the typical value m = 10−30 kg. The potential well, realised with microfabrication
techniques, has an edge whose length is of the order 0.01µm. Estimate the order of magnitude
of the frequency ω/2π at which the perturbation should oscillate in order to induce a transition
to |Ψe〉 with a significant probability.

END OF THE EXAMINATION

Some spherical harmonics.

l = 0 Y0,0(θ, φ) =

√
1

4π
;

l = 1 Y1,0(θ, φ) =

√
3

4π
cos θ; Y1,±1(θ, φ) = ∓

√
3

8π
e±iφ sin θ;

l = 2 Y2,0(θ, φ) =

√
5

16π2
(3 cos2 θ − 1); Y2,±1(θ, φ) = ∓

√
15

8π
sin θ cos θe±iφ;

Y2,±2(θ, φ) =

√
15

32π
sin2 θe±i2φ;
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