

INTRODUCTION

How a cell becomes cancerous?

New cell properties

Aníta Baíllet, MCU Faculty of Pharmacy París-Saclay Uníversity

Key facts about cancer

Second leading cause of death after cerebrovascular diseases

New estimates worldwide 19.3 million cases and 10 million cancer deaths in 2020

GLOBALLY 1 OUT OF 6 DEATHS is due to cancer World Health Organization

The Most Common Types of Cancer in the U.S.

Projected share of new cancer diagnoses in the U.S. in 2020, by gender

Cancer prognosís evaluation

- ✓ Tumors are classified according to their organ of origin (breast, liver, kidney, bones)
- ✓ Pathological examination to establish the TYPE, GRADE and STAGE of the tumor

TYPES

Carcinoma (epithelial tissue), Sarcoma (connective tissue), Lymphoma and Leukemia (blood cells), Neuroblastoma (embryonic tissue), ...

GRADES written in Arabic numerals

Differentiation, nuclear and cytoplasmic abnormalities, number of mitoses, extension of necrosis...

Example : the Gleason score to grade prostate cancer

STAGES represented as Roman numerals

TNM classification followed by a number from 0 (no cancer), I to IV, X impossibility to evaluateT: size of the tumorN: putative regional lymph node invasionM: distant metastases

 Search for molecular markers allow to precise the spontaneous pronostic or are predictive of an answer to a treatment

Cancer: a multístep process

- carcinogenesis in the primary site
- hyperproliferation
- hypoxic environment
- sustained angiogenesis

primary tumor metastase

- crosstalk with parenchymal, stromal, endothelial and inflammatory cells
- migration and invasiveness
- intravasation into the bloodstream
- cell survival in the blood and lymphatic vessels
- extravasation from the circulation
- metastatic niche in which cancer cells should adapt
- growth of the invading cells in the new site

Paoli et al., BBA 2013

Cancer: a multístep process

Compton, Cancer: The Enemy from Within, Springer Ed., 2020 pp 25-48

Cancer: a multigenic and multifactorial disease

Transformed cells acquire new properties

Example :

Three specific gene modifications are sufficient to convert a normal cell into a transformed one

Sequential mutations induce new cell properties

✓ Immortality

...

- Decreased sensitivity to growth suppressors
- Increased resistance to cell deaths
- ✓ Sustained proliferative signaling
- ✓ Decreased cell-cell and cell-matrix interactions
- Avoiding immune destruction

The Hallmarks of Cancer

Etiology of cancer : a genetic disease

All cancers arise from changes in genes (mutations) but NOT all are inherited

Differentiating hereditary from sporadic cancers

Figure 2. Approximate Prevalence of Sporadic and Familial Colorectal Cancer—Most patients with colorectal cancer have sporadic disease, and only a small fraction of patients with familial colorectal cancer have an identifiable hereditary syndrome.

Data from Grady WM. Gastroenterology. 2003.[12]

Hereditary versus Sporadic cancers

Hereditary cancer

Inherited cancer syndromes are caused by mutations (changes) in certain genes passed from parents to children

Sporadic cancer

Cancer that occurs in people who do not have a family history of that cancer or an inherited change in their DNA that would increase their risk for that cancer

→ Generally has a later onset

CARCINOME PAPILLAIRE RÉNAL HÉRÉDITAIRE

FH, MET

Hereditary cancers	PRÉDISPOSITIONS GÉNÉTIOUES		PRINCIPAUX GÈNES ASSOCIÉS	
	SYNDROME SEINS-OVAIRES		BRCA1, BRCA2, PALB2, RAD51	
	SYNDROME DE LYNCH		MLH1, MSH2, MSH6, PMS2, EPCAM	
MALADIE DE VON HIF	PPEL-LINDAU ADENOMES HYPOPHYSAIRES FAMILIAUX	VHL	AIP	
MÉLANOME MALIN F	ATAXIE-TÉLANGIECTASIE		ATM, MRE11A	
Mutations that you have NéOPLASIES ENDOCR	INCHENNER GASTRIQUE DIFFUS FAMILIAL	MEN1, RET, C	DACIATB	
inherited from your parents ^{ieurofibromatos}	CARCINOME PAPILLAIRE RÉNAL HÉRÉDITA	IRE	FH, MET	
PHÉOCHROMOCYTON	HYPERPARATHYROÏDISME ME-PARAGANGLIOME HÉRÉDITAIRE MALADIE DE COWDEN	SDH, TMEM1	CDC73, CASR 27, MAX, EPAS1 PTEN, PIK3CA, AKT1	
POLYPOSES ADÉNOM	MALADIE DE FANCONI	Ar C, MOTTH,	FANC	
RÉTINOBLASTOME	MALADIE DE VON HIPPEL-LINDAU		VHL	
Syndrome de Birt-I	HOGEGADUBÉ MALIN FAMILIAL	FLCN	CDKN2A, MITF, BAP1, POT1, CDK4	
SYNDROME DE BLOO	NÉOPLASIES ENDOCRINIENNES		MEN1, RET, CDKN1B	
SYNDROME DE CARN	EWEUROFIBROMATOSES	PRKAR1A, AR	ME\$, NF2, LZTR1, SMARCB1, SPRED1, SMARCE1	
SYNDROME DE GORL	PHÉOCHROMOCYTOME-PARAGANGLIOME	HÉRÉDITAIRE	SDH, TMEM127, MAX, EPAS1	
	POLYPOSES ADÉNOMATEUSES FAMILIALES	TP53 CHEK2	APC, MUTYH, POLE, POLD1, NTHL1	
SYNDROME DE NUM	RÉTINOBLASTOME		RB1	
	SYNDROME DE BIRT-HOGG-DUBÉ		FLCN	
SYNDROME DE PEUT2	SYNDROME DE BLOOM		BLM	
SYNDROME DE POLYI	POSE JUVÉNILE CARNEY	BMPR1A, SM	ADA PRKAR1A, ARMC5	
✓ Breast cancer SYNDROME DE WERN	SYNDROME DE GORLIN		PTCH1, PTCH2, SUFU	
XERODERMA PIGMEN	TOBORPME DE LI-FRAUMENI	XP	TP53, CHEK2	
✓ Familial adenomatous polyposis	SYNDROME DE NIJMEGEN		NBN	
Colon concor	SYNDROME DE PEUTZ-JEGHERS		STK11	
	SYNDROME DE POLYPOSE JUVÉNILE		BMPR1A, SMAD4	
	SYNDROME DE WERNER		WRN	
Both are transmitted in an autosomal dominant pattern	XERODERMA PIGMENTOSUM		ХР	

10 AB Int. MI

Hereditary cancers : the case of BRCA genes

Table 12.1 Human familial cancer syndromes due to germ-line defects in DNA repair

BRCA1 BReast Cancer 1

BRCA2 BReast Cancer 2

The most well-known genes linked to breast cancer risk

Name of syndrome	Name of gene	Cancer phenotype	Enzyme or process affected
HNPCC/Lynch	(4–5 genes) ^a	colonic polyposis	mismatch repair enzymes
XPb	(8 genes) ^b	UV-induced skin cancers	nucleotide-excision repair
ataxia telangiectasia (AT) ^c	ATM	leukemia, lymphoma	response to dsDNA breaks
AT-like disorder ^c	MRE11	lung, breast cancers	dsDNA repair by NHEJ
Familial breast, ovarian cancer	BRCA1, BRCA2, ^d BACH1, RAD51C	breast, ovarian, prostate carcinomas	homology-directed repair of dsDNA breaks
Werner	WRN	sarcomas, other cancers	exonuclease and DNA helicase, ^e replication
Bloom	BLM	leukemias, lymphomas, solid tumors	DNA helicase, replication
Fanconi anemia	(13 genes) ^f	AML, diverse carcinomas	repair of DNA cross-links and ds breaks
Nijmegen breakage ^g	NBS	mostly lymphomas	processing of dsDNA breaks, NHEJ
Li–Fraumeni	TP53	multiple cancers	DNA damage alarm protein
Li–Fraumeni	СНК2	colon, breast carcinomas	kinase signaling DNA damage
Rothmund–Thomson	RECQL4	osteosarcoma	DNA helicase
Familial adenomatosis	МҮН	colonic adenomas	base-excision repair
Familial breast cancer	PALB2	breast cancer	dsDNA repair by HR

Weinberg, The Biology of Cancer Garland Science, Taylor & Francis Group, LLC 2014

Hereditary cancers : the case of BRCA genes

Loss of BRCA1 partners affects homology-directed repair of dsDNA breaks

CHK2 BRCA1 Ζ Х ATM Nbs1 Mre1 CtIP BRCA2 BACH1 TopBP CtIP 988 Rad50 R RING NLS Rad51 BRCA1 BARD1 BACH1 S-phase G₂/M homologous PALB2 BRCA2 RING BRCT checkpoints checkpoints recombination ankyrin Rad51 TopBP1 Rad51 Rad51 Rad51 Rad51 Act as scaffolds to assemble a cohort Rad51 of other proteins into large complexes Rad51 Rad51

Weinberg, The Biology of Cancer Garland Science, Taylor & Francis Group, LLC 2014

Loss of BRCA1 partners affects

checkpoint controls in the cell cycle

and homologous recombination

Half of sporadic breast carcinomas carry inactive BRCA1 gene copies, silenced through promoter methylation This gene suffers the same fate in ~40% of sporadic epithelial ovarian carcinomas

The Hallmarks of Cancer

Emerging Hallmarks and enabling characteristics due to research progress

13 AB INt. M1

The Hallmarks of Cancer

Main proteins or pathways are dysregulated in the carcinogenesis process

The Hallmarks of Cancer

15 AB Int. MI

Hanahan, Cancer discovery 2022

Genetic mutations in genes involved in the control of gene expression (epigenetic modifiers)

Three main epigenetic mechanisms :

DNA methylation Histone posttranslational modifications Noncoding RNAs

Baylin and Jones, Cold Spring Harb Perspect Biol 2016

The Cancer Genome Atlas, a database of crucial genomic changes in 33 different cancers https://cancergenome.nih.gov/

The cBio Cancer Genomics Portal is a web-based platform which offers access to 5000 tumor samples from 20 various cancer studies

http://www.cbioportal.org/

Promoter hypermethylation of genes playing important roles in processes encompassing tumor suppression, cell cycle regulation, apoptosis, DNA repair, and metastastic potential

Hypermethylation signature specific of each cancer types

Esteller, Cancer Res. 2001

Chromatin structural changes in cancer cells

Covalent modification of histones is critical in making regions of chromatin more or less hospitable for transcription

18 AB Int. MI

Baylin and Jones, Cold Spring Harb Perspect Biol 2016

Figure 2. Chromatin structural changes in cancer cells. These two photomicrographs were taken from a patient with a squamous cell carcinoma of the skin. The *left* panel shows normal epidermal cells within one millimeter of the contiguous tumor shown at the same magnification on the *right*. The chromatin, which stains purple as a result of its affinity to hematoxylin, appears much more coarse and granular in the cancer cells than in normal epidermis. Such changes in the staining characteristics of chromatin are used by pathologists as diagnostic criteria for cancer.

Baylin and Jones, Cold Spring Harb Perspect Biol 2016

Sustained proliferation

Cancer cells produce their own growth signals Overexpression of receptors, in particular growth factor receptors like EGF

Ligand independant signaling via constitutively active EGFR

20 AB INt. MI

Sustained proliferation

About half of human tumors have mutant Ras oncogene

21 AB Int. MI

Dysregulated apoptosis

Wong, Journal of Experimental & Clinical Cancer Research 2011

22 AB Int. M1

Changes in tumoral microenvironment

The tumor microenvironment orchestrates angiogenesis, proliferation, invasion and metastasis through the secretion of growth factors and cytokines

immune cells stromal cells \checkmark

 \checkmark

- blood vessels \checkmark
- extracellular matrix \checkmark

Fibroblasts acquire contractile properties

Cancer-associated fibroblasts CAF

Anderson and Simon, Curr. Biol. 2020

gains migratory and invasive properties to become a mesenchymal stem cell

24 AB INt. M1

Weinberg, The Biology of Cancer Garland Science, Taylor & Francis Group, LLC 2014

vasíveness

Table 14.2 Cellular changes associated with an epithelialmesenchymal transition Loss of Cytokeratin (intermediate filament) expression Tight junctions and epithelial adherens junctions involving E-cadherin Epithelial cell polarity Epithelial gene expression program Acquisition of Fibroblast-like shape Motility Invasiveness Increased resistance to apoptosis Mesenchymal gene expression program including EMT-inducing transcription factors Mesenchymal adherens junction protein (N-cadherin) Protease secretion (MMP-2, MMP-9) Vimentin (intermediate filament) expression Fibronectin secretion PDGF receptor expression $\alpha_{\rm v}\beta_{\rm 6}$ integrin expression Stem cell-like traits

EMT and increased motility and invasiveness

Illustration of the loss of cell-cell junctions following ectopic expression of the Twist transcription factor, which mimicks Epithelial to Mesenchymal Transition (EMT)

Expression of epithelial markers, specifically Ecadherin, β -catenin, and γ -catenin, is repressed, while expression of mesenchymal markers, specifically vimentin and fibronectin is induced

(A) Immunofluorescence(B) Western blot

Weinberg, The Biology of Cancer Garland Science, Taylor & Francis Group, LLC 2014

Enhanced angiogenesis

Initiation of tumor vascularization

Inflammatory cells by supplying proangiogenic, growth factors, cytokines and proteases...

Pre-"Angiogenic "Angiogenic angiogenic switch Angiogenic progression Cancer progression Stimulation

Inhibition

Tumor-suppressor genes

(p53, PTEN, VHL)

26 AB INT. MI

Rak, Angiogenesis, Basic Science of Oncology, (McGraw-Hill Int. Editions), 5th Ed.

FGF

Oncogenes

Highly

angiogenic

Enhanced angiogenesis

Lugano et al., Cell. Mol. Life Sci. 2020

The microtubule network

Interphase Traffic, Signaling

Are the target of several anticancer drugs

Mitosis Chromosome alignment and segregation

The microtubule network

Directional cell migration

The polarized microtubule network of migrating cells. Abbreviations: MAP, microtubule-associated protein; N, nucleus.

Etienne-Manneville et al., Annu. Rev. Cell Dev. Biol. 2013

The actin network

Fife et al., Brit. J. Pharmacol. 2014

Nucleation and assembly of F-actin

Actin and Microtubules play a crucial role in directional migration through organization of strong focal adhesions

Fife et al., Brit. J. Pharmacol. 2014

Septins : the fourth element of the cytoskeleton

Altered energy metabolism

Changes in glucose metabolism in cancer cells

even in the presence of oxygen and fully functioning mitochondria

Because of the hyperactivity of the GLUT1 transporter, tumors that have concentrated large amounts of glucose can be visualized

The Warburg effect

Increased glucose uptake

Fermentation of glucose to lactate

Weinberg, The Biology of Cancer Garland Science, Taylor & Francis Group, LLC 2014

Escape immune damage

Over time, tumor cells evade immunity by :

Promote tumorigenesis Downregulating antigen presentation \checkmark Immune suppressive microenvironment Upregulating expression cules \checkmark that directly kill cyto Binding of PD1 on CD8inhibits cytotoxicity of T cells VEGF IL-10 Recruiting regulatory unity \checkmark Neu MMP-9 TGF-β Through the liberation alterations in cvtoki VEGF the nutrient content of vironment Inhibiting dendritic ce oinflammatory \checkmark cytokines to attract cells Growth CD8 factors Tregs dampen anti-tur etion of \checkmark IL-2 Trea growth factors

Targeted and combinatorial therapy

Targeted and combinatorial therapy

37 AB Int. MI

TU05 Cancer Cell Biology

1	How a cell becomes cancerous, new cell properties	Anita BAILLET
2	Epigenetic reprogramming	Anita BAILLET
S	Metabolism, angiogenesis	Chrístían POüS
4	Targets and personal therapy, predictive markers, resistance	Chrístían POüS
5	Cytoskeleton : microtubule, actin, septin, intermediate filament	Béatrice BENOIT
6	Cell cycle, proliferation, checkpoints, cellular senescence	Béatrice BENOIT
チ	Migration, polarity, EMT, metastasis	Béatrice BENOIT
8	Cell deaths : apoptosis, necrosis and autophagy	Béatrice BENOIT
9	Cancer stem cells, tumoral microenvironment, inflammation	Chrístían POüs

Thank You

