TU09: ANALYTICAL SCIENCES 1 Tutorial 1 : Exercises

Liquid chromatography

A mixture of analgesics (Figure 1) is analysed by liquid chromatography. The chromatographic conditions are: Column: NUCLEODUR Gravity C8; L=12,5 cm; i.d.=4,0 mm; dp = 5 μ m; Eluent: methanol / 0,1% phosphoric acid (40/60 v/v); Flow rate : 1mL/min; Detection UV : 240 nm; Temperature 25°C. Pressure 80,4 bar.

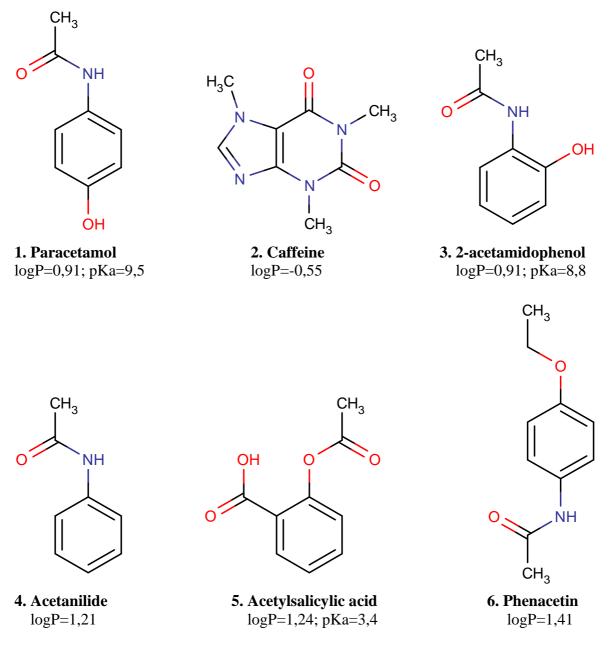


Figure 1 : Analgesics structures; logP and pKa are calculated using MarvinSketch.

The chromatograms obtained after analysis of a) Thomapyrin[®] tablets and b) a solution of standards are shown in figure 2.

a) Thomapyrin[®] tablet; b) standard Thomapyrin[®] is a trademark of Boehringer Ingelheim Pharma KG

1

Peaks:

- 1. Paracetamol
- 2. Caffeine
- 3. 2-Acetamidophen
- 4. Acetanilide
- 5. Acetylsalicylic acid
- 6. Phenactin

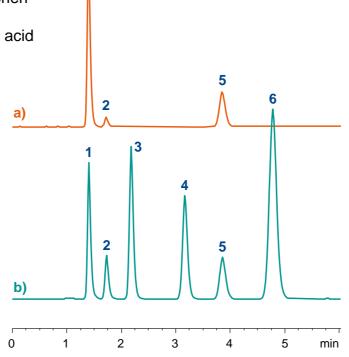


Figure 2 (MN Appl. No. 118600, Macherey-Nagel, 2011, www.mn-net.com)

The chromatogram of the mixture of standards (b) provided the following data:

	t _R (min)	$\omega_{0.5}$ (min)
1. Paracetamol	1,40	0,057
2. Caffeine	1,75	0,071
3. 2-Acetamidophenol	2,20	0,072
4. Acetanilide	3,17	0,086
5. Acetylsalicylic acid	3,83	0,116
6. Phenacetin	4,77	0,143

 t_R is the retention time and $\omega_{0.5}$ is the width of the peak at half of its maximum height.

- 1. What is the type of HPLC used ? (stationary phase, mobile phase, retention process).
- 2. Explain why phosphoric acid is added in the mobile phase.
- **3.** Explain the order of elution of the studied drugs.
- 4. Indicate which drugs are present in Thomapyrin® tablets.
- 5. Calculate column dead volume and dead (void) time, taking into account that column porosity is $\varepsilon = 0.73$.
- 6. Calculate the retention factors (k) for the 6 drugs and as well as the selectivity (α) and resolution (R) between consecutive peaks.
- 7. Calculate from the peak of acetylsalicylic acid (5) the number of theoretical plates (N) and the plate height (H) for the column.
- **8.** Flow rate is increased to 1,5 mL/min. How will this increase affect the retention times, retention factors, resolution and back pressure values?
- **9.** We change the solvent strength by decreasing methanol content to 30%. Calculate the effect on retention factors (k).
- **10.** We want to change solvent selectivity (without changing solvent strength). List two mobile phase compositions that can be used.
- **11.** Acetylsalicylic acid concentration in the mixture of standards is 60mg/L and the corresponding peak area (peak 5) in the chromatogram of standards is 689. Twenty Thomapyrin® tablets were ground and well mixed, and 20mg of the powder mixture was dissolved into 20mL of water. 1 mL of this solution was diluted in a 10mL volumetric flask. The solution was analyzed and the peak area of acatylsalicylic acid (5) is 591. Calculate the quantity of acetylsalicylic acid contained in one Thomapyrin® tablet, knowing that a Thomapyrin® tablet weights 500mg.

<u>Note</u>: Previously, it has been established, that calibration curve is a straight line passing through the origin. Quantitation then can be performed using a single standard.

<u>Data:</u>

Solvent-strength nomograph for reversed phase HPLC

ACN/H ₂ O	0 	10	20	30	40	50 +	60	70	80 +	90	100			
MeOH/ H ₂ O	0 	20		40	-+-	60 		80		 	100			
THF/H ₂ O	0 ⊢	10	2	20	30	40	5	50 +	60		70	80	90	100

List of equations: (The list below will be given for the exam)

$$k = \frac{t_{R} - t_{M}}{t_{M}}$$

$$N = 16 \left(\frac{t_{R}}{\omega}\right)^{2} \text{ or } N = 5,54 \left(\frac{t_{R}}{\omega_{0,5}}\right)^{2}$$

$$R_{S} = 2 \frac{\left(t_{R(2)} - t_{R(1)}\right)}{\left(\omega_{(1)} + \omega_{(2)}\right)} \text{ or } R_{S} = 1,18 \frac{\left(t_{R(2)} - t_{R(1)}\right)}{\left(\omega_{0,5(1)} + \omega_{0,5(2)}\right)}$$

$$\Delta P = \frac{\eta \, u \, \Phi_r L}{d_p^2}$$

 $logk = logk_w - S\varphi$ (S=3 for methanol and acetonitrile)