Chromatographic separations

Athena Kasselouri Université Paris-Saclay

Contents

- Overview of analytical separation techniques (p. 3-4)
- Introduction to chromatographic separations
 - A brief history (p. 6-9)
 - General description of chromatography (p. 10-12)
 - Migration rates of solutes (p. 13-16)
 - Band broadening and column efficiency (p. 17-24)
 - The general elution problem (p. 25-28)
 - Applications (p. 29)
- High performance liquid chromatography (HPLC)
 - Column efficiency in LC (p. 31-33)
 - Intermolecular interactions affecting elution (p. 34-36)
 - Instrumentation (p. 37-42)
 - Fast-HPLC to UHPLC (p. 43-44)

Analytical Techniques containing a Separation Step

S. C. Moldoveanu, V. David, « Selection of the HPLC method in chemical analysis » Chap. 3, Elsevier Inc, 2017. Analytical Techniques containing a Separation Step

- Separation technique + detection
- <u>Not included</u>: distillation, sublimation, crystallization, precipitation
- Components of an analytical chromatographic instrument.

Introduction to chromatographic Separations

High Performance Liquid Chromatography HPLC

• Half century of history ...

History

Chromatography: χρώμα (colour) + γράφειν (writing)

1900: Russian botanist Mikhail Tswet invents chromatography to separate plant pigments

1900

1941: Martin and Synge predict efficient separations for high pressure and small particle size

1940

1966: C.Horváth
and S. Lipsky
published
nucleotides
separation by
HPLC**1967:** First
commercial HPLC
instrument (Waters)

1960

History

HPLC: evolution rather than revolution

History

<u>Compounds</u>: 1-methylxanthine, 1,3-dimethyluric acid, 3,7 dimethylxanthine, and 1,7-dimethylxanthine. (in order of elution, left to right)

C. H. Arnaud, C&EN, CEN.ACS.ORG, 2016, p. 29-33

General description

• Classification

Disposition

• Column chromatography

• Planar chromatography

Mobile phase

- \circ Gaz chromatography
- Liquid chromatography
- Supercritical fluid chromatography

• Distribution constant K_A (or partition coefficient) of a solute A

Activity coefficient nearly unity

- \circ C_s Concentration of A in the stationary phase
- \circ C_M Concentration of A in the mobile phase
- \circ n_s moles of A in the stationary phase
- \circ n_M moles of A in the mobile phase
- V_s volume of stationary phase
- \circ V_M volume of mobile phase

• Retention time t_R

 $t_{R} = t_{S} + t_{M}$

- \circ t_M void or dead time (for unretained species)
- $\circ \quad t_S$ time spend by solute in the stationary phase

• Migration rates

$$\overline{v} = \frac{L}{t_R}$$
 $u = \frac{L}{t_M}$
Solute Mobile phase

- $\circ ~~ \overline{v}$ rate of migration (cm/s) of the solute
- o u linear velocity of the mobile phase

$$\overline{v} = u \times \text{solute fraction of time at the mobile phase} \Rightarrow \overline{v} = u \times \frac{n_M}{n_M + n_S}$$
$$\Rightarrow \overline{v} = u \times \frac{C_M V_M}{C_M V_M + C_S V_S} = u \times \frac{1}{1 + (C_S V_S)/(C_M V_M)} = u \times \frac{1}{1 + K_A (V_S / V_M)}$$

 $\mathbf{F} = \mathbf{u} \mathbf{A} \, \boldsymbol{\varepsilon} = \mathbf{u} \, \pi \, \mathbf{r}^2 \boldsymbol{\varepsilon}$

- \circ ε porosity of packed column
- \circ V_c column total volume
- F flow rate
- A cross sectional area = πr^2

• Retention factor k_A

$$\begin{split} \mathbf{k}_{\mathrm{A}} &= \frac{\mathbf{n}_{\mathrm{S}}}{\mathbf{n}_{\mathrm{M}}} = \frac{\mathbf{C}_{\mathrm{S}} \, \mathbf{V}_{\mathrm{S}}}{\mathbf{C}_{\mathrm{M}} \mathbf{V}_{\mathrm{M}}} = \mathbf{K}_{\mathrm{A}} \, \frac{\mathbf{V}_{\mathrm{S}}}{\mathbf{V}_{\mathrm{M}}} \\ \\ \bar{\mathbf{v}} &= \mathbf{u} \times \frac{1}{1 + \mathbf{k}_{\mathrm{A}}} \Rightarrow \frac{\mathbf{L}}{\mathbf{t}_{\mathrm{R}}} = \frac{\mathbf{L}}{\mathbf{t}_{\mathrm{M}}} \times \frac{1}{1 + \mathbf{k}_{\mathrm{A}}} \Rightarrow \quad \begin{bmatrix} \mathbf{k}_{\mathrm{R}} - \mathbf{t}_{\mathrm{M}} \\ \mathbf{k}_{\mathrm{A}} = \frac{\mathbf{t}_{\mathrm{R}} - \mathbf{t}_{\mathrm{M}}}{\mathbf{t}_{\mathrm{M}}} \end{bmatrix} \end{split}$$

 \bullet Selectivity factor α

$$\alpha = \frac{K_{B}}{K_{A}}$$

K_B distribution constant of the more retained solute B
 K_A distribution constant of the less retained solute A

 $\circ \quad k_B$, k_A the retention factors for B and A

Band broadening and column efficiency

• Number of theoretical plates (N)

$$N = \frac{L}{H}$$

• Plate height (H)

$$H = \frac{\sigma^2}{L}$$

Plate theory

D. A. Skoog, E. J. Holler, S.R. Crouch, « Principles of Instrumental Analysis », Chap. 26, 2017, Cengage Learning. • Experimental evaluation

Gaussian peak

TU 09 "Analytical Sciences 1" Module A, 2024/2025

F. Rouessac, A. Rouessac « Analyse chimique: Méthodes et techniques instrumentales », Dunod ed, 2019.

• Factors affecting band broadening

« Introduction to Modern Liquid Chromatography », John Wiley &Sons Inc. 2010. • Kinetic variables affecting column efficiency

Van Deemter plate height (H) equation

$$H = A + \frac{B}{u} + C_S u + C_M u$$

Multiple flow paths

 $A = 2\lambda d_p$

Longitudinal diffusion

$$\frac{B}{u} = \frac{2\gamma D_M}{u}$$

Mass transfer from and to stationary phase

Mass transfer in mobile phase

$$C_{S} u = \frac{f(k)d_{f}^{2}}{D_{S}} u$$
$$C_{M} u = \frac{f'(k)d_{p}^{2}}{D_{S}} u$$

 D_M

- o u: linear velocity of mobile phase
- D_M: diffusion coefficient in mobile phase
- D_S: diffusion coefficient in stationary phase
- \circ d_P: diameter of packing particles
- o d_f: Thickness of liquid coating on stationary pahse
- $\circ ~~\lambda$ and γ depend on quality of the packing

D. A. Skoog, E. J. Holler, S.R. Crouch, « Principles of Instrumental Analysis », Chap. 26 2017, Cengage Learning. • Kinetic variables affecting column efficiency

Van Deemter plate height (H) equation

 $H = A + \frac{B}{u} + C_S u + C_M u$

- A: multiple path effects (eddy coefficient)
- B: longitudinal diffusion coefficient
- \circ C_s : mass transfer coefficient to and from stationary phase
- $\circ\quad C_M$: mass transfer coefficient in mobile phase

Rate theory

o u: linear velocity of mobile phase

• Column resolution

$$R_{S} = \frac{\Delta Z}{\frac{W_{(A)}}{2} + \frac{W_{(B)}}{2}}$$

$$R_{S} = 2 \frac{t_{R(B)} - t_{R(A)}}{w_{(A)} + w_{(B)}}$$

D. A. Skoog, E. J. Holler, S.R. Crouch, « Principles of Instrumental Analysis », Chap. 26, 2017, Cengage Learning. • Effect of retention and selectivity on resolution

$$w_{(A)} = w_{(B)} \approx w \implies R_{S} = \frac{t_{R(B)} - t_{R(A)}}{w} \implies$$

$$R_{S} = \frac{t_{R(B)} - t_{R(A)}}{t_{R(B)}} \times \frac{\sqrt{N}}{4} \implies R_{S} = \frac{k_{B} - k_{A}}{1 + k_{B}} \times \frac{\sqrt{N}}{4}$$

$$R_{S} = \frac{\sqrt{N}}{4} \left(\frac{\alpha - 1}{\alpha}\right) \left(\frac{k_{B}}{1 + k_{B}}\right)$$

$$N = 16R_{S}^{2} \left(\frac{\alpha}{\alpha - 1}\right)^{2} \left(\frac{1 + k_{B}}{k_{B}}\right)^{2}$$

$$t_{R(B)} = \frac{16R_{S}^{2}H}{u} \left(\frac{\alpha}{\alpha - 1}\right)^{2} \frac{(1 + k_{B})^{3}}{k_{B}^{2}}$$

$$\bar{v}_{B} = \frac{L}{t_{R(B)}} \implies t_{R(B)} = \frac{NH(1 + k_{B})}{u}$$

$$TU 09 "Analytical Sciences 1" Module A, 2024/2025}$$

TU 09 "Analytical Sciences 1" Module A, 2024/2025

• Optimisation of separation

For Q and Q' constant:

TU 09 "Analytical Sciences 1" Module A, 2024/2025

GC: Temperature programming

Example: Analysis of 14 toxicology standards by RP-LC Column C18; eluent: Acetonitrile (B)/buffer pH=2,5 Isocratic elution (fixed eluent composition): 1-6 poor resolution 13-14 extensive retention

Separate analysis

Adequate eluent compositions for each group of compounds (k≈3)

Gradient elution (continuous change in eluent composition) Adequate retention for all compounds in a single run (k*=3)

L.R. Snyder, J,.J. Kirkland, J. W. Dolan, « Introduction to Modern 26 Liquid Chromatography », John Wiley &Sons Inc. 2010.

• Gradient elution

REASONS OF USE

• Retention range that exceeds $1 \le k \le 10$ (main reason)

• Gradient elution

Gradient shape

L.R. Snyder, J,.J. Kirkland, J. W. Dolan, « Introduction to Modern Liquid Chromatography », John Wiley &Sons Inc. 2010.

Applications of chromatographic methods

Qualitative analysis

- Based on the retention time of the solute
- o Limited structural information, depending on detector type
- Presence or absence of a compound in a mixture
- Performs separation of the solute before identification

Quantitative analysis

- Major chromatography application
- o Comparison of peak area or peak height with one or more standards
- Peak areas are more frequently used as independent from band broadening

High Performance Liquid Chromatography (HPLC)

Column efficiency in LC

Band broadening as described

Intra-column

$$H = A + \frac{B}{u} + C_S u + C_M u$$

Longitudinal diffusion

$$\frac{B}{u} = \frac{2\gamma D_M}{u}$$

 $2\lambda d_p$

Mass transfer from and to stationary phase

$$C_{\rm S} \, {\rm u} = \frac{f(k) d_f^2}{D_S} \, {\rm u}$$

 $C_{\rm M} \, {\rm u} = \frac{f'(k)d_p^2}{D_M} {\rm u}$

Extra –column (tubing)

$$H_{ex} = \frac{\pi r^2 u}{24 D_M} \quad \circ \quad r: radius of t$$

the tube

- u: linear velocity of mobile phase Ο
- D_{M} : diffusion coefficient in mobile phase Ο
- D_s: diffusion coefficient in stationary phase Ο
- d_P: diameter of packing particles Ο
- d_f: Thickness of liquid coating on stationary phase Ο
- λ and γ depend on quality of the packing Ο

• Importance of particle size

Mass transfer in mobile phase $C_M \sim d_p^2$ Particle size decrease Plate height decrease

D. A. Skoog, E. J. Holler, S.R. Crouch, « Principles of Instrumental Analysis », Chap. 28, 2017, Cengage Learning. • Column backpressure (ΔP)

Darcy equation

- \circ η is the mobile phase viscosity
- L is column length
- \circ d_p is the diameter of the particles
- $\circ \quad \Phi_r$ is a column flow resistance factor

Intermolecular interactions affecting elution

- Intermolecular interactions
- (a) <u>Dispersion</u>: Nonspecific and universal, contribute to hydrophobic interactions
- (b) <u>Dipole-dipole</u>: between molecules that both have a permanent dipole moment (electrostatic interactions), depends on dipole moments of interacting groups
- (c) <u>Hydrogen bonding</u>: between a proton donor (solute of solvent) and a proton acceptor (solute or solvent).
- (d) <u>Ionic (coulombic) interactions</u>: interactions of an ion with surroundings molecules of a polarizable solvent or with other ions. Increase with solvent dielectric constant
- (e) <u>Charge transfer:</u> between aromatic or unsaturated species

L.R. Snyder, J,.J. Kirkland, J. W. Dolan, « Introduction to Modern Liquid Chromatography », John Wiley &Sons Inc. 2010.

• solvent properties

	Normalized Selectivity				
Solvent	H-B Acidity α/Σ	H-B Bacicity β/Σ	Dipolarity π^*/Σ	P'	3
Acetic acid	0,54	0,15	0,31	6	6,2
Acetonitrile	0,15	0,25	0,6	5,8	37,5
Alkanes	0	0	0	1	1,9
Chloroform	0,43	0	0,57	4,1	4,8
Dimethylsulfoxide	0	0,43	0,57	7,2	4,7
Ethanol	0,39	0,36	0,25	4,3	24,6
Ethylacetate	0	0,45	0,55	4,4	6
Ethylene chloride	0	0	1	3,5	10,4
Methanol	0,43	0,29	0,28	5,1	32,7
Methylene chloride	0,27	0	0,73	3,1	8,9
Methyl-t-butyl ether	0	~0.6	~0.4	2,4	~4
Nitromethane	0,17	0,19	0,64	6	35,9
Propanol (n- or iso)	0,36	0,4	0,24	3,9	6
Tetrahydrofurane	0	0,49	0,51	4,0	7,6
Triethylamine	0	0,84	0,16	1,9	2,4
Water	0,43	0,18	0,45	10,2	80

Σ: sum of α , β and π^*

ε: Dielectric constant

P': Polarity index

• Solvent selectivity characteristics

Instrumentation

Solvents and reservoirs

- \circ Particle free mobile phase
- \circ Degassing

Tubing

- Low pressure 100psi 1/8-in o.d
- High- pressure 7000 psi 1/16-in o.d.

Pumping systems

o Routine operation: 2000-3000psi

Instrumentation

Columns

- \circ Stainless steel tubing
- o 5 25cm long; Inside diameter 3-5mm
- \circ 4-5 μ m particles
- o 40000-70000 plates/meter
- \circ Support: silica the most used
 - High mechanical strength
 - \circ High values of N
 - \circ $\,$ Can be bonded with various ligands
 - Unaffected by eluent composition
 - Pressure up to 15000 psi
 - Limited to pH<8 (hybrid packings for pH>8)

The second secon

Chromatographic columns

Separation unit

Particles types

- Totally porous:
 - o the most used
- Pellicular:
 - o macromolecule analysis
 - o lower surface area-rapid elution
- \circ $\,$ Superficially porous particles $\,$
 - \circ $\;$ Higher N than totally porous
 - Faster analysis than totally porous
 - \circ $\;$ Higher retention than pellicular $\;$
- \circ Perfusion particles
 - \circ $\;$ Large pores connected to smaller $\;$
 - \circ $\;$ Advantaged for large molecules at high flow rates

Zorbax-PSM-300

Nucleosil-7-300

33

Packings used in LC: particle packing

Particle size

- o particle diameter decrease: performance increase, rapid analysis
- $\circ~$ 1980-2000: 5 μm the most used
- \circ >2000: 3µm or smaller
 - very high pressures up to 15000psi
 - o new pumping systems

Pores size

- Pore diameter increase: surface area decrease, performance decrease
- 8-12nm: small molecules <10000 Da, surface area: 150-400m²/g (porous particles)
- 30nm: large molecules >10000 Da, surface area: 5-150m²/g (perfusion particles)

Interstitial volume (space between particles): 40% of the column volume

TU 09 "Analytical Sciences 1" Module A, 2024/2025

Zorbax-PSM-300

Nucleosil-7-300 4(

Packings used in LC: particle packing

- Comparison of performance
- Totally porous (H/dp)minimum=2
- Superficially porous: (H/dp)minimum=1,5

- \circ Size distribution
- Narrower size distribution: higher N
- Narrower size distribution for superficially porous and better packing \rightarrow lower H

Detectors

- \circ UV-visible absorption detectors
- Fluorescence detectors
- Electrochemical detectors
- Refractive index detectors
- Evaporative light-scattering detector (ELSD)
- Corona-discharge detectors (CAD)
- Mass spectrometry detectors

• HPLC-UHPLC

The basic diagram of an UHPLC system is the same as for the HPLC but:

	HPLC	UHPLC	
Injection volumes	1 - 25 μL	0,1-1 μL	
Particles diameter	3-5 μm	1,7-1,8 μm	
Internal diameter of the column	3-10 mm	2,1 mm	
Flow rate	0,3-2 mL/min	0,1-0,6 mL/min	
Pressures up to	400 bar (6000 psi)	1030 bar (15000 psi)	

Transition from HPLC to UHPLC

- Columns with very small particles and reduced i.d.
- Pumps that deliver higher pressures
- More precise injection systems
- Sensitive detectors with smaller dead volumes and high sampling frequency
- Small i.d. tubing and generally reduce void volumes

HPLC-UHPLC

• Fast-HPLC

After optimization of k and α , resolution and run time depends on N (column). Fast separation can be obtained by:

- \circ High flow rates
- o Short columns
- o Small particules
- Small particules + short columns + high pressures

• Fast separations without loss of N (or resolution)

Ultra-High Pressure Liquid Chromatography (U-HPLC)

(b) to (c): HPLC to UHPLC