

# Basics of Immunology

# Introduction Master D2HP

#### By Viviana Marin-Esteban 2024





### Immunology- Host defense against pathogens

Immune response mechanisms



#### **Detection of danger**



Dendritic cell

#### Detection of danger Activation of inflammation





Proinflammatory cytokines



Dendritic cell

#### **Recruitment of circulating cells**



6

#### **Destruction of the pathogen**







Dendritic cell





#### In a nutshell

- -Immediate response
- Not antigen-specific
- No memory
- 3 goals :
  - Trigger inflammation
  - Destroy the pathogen
  - Initiate adaptative response



# Adaptive response components

# Cells

#### Lymphocytes

- T lymphocytes
  - CD4+ helper T cells
  - CD8+ cytotoxic T cells
- B Lymphocytes
  - Plasma cells

# Molecules

- Cytokines (helper T lymphocytes)
- Antibodies (plasma cells)
- Cytotoxic molecules (cytotoxic T lymphocytes)

# Adaptive response



Differentiation into effectors

• Sélections - Elimination of autoreactive repertoire

#### Humoral adaptive response = B lymphocytes



#### 1. T cell activation (antigen presentation)

2. B cell activation



## Cellular adaptive response = T lymphocytes Helper and cytotoxic response 2. CD8 T cell activation



1. CD4 T cell activation



#### Memory response

Example of B-lymphocyte memory response illustrated by blood immunoglobulin levels



# Adaptive response

#### In a nutshell

- Delayed answer
- Antigen-specific
- Effectors: antibodies and cytotoxic T cells
- Memory capacity
- 2 Goals:

-to destroy the pathogen, directly or via activation of immune mechanisms
-to set up a protection against future infections (memory)



# Differences in immune responses



## Innate

- Immediate
- PRR not restrained to a unique antigen
- No memory

Deficiencies in innate response: Bacterial or fungal infections

# Adaptive

- Delayed
- Antigen-specific
- Memory capacity

#### Deficiency :

Humoral response: bacterial infections Cellular response : viral infections, fungal and parasite infections

# Immunopathology



# Clinical tools related with the immune system

| Function        | Role                       | Clinical Tools                          |  |  |
|-----------------|----------------------------|-----------------------------------------|--|--|
| Antimicrobial   | Defense against pathogens  | Vaccines, vaccine adjuvants, monoclona  |  |  |
|                 | (innate/adaptive response) | antibodies, immunoglobulin therapies    |  |  |
| Antitumoral     | Tumor surveillance and     | Immunotherapies (checkpoint inhibitors  |  |  |
|                 | elimination                | CAR-T), cancer vaccines                 |  |  |
| Transplantation | Managing immune rejection  | Immunosuppressants, tolerance           |  |  |
|                 |                            | induction therapies                     |  |  |
| HSCT            | Immune system restoration  | Hematopoietic stem cell transplantation |  |  |
|                 |                            | (allogeneic/autologous)                 |  |  |

## Course outline

#### • Basics

- Innate Immunity
- Adaptive immunity

#### Immunopathology

- Allergy
- Graft
- Immune deficiencies (january 2025)
- Auto-immune diseases (january 2025)
- Diagnostic methods using antibodies



Basics of Immunology



# Innate response and inflammation Master D2HP



By Viviana Marin-Esteban 2024



# First lines of defense



#### Infection = breach of muco-cutaneous barrier



Intrusion alarm: inflammatory response

## Roles of inflammation



If > 6 weeks: chronic inflammation => tissue lesions

## Clinical manifestations



## Innate response components

# Cells

# Tissue resident:

- Sentinel cells
   Dendritic cells, macrophages
- Others: Mast cells, epithelial cells, endothelium, innate lymphoid cells

# Recruited cells:

- Granulocytes (neutrophils ++)
- Monocytes
- NK lymphocytes



# Molecules

#### • Complement

- Cytokines (pro-inflammatory. In resolution phase anti-inflammatory)
- Antimicrobial molecules
- Vasoactive molecules

How do innate cells recognize non-self?



# « Danger » signal



# Examples of PRRs



## Inflammatory response

Tissue injury





# Inflammatory response

#### **Tissue injury**





# Cytokines and inflammation



#### **Pro-inflammatory**

IL-1 : activates endothelium, immune cells, causes fever

**TNFα** : activates endothelium, immune cells, raises vascular permeability

IL-6 : activates lymphocytes, causes production of inflammatory molecules by the liver

#### Chemokines

IL-8: Attracts neutrophils

#### Anti-inflammatory

IL-10Tissue repair, downregulates<br/>pro-inflammatory cytokines andTGFbdiminishes activation of cells

# Pleiotropy of cytokine effects





#### **TNFα, IL-1 and IL-6 are therapeutic targets in inflammatory diseases** 32

# Inflammatory response

#### **Tissue injury**















# 1- Phagocytosis



# 2- Degranulation and oxydative burst





#### 3- NETosis



DNA ejection from neutrophil Traps microorganisms



The complement system



- About 30 plasma proteins (5%)
- Complex enzymatic activation cascades
- 3 activation ways
- All leading to C3 protein cleavage
- Leads to target cell destruction

#### Complement overview



## Inflammatory response

#### **Tissue injury**



## Inflammation resolution



# Key takeaways



- PRRs detect danger signals, either exogenous (MAMPs) or endogenous (DAMPs), extracellular or intracellular.
- PRRs recognize diverse microorganisms and different PRR are expresed on every innate immune cell.
- PRR interactions triggers the production of proinflammatory cytokines (TNF, IL-1, IL-6).
- Proinflammatory cytokines initiate the inflammatory response by activating local cells, including endothelial cells of nearby blood vessels, and inducing systemic responses such as fever.
- Neutrophils are the first cells recruted on inflammed tissues. They are highly effective at combating pathogens through phagocytosis, oxidative bursts, degranulation, and the release of NETs (DNA-based antimicrobial traps).
- As danger persists, neutrophils are activated and release IL-8, a chemokine that recruits additional neutrophils to the site of inflammationand.

# Key takeaways

• Neutrophil activity can cause collateral tissue damage.



- Inflammation resolution: Apoptotic neutrophils are cleared by macrophages via efferocytosis, which switches macrophages to an anti-inflammatory (M2) state.
- Anti-inflammatory mediators: IL-10, TGF-β, and lipid mediators (resolvins, protectins) stop inflammation and promote tissue repair.
- Clinical relevance of cytokines: Cytokine dysregulation contributes to diseases like septic shock or chronic inflammation, making them therapeutic targets.

# Starting adaptive response



# Dendritic cells

Different subsets with distinct phenotypes, including varying patterns of PRR expression  $\rightarrow$  lead to distinct immune responses.



Segura, Eur J Immunol 2022

|                         | cDC1    | cDC2 | pDC     | cDC3 | Mo-DC |
|-------------------------|---------|------|---------|------|-------|
| Cross-presentation      | Yes     | Yes  | Yes     | ?    | Yes   |
| Presentation on MHC II  | Yes     | Yes  | Yes     | Yes  | Yes   |
| Induction of cytotoxic  | Yes     | Yes  | Limited | ?    | Yes   |
| CD8 T cells             |         |      |         |      |       |
| Induction of Th1 cells  | Yes     | Yes  | Yes     | Yes  | Yes   |
| Induction of Th2 cells  | Yes     | Yes  | No      | No   | ?     |
| Induction of Th17 cells | No      | Yes  | No      | Yes  | Yes   |
| Induction of Tfh cells  | No      | Yes  | No      | ?    | Yes   |
| Induction of Treg cells | No      | Yes  | Yes     | ?    | ?     |
| Secretion IL-12         | Limited | Yes  | No      | Yes  | Yes   |
| Secretion IL-23         | No      | Yes  | No      | Yes  | Yes   |
| Secretion type I IFN    | No      | No   | Yes     | No   | No    |

# Peptides associated to MHC / HLA molecules : Processing and presentation pathways



#### Class I HLA molecules :

- Present peptides mostly derived form endogenous / cytoplasmic proteins
- Peptides are presented to CD8+ T lymphocytes → cytotoxic response

#### **Class II HLA molecules**

- •Present peptides mostly derived form exogenous proteins
- Peptides are presented to CD4+ T lymphocytes → cytokine response

# Peptides associated to HLA molecules : Processing and presentation pathways



# Trained innate immunity



of innate

wang et al Front Immunol 2024

- **'Trained innate immunity'** ability of innate immune system to have an enhanced inflammatory or antimicrobial response upon re-exposure to pathogens or danger signals.
- Observed even with heterologous stimulation.
- Based on the epigenetic and metabolic reprogramming of innate cell precursors (bone marrow or tissues)
- BCG and beta-glucans are canonical inducers.
- Several innate cells have been shown to be trainable (e.g. monocytes, neutrophils, ILC3, NK cells).
- Time • It is distinct from priming, differentiation/polarization, maturation.
  - Different from 'innate immune memory': ability of the innate immune system to retain a "memory-like" response after encountering certain stimuli (pathogens). It is recallable. (NK cells)

Thank you for your attention