Feuille d'exercices 5. Corrigé

Nombres complexes

Exercice 5.1. Fractions

Écrire sous forme algébrique les nombres complexes suivants :

$$z_1 = \frac{3+6i}{3-4i}, \ z_2 = (\frac{1+i}{2-i})^2, \ z_3 = \frac{2+5i}{1-i} + \frac{2-5i}{1+i}.$$

Exercice 5.2. Forme algébrique

Écrire sous forme algébrique les nombres complexes suivants :

$$z_1 = 2e^{2i\pi/3}, z_2 = (2e^{i\pi/4})(e^{-3i\pi/4}).$$

Exercice 5.3. Forme trigonométrique

- 1. Écrire sous forme trigonométrique les nombres complexes suivants (on pourra utiliser les valeurs connues de cosinus et de sinus sans les justifier) : $z_1 = 1 + i$, $z_2 = \sqrt{3} i$.
- **2.** Écrire z_1z_2 sous forme algébrique et sous forme trigonométrique. En déduire les valeurs de $\cos(\pi/12)$ et de $\sin(\pi/12)$.

Exercice 5.4. Formules d'Euler

- 1. Vérifier que pour tout $z \in \mathbb{C}$, $\Re(z) = \frac{z+\overline{z}}{2}$ et $\Im(z) = \frac{z-\overline{z}}{2i}$.
- **2.** En déduire, pour tout $\theta \in \mathbb{R}$, une expression de $\cos(\theta)$ et de $\sin(\theta)$ en fonction de $e^{i\theta}$ et de $e^{-i\theta}$.

Exercice 5.5. Forme trigonométrique

- 1. Pour quelles valeurs de $\theta \in \mathbb{R}$ a-t-on $1 + e^{i\theta} = 0$?
- 2. On suppose que $1 + e^{i\theta} \neq 0$. Écrire $1 + e^{i\theta}$ sous forme trigonométrique (indication : utiliser les formules d'Euler de l'exercice précédent).

Réponse : 1. $1 + e^{i\theta} = 0 \Leftrightarrow e^{i\theta} = -1 = e^{i\pi} \Leftrightarrow \theta \equiv \pi \ [2\pi]$

2. On met $e^{i\theta/2}$ en facteur pour faire apparaître une formule d'Euler :

$$1 + e^{i\theta} = e^{i\theta/2}(e^{-i\theta/2} + e^{i\theta/2}) = 2\cos(\theta/2)e^{i\theta/2}.$$

En supposant que $\theta \in]-\pi,\pi[$ (on peut toujours se ramener à ce cas modulo 2π , sachant que par hypothèse $\theta \not\equiv \pi$ [2π]), on a $\theta/2 \in]-\pi/2,\pi/2[$, donc $2\cos(\theta/2)>0$, et donc l'écriture ci-dessus est la forme trigonométrique de $1+e^{i\theta}$.

Exercice 5.6. Racines carrées

Calculer les racines carrées des nombres complexes suivants, sous forme algébrique : $z_1=-1,\ z_2=1+i,\ z_3=-1-i,\ z_4=1+i\sqrt{3},\ z_5=3-4i.$

Exercice 5.7. Racines cubiques

Trouver toutes les solutions dans \mathbb{C} de l'équation $z^3 = i$, sous forme trigonométrique.

Exercice 5.8. Équation du second degré

Résoudre dans \mathbb{C} l'équation $z^2 + (2-3i)z - 5 - i = 0$ (indication : $17^2 = 289$).

Exercice 5.9. Puissances

Calculer $(\cos(2\pi/5) + i\sin(2\pi/5))^{2021}$.

Réponse : On doit calculer $(e^{i2\pi/5})^{2021} = e^{i2\pi \times 2021/5}$. Comme on sait que $e^{2ik\pi} = 1$ pour tout $k \in \mathbb{Z}$, on fait la division euclidienne de 2021 par $5: 2021 = 5 \times 404 + 1$. Alors

$$(e^{i2\pi/5})^{2021} = e^{2i404\pi} \times e^{2ik\pi/5} = e^{2ik\pi/5} = \cos(2\pi/5) + i\sin(2\pi/5)$$

Exercice 5.10. Racines n-ièmes de l'unité

Soit un entier n > 2.

1. Vérifier que pour tout $z \in \mathbb{C}$,

$$z^{n} - 1 = (z - 1)(z^{n-1} + \dots + z + 1).$$

- **2.** Soit z une racine n-ième de l'unité, différente de 1. Montrer que $z^{n-1} + \ldots + z + 1 = 0$.
- 3. En déduire, par un bon choix de z, que la somme des racines n-ièmes de l'unité est nulle. Donner une interprétation géométrique de ce résultat.

Réponse: 1. Immédiat en développant et en simplifiant le terme de droite.

- 2. Si z est une racine n-ième de l'unité, alors $z^n-1=0$ par définition, et donc par ce qui précède, $(z-1)(z^{n-1}+\ldots+z+1)=0$. Donc, en supposant de plus que $z\neq 1$, on trouve bien $z^{n-1}+\ldots+z+1=0$.
- 3. Posons $z=e^{2i\pi/n}$. Alors $1,z=e^{2i\pi/n},z^2=e^{2\times 2i\pi/n},\ldots,z^{n-1}=e^{(n-1)\times 2i\pi/n}$ sont exactement les racines n-ièmes de l'unité par le cours. Donc la question précédente nous dit que la somme des racines n-ièmes de l'unité est nulle.

Géométriquement, si M_k est le point d'affixe $e^{2ik\pi/n}$ pour $0 \le k \le n-1$, les points M_0, \ldots, M_{n-1} sont les sommets d'un polygone régulier à n sommets. Comme la somme des nombres complexes correspond à la somme des vecteurs correspondants, on obtient que

$$\overrightarrow{OM_0} + \overrightarrow{OM_1} + \ldots + \overrightarrow{OM_{n-1}} = \overrightarrow{0}$$
,

ce qui nous dit que l'origine O est l'isobarycentre (le centre de gravité) du polygone $M_0 \dots M_{n-1}$.

Exercice 5.11. Valeurs de cosinus et de sinus

- 1. Trouver les solutions z_1 et z_2 dans \mathbb{C} de l'équation $z^2 + z + 1 = 0$.
- 2. Montrer que z_1 et z_2 sont des racines cubiques de l'unité.
- 3. Comparer les formes algébriques et trigonométriques de z_1 et z_2 , et en déduire les valeurs de $\cos(2\pi/3)$ et $\sin(2\pi/3)$.

Exercice 5.12. Valeurs de cosinus et de sinus

On rappelle que $e^{2i\pi/3} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$.

1. Calculer les racines carrées de $e^{2i\pi/3}$ sous forme algébrique et trigonométrique et en déduire les valeurs de $\cos(\pi/3)$ et $\sin(\pi/3)$.

2

2. Calculer les racines carrées de $e^{i\pi/3}$ sous forme algébrique et trigonométrique et en déduire les valeurs de $\cos(\pi/6)$ et $\sin(\pi/6)$.

Exercice 5.13. Racines n-ièmes de l'unité

Soit un entier $n \geq 2$. On note U_n l'ensemble des racines n-ièmes de l'unité.

- **1.** Justifier qu'on peut définir une application $f: \mathbb{Z} \to U_n$ par $f(k) = e^{2ki\pi/n}$ pour tout $k \in \mathbb{Z}$.
- **2.** Montrer que si k et l sont deux éléments de \mathbb{Z} tels que $k \equiv l$ [n], alors f(k) = f(l).
- **3.** En déduire qu'il existe une application $g: \mathbb{Z}/n\mathbb{Z} \to U_n$ telle que pour tout $k \in \mathbb{Z}$, $g(\overline{k}) = f(k)$, où \overline{k} désigne ici la classe d'équivalence de k dans $\mathbb{Z}/n\mathbb{Z}$.
- **4.** Montrer que g est une bijection.
- **5.** Montrer que pour tous x, y dans $\mathbb{Z}/n\mathbb{Z}$, g(x+y) = g(x)g(y).

Réponse : 1. La seule chose à vérifier est qu'on a bien $f(k) \in U_n$ pour tout $k \in \mathbb{Z}$, ce qui est le cas puisque $f(k)^n = e^{n \times 2ki\pi/n} = e^{2ki\pi} = 1$.

2. Si $k \equiv l \ [n]$, on écrit l = k + mn pour un certain $m \in \mathbb{Z}$, et alors

$$f(l) = e^{2i(k+mn)\pi/n} = e^{2ik\pi/n} \times e^{2im\pi} = e^{2ik\pi/n} \times 1 = f(k).$$

- 3. Si $p: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ désigne l'application canonique, le résultat précédent nous permet d'appliquer la proposition 3.15 du cours, ce qui nous donne précisément une application $g: \mathbb{Z}/n\mathbb{Z} \to U_n$ telle que $f = g \circ p$, ce qui s'écrit aussi, puisque $p(k) = \overline{k} : f(k) = g(\overline{k})$ pour tout $k \in \mathbb{Z}$.
- 4. On sait que $\mathbb{Z}/n\mathbb{Z}$ et U_n ont tous les deux n éléments, donc il nous suffira de montrer que $g: \mathbb{Z}/n\mathbb{Z} \to U_n$ est surjective. Soit $y \in U_n$, on sait d'après le cours qu'on peut l'écrire $y = e^{2ki\pi/n}$ pour un certain $k \in \mathbb{Z}$, ce qui nous donne bien $y = f(k) = g(\overline{k})$ par construction, avec $\overline{k} \in \mathbb{Z}/n\mathbb{Z}$. Donc g est surjective, et par l'argument de cardinalité, elle est bijective.
- 5. Soient x et y dans $\mathbb{Z}/n\mathbb{Z}$, on peut les écrire $x = \overline{k}$ et $y = \overline{l}$ pour certains k et l dans \mathbb{Z} . Alors:

$$g(x+y) = g(\overline{k} + \overline{l}) = g(\overline{k} + \overline{l}) = f(k+l) = e^{2i(k+l)\pi/n} = e^{2ik\pi/n} \times e^{2il\pi/n} = f(k)f(l) = g(\overline{k})g(\overline{l}) = g(x)g(y).$$

Exercice 5.14. Linéarisation des puissances de cosinus et sinus

- **1.** En utilisant la formule d'Euler $\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$ (voir l'exercice 5.4), développer $\cos^3(\theta)$ (c'est la notation courante pour $(\cos(\theta))^3$). En déduire une expression de $\cos^3(\theta)$ comme somme de termes de la forme $\lambda_n \cos(n\theta)$ et $\mu_n \sin(n\theta)$.
- **2.** Même question pour $\sin^3(\theta)$, avec $\sin(\theta) = \frac{e^{i\theta} e^{-i\theta}}{2i}$.