Examen MEU 204

Ni les calculatrices, ni les documents, ni les téléphones portables ne sont autorisés.

Durée 2 heures

Exercice 1:

- 1. Enoncer le corollaire du petit théorème de Fermat.
- 2. Montrer que le nombre $2^{70} + 3^{70}$ est un multiple de 13.

Exercice 2 : Soit I un idéal d'un anneau A. On suppose que I contient un élément inversible.

- 1. Montrer que I = A.
- 2. Soit f un morphisme d'anneau , $f:K\to B$ avec K est un corps et B un anneau , en déduire que f est injectif.

Exercice 3:

- 1. Résoudre dans $\mathbb{Z}/37\mathbb{Z}$ l'équation $x^2 \bar{31}x + \bar{8} = \bar{0}$
- 2. Résoudre dans $\mathbb{Z}/180\mathbb{Z}$ l'équation $89x = \overline{2}$

Exercice 4: On pose $A = \mathbb{Z}/54\mathbb{Z}$.

- 1. Quel est le nombre d'éléments du groupe A^* ?
- 2. On pose $a = \overline{5}$, On a $a^3 = \overline{17}$, $a^6 = \overline{19}$. Calculer a^9 et en déduire que A^* est cyclique . [Justifier votre réponse].
- 3. Résoudre dans A les équations suivantes : a) $\overline{19}x = \overline{1}$ et b) $x^3 = \overline{1}$

Exercice 5 : L'objet de cet exercice est de montrer qu'il y a une infinité de nombres premiers congrus à 5 modulo 8.

- 1. Soit p un nombre premier impair , on suppose qu'il existe un entier a qui vérifie $a^2+4\equiv 0[p]$.
 - (a) Montrer qu'il existe un entier b tel que $2b \equiv 1[p]$. TSVP

- (b) Montrer que $(ba)^2 + 1 \equiv 0[p]$.
- (c) En déduire que $p \equiv 1[4]$.
- 2. On suppose par l'absurde qu'il n'y a qu'un nombre fini de nombres premiers congrus à 5 modulo 8. Soit $E=\{p_0,p_1,\cdots,p_n\}$ l'ensemble de ces nombres . Montrer que E est non vide .
- 3. On pose $P = \prod_{i=0}^{n} p_i$, $Q = P^2 + 4$. Soit q un diviseur premier de Q, montrer que $q \neq 2$ et $q \notin E_n$.
- 4. Montrer que $q \equiv 1[4]$. Utiliser la question 1.
- 5. Montrer que $Q \equiv 5[8]$.
- 6. En déduire qu'il existe un diviseur premier de Q congru à 5 modulo 8.
- 7. Conclure.

Exercice 6: [Facultatif]: Trouver une équation du second degré dans $\mathbb{Z}: ax^2 + bx + c = 0$ où a, b, c sont des entiers telle que:

Cette équation n'a aucune solution dans \mathbb{Z} et pour chaque nombre p premier , l'équation $\bar{a}x^2 + \bar{b}x + \bar{c} = 0$ possède des solutions dans $\mathbb{Z}/p\mathbb{Z}$

Exercice 7: [Facultatif]: Soit $M = (a_{ij})$ une matrice carrée avec $a_{ij} \in \{-1,1\}, 1 \le i \le n, 1 \le j \le n$. Montrer que $2^{n-1} \mid \det M$.