#tab=read.table("nomduficier.csv",sep=";",) data("iris") head(iris) summary(iris) var(iris$Petal.Length) # représentation de distributions de variables quantitatives hist(iris$Sepal.Length) boxplot(iris$Sepal.Length) # représentation de variables quantitatives ~ variables qualitatives plot(iris$Sepal.Length~iris$Species,col=c("purple","pink","red")) install.packages("vioplot") library(vioplot) vioplot(iris$Sepal.Length~iris$Species,col=c("purple","pink","red")) # représentation de deux variables quantitatives plot(iris$Sepal.Length~iris$Sepal.Width,pch=19) plot(iris[,c("Sepal.Length","Sepal.Width","Petal.Length","Petal.Width")]) plot(iris$Sepal.Length~iris$Sepal.Width,pch=19,col=c("purple","pink","red")[as.factor(iris$Species)]) legend("topleft",levels(iris$Species),pch=19,col=c("purple","pink","red")) plot(iris[,c("Sepal.Length","Sepal.Width","Petal.Length","Petal.Width")],,pch=19,col=c("purple","pink","red")[as.factor(iris$Species)]) # variables qualitatives ~ variables qualitatives ## On crée une nouvelle variable facteur : iris$Sepal.Length_cat[iris$Sepal.Length<=5]<-"petit" iris$Sepal.Length_cat[iris$Sepal.Length<=6 & iris$Sepal.Length>5]<-"moyen" iris$Sepal.Length_cat[iris$Sepal.Length>6]<-"grand" # création d'une table de contingence conting=table(iris[,c("Sepal.Length_cat","Species")]) barplot(conting,beside=T,legend=T) # variables quanti ~ plusieurs variables qualitatives iris2=iris[,c("Sepal.Length","Species")] colnames(iris2)[1]="length" iris2$measure="Sepal.Length" iris3=iris[,c("Sepal.Width","Species")] colnames(iris3)[1]="length" iris3$measure="Sepal.Width" iris_bis=rbind(iris2,iris3) interaction.plot(x.factor=iris_bis$measure,trace.factor=iris_bis$Species,response=iris_bis$length,fun=mean,type="b", col=c("black","red","green"), pch=19, fixed=TRUE, leg.bty = "o") # changements de variables exempleA=c(0.05,0.03,0.2,0.17,0.045,0.5,0.6,3) plot(exempleA) plot(log(exempleA))