

3D scene acquisition Mixed Reality and Tangible interface

Jeanne Vezien Vezien@limsi.fr

Master Interaction– HCI Master - Université Paris-Saclay

Plan of the lecture

2

1. Intro : 3D acquisition for AR

2. Techniques for 3D data acquisition

3. 3D acquisition and Tangible Interfaces

3D Acquisition for AR

http://nickzucc.blogspot.com/2012/03/3d-kinect-home-scanner.html

3D reconstruction (here : stereo analysis + 3D matching)

LABORATOIRE INTERDISCIPLINARY DIGITION needs 3D acquisition

3D reconstruction (here : stereo analysis + 3D matching)

5

3D reconstruction (here : stereo analysis + 3D matching)

match move +

Compositing masks (shadows, occlusions…)

3D reconstruction (here : stereo analysis + 3D matching)

+ match move

Compositing masks (shadows, occlusions…) (real-time *shaders*)

Augmented image

CG graphics

Do not forget…

3D scene analysis can be simple yet effective

Augmented content can be 3D but not geometry-related

LASNN Augmented reality

Many applications:

- Architecture
- Design
- Medical
- Crisis simulation
- Marketing
- Multimedia/games
- Military …

3D Acquisition : how ?

Sensor and techniques for 3D imaging:

- *Passive* sensors : observe « rays » from scene
	- ➢ Work everywhere, easier to transport
	- \triangleright No need for fancy equipement
	- \triangleright Safe for the humans
	- \triangleright Historically first in use
- *Active* sensors : send « rays » on scene
	- \triangleright Limited use (power supply, size ...)
	- \triangleright More expensive and sophisticate use
	- ➢ Safety issues

12

Sensor and techniques for 3D imaging:

• Passive sensors

• Active sensors

- Receive natural light, no active intervention **Ex: CCD or CMOS arrays**
- *Many* techniques can extract 3D information from images

The aspect of an object is a function of:

Use extrinsic constraints to compute intrinsic properties \implies

$X =$ base for feature extraction in image

- \bullet X = motion
- $X =$ shading (not shadows!)
- \bullet X = illumination
- \bullet X = texture
- \bullet X = ..., combination of previous

 $X =$ motion

16

- matching features: *points, segments, regions*, between images.
- known camera motion \rightarrow reconstruction of (X, Y, Z) .

Computing Differential Properties of 3-D Shapes from Stereoscopic Images without 3-D Models (Devernay, 1994)

Generate dense 3D maps (data redundancy)

LABORATOIRE INTERDERENCER CAPPETAS)

$$
Z.(X_1 - X_r) = F T_x = Cte.
$$

$$
Disparity : \Delta X = .(X_1 - X_2)
$$

Disparity map = depth map !

18

Gesture capture device

- IR lighting (3 LEDS)
- Fast camera (150 fps)
- volume is 600 x 600 x 600 mm
- stated 0.01mm depth resolution
- precision < 0.2 mm static
- 1.2 mm for dynamic setups
- Real-time stereo computation for fingers: all is in the software
- Patents pending !

19

1/10-inch High End VGA, CMOS Camera 640H x 480V. 16-bit wide data (2 x 8 bits interleaved images)

Tremor amplitude varies between 0.4 mm \pm 0.2 mm

Many advantages:

- Rather simple, accessible, many existing software solutions
- Robust w.r.t. outside conditions
- Dense 3D maps possible
- Real-time computation possible (GPU, FPGA)

Limitations, constraints:

- need to match primitives (points, segments, regions)
- calibrate stereoscopic cameras… or buy specific hardware
- resulting 3D model is weakly structured (cloud of 3D points)

- Compute surface orientation from *single* image, with *hypothesis* on:
	- Surface nature (homogeneous + type)
	- Illumination (*Ex:* point source at infinity)
- Approach introduced at the beginning of XXth century

Opposition Surge: moon is made of Regolith

Full moon is 12x brighter than half crescent (should be x 2)

→ *Hapke parameters*

INRIAlpes, 2006

23

Many assumptions:

- One homogeneous surface
- Very sensitive to illumination
- Orientation only

Well adapted to platenary or aerial observation

 The aspect of a surface varies a lot as a function of illumination

- Hypotheses: surface is continuous (Z=f(x,y)), with *uniform material*.
- Each light produces one constraint $I(x,y)$ per point of surface $Z=f(x,y)$. Enough constraints \rightarrow problem solved.

26

Ex: *Lambertian* surface:

minimize
$$
E = \sum_{i=1}^{M} [I_i - A \cos(\theta_i - \theta_n)]^2
$$

\n θ_i = position of light source i
\n I_i = image i
\n $0 < A < 1$ = reflection factor
\n θ_n = surface orientation

 (a)

 (b)

 $-\frac{1}{1}$

 (c)

Georghiades (2001)

Problems:

- Too many assumptions
- Contrained environment
- Qualitative results

Statistical SFS

2010: "3D face recovery from intensities of general and unknown lighting using partial least squares" *Ham Rara, Shireen Elhabian, Thomas Starr, Aly Farag* CVIP Laboratory, University of Louisville (USA)

= texture

pattern deformation $= f$ (depth)

Two steps:

■ Image analysis: Compute a transform capturing deformation. Ex: Fourier transform, 2D momentums, etc.

31

• Convert measure into depth with regularity assumption

Combined with stereo: stereo from texture

Lissie New Pape from texture: results

Limitations:

- Single surface, single homogeneous texture.
- Sensitive to illumination conditions.
- Use with caution

- It is not mandatory to compute 3D to see 3D objets (depend on application). Ex: movie industry.
- Is it possible to generate «intermediary» images between 2 reference frames ?
	- = Estimation of equivalent motion for all pixels in « virtual » view.

Knowing $P_1(x,y)$ et $P_2(x,y)$, can one predict $P_3(x,y)$, assuming the position Cam₃ relative to Cam₁ et Cam₂ is known ?

Ex: for a plane, projections are linked by *homography* :

Estimation of H : matching features between images (points, regions…)

Region map (hand drawn) **Depth map**

Global 3D Planar Reconstruction with Uncalibrated Cameras and Rectified Stereo Geometry Jean-Philippe Tarel (1999).

Hugin : http://hugin.sourceforge.net/

Sensor and techniques for 3D imaging:

• Passive sensors

• Active sensors

- Generate a signal to analyze 3D environment, usually light:
	- o Structured in geometry
	- o Using a coherent source (laser)
- Influence environment: application domain limited

- Many sensors use waves to penetrate matter and analyze 3D content
	- \checkmark Echography (sounds)
	- \checkmark Radiography, tomography, scanner (X rays),
	- ✓ Nuclear Magnetic Resonance (alpha rays),
	- \checkmark Etc.
- Very expensive, highly specialized (medical)

Principle:

Several methods

- «natural » light , with several illuminating patterns
- coherent light: laser stripe created with cylindrical lens

LASN Muctured lighting: results

45

Kinect 1, 2010

"Augmented Reality Magic Mirror using the Kinect " Tobias Blum

Cyberware (1998)

Artec (2014): 12 sec. Scan.

- Acquisition time: a few seconds (no real-time)
- Controlled environment: low ambient light, no scattering (metals), avoid blue colors.
- Distance: few centimeters to few meters
- Cost (100 k€)

As the separation between emitter and receptor increases:

- Better precision
- Increasing chance of occlusions

Difficult compromise

Integration of multiple scans: several million polygons

- Problems:
	- Small depth of field
	- Controlled environment
	- Sophisticated image analysis (not real-time)

53

• No absolute Z: ambiguity.

Moiré : results

Face scan

Posture analysis

Historical review and experience with the use of surface topographic systems in children with idiopathic scoliosis XC Liu, JG Thometz, JC Tassone, LC Paulsen (2013)

"Mixed Reality and Tangible Interfaces" HCI Master - Université Paris-Saclay

54

• Principle (radar):

- Wave: infra-red laser with low amplitude modulated signal.
- Swipping with mirror

$$
\lambda < 1m \Longrightarrow f > 300Mhz
$$

56

Ex.: **LADAR** from **Perceptron** Inc. (1993)

http://www.perceptron.com

- Laser diode @ 835 nm
- 50 mW power
- Distance: 3 to 100 m.
- Viewing angle
	- horizontal: from 15 to 60 °
	- vertical: from 3 to 72 °
- Resolution: 1000 x 2000 pixels

LIDAR (Cont'd)

Price tag: 100k\$!

Kinect2 (2014)

All this for 80 ϵ !

Modulated IR \rightarrow measure phase shift in return signal

Lun&Al: Survey of Applications and Human Motion Recognition with Microsoft Kinect International Journal of Pattern Recognition and Artificial Intelligence

Kinect Fusion

60

Goal: avoid sensor motion (best for room setup)

www.brekel.com

Samsung S20 (but not after !)

iPhone 12 Pro (and later)

Range : 3 meters indirect time-of-flight (i-ToF) sensor Modulated IR \rightarrow measure phase shift Single illuminator Too costly and not user effective

Range : 6 meters Direct ToF (DToF) sends impulses on multiple points Exclusive licence with manufacturer (Sony)

https://www.youtube.com/watch?v=FOxxqVzDaaA&feature=emb_rel_end

Smartphones !

LASNN Lidar Lighting : Hololens

Hololens (2016, 3000\$)

- Augmented reality « see-through » glasses
- Markerless 3D scanner with :

Depth camera (Kinect2-like) \rightarrow Spatial Mapping

 $SIAM = Simultaneous$ Localization and Mapping = markerless tracking !

"Mixed Reality and Tangible Interfaces" HCI Master - Université Paris-Saclay

62

3D Acquisition and Tangible Interfaces

Tangible interfaces

Tangible user interface (TUI): an 3D object used as an interface with the digital world (i.e. your computer running a simulation)

Need **tracking** to locate **interactor** w.r.t. the **reconstructed** object

= Adaptive rendering from the interactor's point of view

SandScape device installed in the Children's Creativity Museum in San Francisco

64

https://www.youtube.com/watch?v=Q3elMIRCYSk

Tangible interfaces: **ILASN FRANCE INTERDISCIPLINAIRE**
Interactive whiteboard with the Wii

Low-cost Multi-Point Interactive Whiteboard using the Wiimote

Johnny Chung Lee Human-Computer Interaction Institute **Carnegie Mellon University**

65

Johnny Lee's video (dec. 2007)

https://www.youtube.com/watch?v=5s5EvhHy7eQ

 \rightarrow Use the projector / camera as the reference frame

 \rightarrow Use the projector / camera as the reference frame

2. Drawing on a surface: no actual 3D reconstruction needed = *implicit reconstruction*

i.e. 2D correspondence between image of the interactor (in camera space) and the rendering screen

For a plane, images are linked by *homography* :

Estimation of H **:** needs at least 4 points

Homography for TUI

71

If we find H⁻¹, we can remap image into the original 2D space

Homography for TUI

 $\bigg)$

I I $\overline{}$

 $\bigg($

 \setminus

0 0 1

0 h_{22} h_{23}

h h

 $11 \t11 \t112 \t113$

h h h

 λ

$$
H = \left(R + \frac{Tn^t}{d}\right) \qquad \begin{pmatrix} su \\ sv \\ sy \\ s \end{pmatrix} = H \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}
$$

Points are in (X,Y) plane \rightarrow Eq: $Z = Z_0$ = *H*

4 points calibration: drawing space corners

 \rightarrow write on any surface

72

Reconstruction for TUI: Computation flow

2. *Render* the interaction (here writing): in the screen coordinate system

 Capture 2D position of pen in (wii) camera space – infrared image: with WiiMote SDK $(C#)$

using WiimoteLib; Wiimote remote; wiimotePoints[0].x = remote.WiimoteState.IRState.RawX1 / 768.0f; wiimotePoints[0].y = remote.WiimoteState.IRState.RawY1 / 768.0f;

- Compute H (real-time, easy)
- H-Transform pen position in rendering space

73

interaction for *projected reality*

draw, interact

3D Vision: applications

- **Medical imaging**
- **Ergonomics / Biometry**
- **Building, CAD**
- **Inspection, control**
- **Exploration of 3D environments**
- **Assisted driving**
- **Military applications**
- **Satellite imagery**
- **Virtual Reality**
- **Multimedia content creation**

- Computer assisted diagnosis: indication of volumes, shapes, etc.
- Surgery planning
- Forensic medecine

Techniques :

Moiré, stereovison, laser-based imaging (shape analysis)

Application:

- Detect deformations
- Prosthetic fitting

Design And Virtual Prototyping Of Rehabilitation Aids (1997)

Venkat Krovi , G. K. Ananthasuresh , Jean-marc Vezien

77

- Goal: determine precise characteristics for each individual
- Objective: measure, adapt, recognize

Jack (U.penn): graphical system for human simulation

Techniques:

- **Laser**
- **Stereo**
- direct measurements

Application:

• Design/ergonomics

Workplace design

Help make computer-generated objects:

- Sensors to guide tools precisely
- Design a virtual model (design, simulations).
- Tools: laser, stereo.

Check that a manufactured object is within specifications

- Micro-electronics, microchip production.
- cars (Ex: wheel alignement) Structured light, excellent precision: 1/1000 mm !

http://www.cognitens.com/ http://www.cyberoptics.com/

84

Autonomous robots:

1988: K3A Navmaster (Cybermotion, Inc.)

2010 : MDARS(Mobile Detection Assessment Response System) - US Army

http://www.public.navy.mil/spawar/Pacific/Robotics/Pages/Publications.aspx

Binocular heads (stereovision maps)

Semi-autonomous robots

Techniques: Stereo, Lidar, ultrasounds

- images: fast but not precise
- Laser (lidar): slower but more precise.

Problems:

- *fusion* of geometric data coming from multiple sources
- *calibration* of dynamic data

88

Partial recontruction of the environment :

- (semi-) autonomous driving
- Limited interventions

Applications:

- Hostile environment (nuclear, chemical, explosive)
- Repetitive tasks (plants)

Still costly !

«intelligent» car : environnement sensing \rightarrow driver

Navlab project (univ. de Carnegie Mellon, USA):

- Several run-of-the-mill car tested.
- Highway testing in real conditions
- No vision (sensitivity) : lidar, magnetic beacons

DARPA Challenge : race between automated vehicules

- Tough competition
- High reward 2 M\$ \rightarrow high incentive
- Soon : urban driving 132-mile Mojave Desert course

7 Hours at speed = 19.1 mph

LASN Assisted driving (smart car)

Tesla (2015)

- Model S assistive driving
- camera on top of the windshield
- GPS sensor
- 360 ° ultrasonic acoustic location sensors (close range)
- forward-looking Lidar (long range)
- 100 000 \$
- Cloud-connected learning
- \rightarrow Hands-off possible (road following, soon traffic lights...)

July 2016: Tesla driver dies in first fatal crash while using autopilot mode

The autopilot sensors on the Model S failed to distinguish a white tractor-trailer crossing the highway against a bright sky.

"Mixed Reality and Tangible Interfaces" HCI Master - Université Paris-Saclay

91

LASN Assisted driving (smart car)

Google car: a completely autonomous car !

Autonomous Driving

Google's modified Toyota Prius uses an array of sensors to navigate public roads without a human driver. Other components, not shown, include a GPS receiver and an inertial motion sensor.

LIDAR A rotating sensor on the roof scans more than 200 feet in all directions to generate a precise three-dimensional map of the car's surroundings.

VIDEO CAMERA A camera mounted near the rear-view mirror detects traffic lights and helps the car's onboard computers recognize moving obstacles like pedestrians and bicyclists.

POSITION ESTIMATOR A sensor mounted on the left rear wheel measures small movements made by the car and helps to accurately locate its position on the map.

RADAR Four standard automotive radar sensors, three in front and one in the rear, help determine the positions of distant objects.

Source: Google

92

• Hostile/unknown environment

Objectives:

Analyze terrain to assist driving (wounded occupant, bad visibility, night)

Techniques:

Lidar: obstacle avoidance, route finding Video + neural net = driving

Terrain reconstruction from a collection of images from above.

Applications:

- climate (water set)
- ecological surveillance (rainforest, flood areas).
- military
- topography and mapping (google maps)

Techniques:

- Stereoscopy
- Shape from shading

95

Limitations: Beware of illumination assumptions !

Analyze → **Modify reality**

Techniques:

- Stereoscopy
- Marker tracking
- Shape from motion
- Laser scan
- 3D object registration

THE END !

"Mixed Reality and Tangible Interfaces" HCI Master - Université Paris-Saclay

98