Generalized Linear Models




Underlying hypotheses of linear models

ANOVA

Y, =uta+e,

Linear regression

Y, =p,+p; X;+€, .

Predicted values (Y variable) results from a linear combination (addition) of
explainatory variables, X variable(s)

Distribution of the residuals is normal, centered on 0 and their variances are
homogenous.



Examples of variables measured on plants

Let’s consider 100 plants grown in two different environments : A and B

Several variables can be evaluated :
* Height of a plant
* Number of seeds produced by a plant

* Number of seeds that germinated among 100 sowed seeds



Type of variables to model : gaussian variables

Y is the random variable representing the height of plants (1)
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Limits of linear models

Linear models are not appropriate in two mains situations :

* when the range of the variable is limited, for example

- X>0 for count data :
Number of seeds produced by a plant

- 0<X<1 for probabilities :
Number of seeds that germinated out of 100 sowed seeds

 the residual variance depends on the mean



Data transformation vs GLM

A solution could be the transformation of the response variable (log transformation for
example) before applying a linear model.

log (yu)=u+a+e,
E(log(Y)))=u+e,
This solution is not always satisfying...
* The transformation has to improve linearity

* The homogeneity of variance needs to be improved

e Transformation may not be defined for each value of the initial variable (ex : log(0))

With GLM, the transformation is applied to the mean of the variable

log (E(Y;))=u+a,



Linear Models vs Generalized Linear Models

ANOVA Y, =u+a,+€;,

Linear models

Linear regression Yik — /3’0 +/3’i Xi +€,

GLM models extend the linear models to variables that do not follow a normal distribution

Generalized

The GLM linear predictor Vl :/3)04' /3)1 Xi linear models

Link function describes how the
mean depends on the linear predictor A variance function that describe how the
variance depends on the mean

vi=g(u) var (Y;)=V (u)




Type of variables to model : count variables

For 1 trial, the event follows a Bernouilli law X can take two values : 0 (fail) or 1 (success)

P(X=1)
)

p
P(X=0) = 1-p

For n trials, the number of success in the n-sample in a count variable

Z=2_,X

n-sample with n unknown and may be infinite : Poisson distribution
Fixed n-sample, sampling with replacement : Binomial distribution

Fixed n-sample, sampling without replacement (probabilities change after each trial) :
Hypergeometric distribution

Stop afet r fails (or success) : Negative Binomial distribution
(case in PCR ampilification procedure, a maximum can be reached)



Type of variables to model : count variables

Y is the ramdom variable representing the number of seeds produced by a plant
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Poisson with A parameter
(equal to the mean and the variance, variance will increase with fitted values !)



Poisson distribution  Y,~Poisson(A,)
The GLM linear predictor V. :/))0+ /)’l Xi

Link function describes how the
mean depends on the linear predictor _ _ .
A variance function that describe how the

Vi—=¢g (Mz) variance depends on the mean

g( ) =log (1, var (Y;)=V (u)

Y.~ Poisson( ;)
E(Y,)=A, var (Y;)= 4

log(Y)

So, the variance function is

' _ V(w)=u
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Log transformation
allows to extend the range
from [0;+0] to ]J-o0 ; +oof



Type of variables to model : frequencies

Y is the random variable that describe the number of plants that germinate among 100

Y.~ Binomial (n=100, p,)
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Binomial distributions Y;~ Binomial (n;, p;)
The GLM linear predictor V. :/))0+ /)’l Xi

Link function describes how the
mean depends on the linear predictor _ _ .
— A variance function that describe how the
i—g\U, variance depends on the mean
_ U
g(u)=log (-—)
—u

Y .~ Binomial (nl-,p,-)

. E(Yi/ni):pi

- var(Yi/ni):%Pim_Pi)

logit(p)

’ So, the variance function is
Logit transformation
allows to extend the range \% <M1> —U,; ( 1— Mi)
from [0;1] tO ]-oo ; +oof



Type of variables to model : count variables

Fixed n-sample, sampling with replacement : Binomial distribution
n-sample with n unknown and may be infinite : Poisson distribution

Fixed n-sample, sampling without replacement (probabilities change after each trial) :
Hypergeometric distribution

Stop afet r fails (or success) : Negative Binomial distribution
(case in PCR amplification procedure, a maximum can be reached)

Law parameters Expectancy Variance
Binomial Bin, p) n.p n.p.(1— p)
Poisson FP(A = n.p) A A
Hypergeometrical Hin. p, A) n.p np.(1l— p}%
Megative binomial NB(r.1— p)) ress rote




Examples of generalized linear models

The exponential family functions available in R are

* binomial(link = "logit")
 poisson(link = "log")
* gaussian(link = "identity")

Type of response Law of response

and errors variable and
variables errors
Quanti. continous :
-inf : +inf [ Gaussian
Count .
Integer [0 ; +inf] FelEE
Eliry (1) Binomial

Integer [0;1]
But also :

* Gamma(link = "inverse")
* inverse.gaussian(link ="1/mu 2 ")

Response
modeled

Variable itself  identity

Log of the l0g
mean

Log of the

chance ratio logit

Link function

glu)=u
glu)=log (u)

g(u)=log (——)



GLM interpretation

In R output :
- Coefficients table indicate the significance of the effects of the model

- Deviances allows to evaluate the quality of a model, its ability of the model to predict the
response variable

- Null model (wihout any explanatory variable, only the intercept)

- Residual deviance (low if the model is able to perform good prediction)

y) y)
Kmodel ™ X pddi
Chi?2mege= Null model - Residual deviance

- follows a Chi? law at p degrees of freedom (where p = number of predictor variables)
— a pvalue can be calculated and indicates the significance of the model

- AIC can be used to compare several models (low AIC for best models) : AIC = 2K — 2In(L)

- K is the number of parameters of the model
- In(L) is the log-likelihood of the model



Modelling of RNAseq counts

1) Variable to model : Count data Y

2) Distribution law and its parameters

Follows a negative binomial distribution characterized by a mean A and a variance ¢
(indices to determine)

NB(A, ¢)

3) List of the effects impacting the gene count
The log of the mean lOg (A) will be modelled

Describe each of the effects
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