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Underlying hypotheses of linear models

Y ik=μ+α i+ϵik

Y ik=β0+βi X i+ϵik

ANOVA

Linear regression

Predicted values (Y variable) results from a linear combination (addition) of 
explainatory variables, X variable(s)

Distribution of the residuals is normal, centered on 0 and their variances are 
homogenous.



 

Examples of variables measured on plants

Let’s consider 100 plants grown in two different environments : A and B

Several variables can be evaluated : 

● Height of a plant

● Number of seeds produced by a plant

● Number of seeds that germinated among 100 sowed seeds



 

Type of variables to model : gaussian variables

Y is the random variable representing the height of plants (1) 

Y ik=μ+α i+ϵik



 

Limits of linear models

Linear models are not appropriate in two mains situations : 

●  when the range of the variable is limited, for example

- X>0 for count data : 
Number of seeds produced by a plant

- 0<X<1 for probabilities : 
Number of seeds that germinated out of 100 sowed seeds

●  the residual variance depends on the mean



 

Data transformation vs GLM

A solution could be the transformation of the response variable (log transformation for 
example) before applying a linear model. 

This solution is not always satisfying…

● The transformation has to improve linearity

● The homogeneity of variance needs to be improved

● Transformation may not be defined for each value of the initial variable (ex : log(0))
●

With GLM, the transformation is applied to the mean of the variable

log ( y ik)=μ+αi+ϵik

E( log(Y i))=μ+α i

log (E(Y i))=μ+α i



 

Linear Models vs Generalized Linear Models

νi=g(μ i)

The GLM linear predictor νi=β0+βi X i

GLM models extend the linear models to variables that do not follow a normal distribution

Y ik=μ+α i+ϵi k

Y ik=β0+βi X i+ϵik

ANOVA

Linear regression

Linear models

Generalized 
linear models

Linear models

Structure of the errors
A variance function that describe how the 
variance depends on the mean

var (Y i)=V (μ)

Link function describes how the 
mean depends on the linear predictor 



 

Type of variables to model : count variables

For 1 trial, the event follows a Bernouilli law X can take two values : 0 (fail) or 1 (success)

P(X=1) = p 
P(X=0) = 1-p

For n trials, the number of success in the n-sample in a count variable 

n-sample with n unknown and may be infinite : Poisson distribution

Fixed n-sample, sampling with replacement : Binomial distribution

Fixed n-sample, sampling without replacement (probabilities change after each trial) : 
Hypergeometric distribution

Stop afet r fails (or success) : Negative Binomial distribution
(case in PCR amplification procedure, a maximum can be reached)

Z=Σi=1
n X i



 

Type of variables to model : count variables

Y is the ramdom variable representing the number of seeds produced by a plant

Poisson with λ parameter
(equal to the mean and the variance, variance will increase with fitted values !)

 

Y i∼Poisson(λ i)Y i∼Poisson(λ i)



 

Poisson distribution

g(μ i)=log (μi)

νi=g(μ i)

The GLM linear predictor νi=β0+βi X i

Structure of the errors
A variance function that describe how the 

variance depends on the mean

      

var (Y i)=V (μ)

Link function describes how the 
mean depends on the linear predictor

Log transformation
allows to extend the range

from [0;+∞] to ]-∞ ; +∞[

Y i∼Poisson(λ i)

Y i∼Poisson(λ i)

E(Y i)=λ i var (Y i)=λi

V (μi)=μi

So, the variance function is



 

Type of variables to model : frequencies

Y is the random variable that describe the number of plants that germinate among 100 

is an estimator of

H0 : pA=pB the germination rate is the same in both environments
H1 : pA ≠ pB the germination rate is different in both environments

Y i∼Binomial (n=100 , p i)

pi
Y i
n



 

Binomial distributions

Logit transformation
allows to extend the range

from [0;1] to ]-∞ ; +∞[

g(μ)=log (
μ

1−μ
)

Y i∼Binomial (ni , p i)

νi=g(μ i)

The GLM linear predictor νi=β0+βi X i

Structure of the errors
A variance function that describe how the 

variance depends on the mean

     

Link function describes how the 
mean depends on the linear predictor

E(Y i/ni)=pi

var (Y i/ni)=
1
n i
pi(1−p i)

V (μi)=μi(1−μi)

So, the variance function is

Y i∼Binomial (ni , p i)



 

Type of variables to model : count variables

Fixed n-sample, sampling with replacement : Binomial distribution

n-sample with n unknown and may be infinite : Poisson distribution

Fixed n-sample, sampling without replacement (probabilities change after each trial) : 
Hypergeometric distribution

Stop afet r fails (or success) : Negative Binomial distribution
(case in PCR amplification procedure, a maximum can be reached)



 

The exponential family functions available in R are

● binomial(link = "logit")
● poisson(link = "log")
● gaussian(link = "identity")

But also : 

● Gamma(link = "inverse")
● inverse.gaussian(link = "1/mu 2 ")

Examples of generalized linear models

Type of response 
and errors 
variables

Law of response 
variable and 

errors

Response
modeled

Link function

Quanti. continous
] -inf ; + inf [

Gaussian Variable itself identity

Count
Integer [0 ; +inf]

Poisson Log of the 
mean

log

Binary (0/1)
Integer [0;1]

Binomial Log of the 
chance ratio

logit        g(μ)=log (
μ

1−μ
)

g(μ)=log (μ)

g(μ)=μ



 

GLM interpretation

In R output :

- Coefficients table indicate the significance of the effects of the model

- Deviances allows to evaluate the quality of a model, its ability of the model to predict the 
response variable

- Null model (wihout any explanatory variable, only the intercept)
- Residual deviance (low if the model is able to perform good prediction) 

Chi2model= Null model - Residual deviance

→ follows a Chi2 law at p degrees of freedom (where p = number of predictor variables)
→ a pvalue can be calculated and indicates the significance of the model

- AIC can be used to compare several models (low AIC for best models) : AIC = 2K – 2ln(L)

→ K is the number of parameters of the model
→ ln(L) is the log-likelihood of the model

 

χmodel
2 ∼χ pddl

2



 

1) Variable to model : Count data

2) Distribution law and its parameters

Follows a negative binomial distribution characterized by a mean       and a variance 
(indices to determine)

3) List of the effects impacting the gene count 

The log of the mean                       will be modelled 

Describe each of the effects

Modelling of RNAseq counts

NB (λ ,ϕ)

λ ϕ

Y

NB (λ ,ϕ)

log (λ)
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