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Note

This is the English version of the biostatistics tutorial, translated by Malcolm Eden. The hand-
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BEE, BIP) and M2 (optometry, ergonomics) in the Department of Biology from Université Paris-
Saclay. It was written to accompany lessons, tutorials and practical work in these course units.
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Chapter 1

Introduction: statistics, random variables,

samples

1.1 Statistics

Statistics : all the methods used to collect, describe and analyse observations (or data). These obser-

vations generally involve measuring one or more characteristics of a given set of individuals.

Probability theory is the mathematical study of phenomena characterised by chance and uncertainty;
statistics involves collecting, processing and interpreting sets of data. Probabilities and statistics make
up the sciences investigating random phenomena.

Statistical unit : the basic element measured.

Units may be individuals, pairs of glasses (for example, when we need to test the quality of glasses
frames), bacteria, etc. Statistical units may also be a group of individuals (e.g. a class of 25 students
whose behaviour is being studied or Arabidopsis thaliana plants in a dish, etc.)

Population : a set of individuals about whom we need to collect information

This could be, for example, all adult men in the France, the pairs of glasses produced on an assembly
line over a given period or all the patients in a hospital.
Generally speaking, when the population is very large, it is impossible to measure all the individuals
in the population. We can, however, measure a small number of individuals selected at random from
the population, considering them as representative of the population as a whole.
For populations of a smaller size, we can measure all individuals, and the sampled population will be
described free of error.

Sample : a subset of individuals in a population selected at random from all the individuals in the

population. If they really are selected at random, without bias, the sample is said to be "representative"

of the population.

There are two broad kinds of statistical approaches, descriptive statistics and inferential statistics.

Descriptive statistics. The aim is to highlight the characteristics of a sample using quanti�ed and
graphical data. We might need to describe the distribution of variables, variable by variable. We could
also be aiming to bring out the main characteristics of a sample, by summarising information using
certain parameters (e.g. an average, the variance) and by determining the main relations between the
variables. For example, we could give the average and the variance of the height of individuals in a
sample. We could also measure the extent to which the height and weight of individuals are linked.

Inferential statistics. We might want to "infer" the properties of a given population (for example,
the average height of the individuals in the population) based on data from a sample. Our aim is
to estimate the average and also to establish a "margin of error". We may also want to test out
hypotheses. For instance, does average height increase from one generation to the next in a given
human population?

1.2 Random variables and probability laws

1.2.1 Random variables

Random variable : a random variable (r. v.) is any variable with values depending on the outcome

of a random phenomenon.
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The random variable is written as X, and an outcome of this random variable is given as x, which is
a particular value taken by the variable in a random selection.

Examples of random variables

� We could study the result of throwing (non-loaded) six-sided dice. The random element comes
from the way the dice are thrown. The variable is the value shown on the dice face (a whole
number between one and six). When a die is thrown, each of the six values has a 1/6 chance of
being shown.

� In a sample of butter�ies of the Biston bistularia species captured in southern England, we
could study whether the butter�ies are light or dark in colour. The random variable here is the
colour, which falls into two categories or modalities, light or dark. The probability of seeing a
light-coloured butter�y is linked to pollution levels and the colour of tree bark.

� In a sample of individuals in the population of Iceland, we could study whether the blood group
of individuals is O+. The random variable is an individual's blood group, which is divided into
two categories, O+ or other. The probability that an individual is in the O+ group depends on
genetic factors, especially on the history of the colonisation of Iceland.

� In a sample of ears of corn, we could count the number of grains on each ear of corn. The random
element arises from the environment in which the plant is grown and its genotype. The possible
values will be whole numbers, with wide variations between di�erent ears of corn.

� We could measure the height of six-year-old girls beginning primary education and sampled in
di�erent schools. The random element comes both from the environment and from the genetic
di�erences between the children. Height is a real value with a continuous variation.

� The common frog Rana temporaria is the most widespread frog in the Rana genus in Europe. It is
often found in northern France and Belgium. It lives in all kinds of wetland: woodland (alongside
forest paths, ponds), moors, valley pastures, farmland, parks and gardens. It is a poikilotherm
species, that is to say, its body temperature adjusts to the surrounding temperature. We could
measure the body temperatures of frogs sampled in a pond. The random element results from
temperature variations on the surface of the pond, due to the position of areas shaded from the
sun. Here, too, the temperatures measured will be real numbers with a continuous variation.

A random variable is characterised by :

1. The values it can take, which are called the support of the random variable.

2. The probability of �nding each value in the population or probability law.

We can distinguish between several di�erent categories of random variables:

Quantitative variables: numerical elements (size, age, etc.) obtained by measuring individuals.
These elements are expressed in numbers when basic arithmetical operations (total, average, etc.) are
meaningful. A quantitative random variable may be discrete (number of descendants of an individual,
number of thoracic bristles in drosophila, etc.) or continuous (weight, size, etc.).

Qualitative variables: non-numerical characteristics. They can be nominal (such as eye colour)
or ordinal , when all categories can be classi�ed (for example: little infected, moderately infected,
highly infected). The di�erent values of a qualitative random variable are called modalities or levels.
It should be noted that a qualitative variable may be coded in the form of a numerical value, but if we
are dealing with a nominal variable, there is not point in carrying out mathematical operations on its
values.

The table below summarises the categories of random variables for the examples given, and the relevant
probability law.
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Variable Category Support Probability Law
Throwing dice qualitative or quantitative 1, 2, ..., 6 {1/6, 1/6, ...}
Butter�y colour nominal qualitative light/dark {pc, 1− pc}
Blood group in Iceland nominal qualitative O+/other {pO+, 1− pO+}
Number of grains/plant discrete quantitative positive number normal distribution
Girls' height continuous quantitative positive real normal distribution
Temperature of frogs continuous quantitative positive number normal distribution

1.2.2 Probability law

1.2.3 Qualitative random variable

For a qualitative random variable, we can draw up a list of all possible categories. Let X be a random
variable with categories {a1, a2, ..., aJ}. We can calculate the probability P (X = aj) that X will have
the value aj (j = 1, ..., J). The probability law of X is de�ned by all the P (X = aj).
An outcome x from X is a selection from the population. x will have a value among all the possible
values. In other words, X could have the values a1, or a2, or a3, etc., but x can only have a single
value. Since the categories are mutually exclusive, we have:

P (X = ai and X = aj) = 0; i 6= j

It follows from the above that the probability that X belongs to one or other of the J categories is
equivalent to 1.

J∑
j=1

P (X = aj) = 1

1.2.4 Discrete quantitative random variable

Discrete quantitative random variables are mainly count variables. For count variables, the support
of the random variables are whole values: either all the whole numbers or a �nite (e.g. 2,4,7,12) or
in�nite (e.g. all even numbers) series. We may list these values and call them, as above a1, a2, ...,....
We could associate a probability P (X = aj) with each value aj . An outcome x from X can only
produce one of these support values a1,a2,.... We should note that there can be discrete quantitative
variables that do not produce whole values (e.g 0.56, 5.4, 3.2). Discrete quantitative random variables
may have a �nite or in�nite support.

Example. Let X be the number of males among the 396 descendants of a Belgian Blue bull whose
sperm is available from the breed catalogue. If we consider an individual descendant, there is a one
in two chance for it to be male (p = 0.5). The total number of the bull's male descendants may be
any whole value between 0 and 396. We can calculate the exact probability P (X = aj) for each whole
value aj in the whole set {0, ..., 396} (by using the Binomial distribution B(396; 0, 5); cf. chapter 2).
For a discrete quantitative random variable with a �nite support, we also have:

J∑
j=1

P (X = aj) = 1.

We should note that if the support is in�nite, we will have an in�nite total (we replace J by ∞).
In a case in which the values a1, a2, ..., aJ are listed in order, we have:

P (X ≤ ak) = P (X = a1 or X = a2 or X = ak) =
k∑
j=1

P (X = aj).

To demonstrate this, we use the following property: ifA andB are two disjoint events, then P (A or B) =
P (A) + P (B). For example, if A : X = 0 and B : X = 1, we have:

P (X ≤ 1) = P (X = 0 or X = 1) = P (X = 0) + P (X = 1).
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1.2.4.1 Continuous quantitative random variable

Continuous quantitative random variables are variables with values in R, or, more often in biology,
in an interval included in R+ (biometric measurements, concentrations, etc.). The probability of a
random variable X (e.g. the rate of glucose in the blood) being precisely the value x = 0.3846 mg/L)
is almost zero. However, we can calculate the probability F (x) of X being smaller than a certain x
value:

F (x) = P (X ≤ x),

which is called the cumulative distribution function of X. The cumulative distribution function
is used to calculate the probability that X will be found in an interval between x and x+ dx: P (X ∈
]x, x+ dx]) = F (x+ dx)− F (x).
The probability density function, shown as f(x), is the derivative of F :

f(x) = limdx→0
(F (x+ dx)− F (x))

dx
.

Reminder : the integral function (written as
∫
) associates the area below the f(x) curve with each

interval ]a; b] for the x values in the interval ]a; b]. It is written as Fa,b(x) =
∫ b
a f(x)dx. If we derive

F (X), we again �nd the function f(x).
Thus, the cumulative distribution function of the random variable X can be de�ned as the area below
the curve f between −∞ and x (�gure 1.1). This is the probability that X will be smaller than x:

F (X) = P (X ≤ x) =

∫ x

−∞
f(x)dx.

It should be noted that the total area below the density is equivalent to 1 (this is the sum of probabil-
ities): ∫ +∞

−∞
f(x)dx = 1.

For the normal probability laws, the cumulative distribution functions F (x) are set out in table form.
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Figure 1.1: Probability law of a random variable. In this example, X is the random variable
associated with the measurement of blood sugar on an empty stomach. F (0.6) is the probability of
this value being smaller than 0.6. To the left is the probability density function and to the right the
cumulative distribution function.

A more intuitive way of understanding the link between the cumulative distribution function F (x) and
the probability density function f(x) is to consider an n-sample (X1, ..., Xn) of the random variable X,
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with n being very large. We can make a chart of the xi values, grouping them into J classes of ∆x size.
The j class corresponds to the xi values, which belong to the interval ]xmin + (j − 1)∆x;xmin + j∆x].
We can de�ne the probability P (X ∈]x;x+ ∆x]) and estimate it, as is the case for a discrete variable,
by the frequency of the class Pobs(]x;x+ ∆x]) observed in the sample. If the number of observations
is very large, we can then de�ne a very large number of classes of a very small size, dx, and draw up
a continuous function that "enfolds" the empirical distribution of X: this is the probability density
function of X.

Quantile. For each value x, we can calculate the cumulative distribution function F (x). We might
also want to look at the value of x, so that F (x) will have a certain value. We call the α quantile,
written as qα, the value such that

F (qα) = α.

It statistical tests, the quantiles q0,025, q0,05, q0,95 and q0,975 are often used.
The median of a distribution is by de�nition the quantile at 50%: half of the population has a value
below the median.
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Figure 1.2: Quantiles in a normal distribution.
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1.2.5 Expected value and variance

The two most widely used parameters to characterise the probability law of a random variable are
expected value and variance.

Expected value (centering parameter): this is the value that we would expect to �nd, on average,
if we repeated the same random experience in�nitely. It is written as E(X) and is expressed as the
"expected value of X". It corresponds to a weighted average of the values that this variable can take:

� For discrete random variables, E(X) = µX =
∑

j (P (X = aj) · aj)

� For continuous random variables, E(X) = µX =
∫ +∞
−∞ (xf(x)dx) .

We should note that if we study two random variables, X and Y , the expected value of the sum of the
two random variables is equal to the sum of the expected values.

E(X + Y ) = E(X) + E(Y )

Centering variable: a variable is centred when we remove the expected value from each of the
values of X. Xcentered = X − E(X). Consequently, we can show that E(Xcentred) = 0.

Variance (dispersion parameter): in statistics and in probability theory, variance is a measure-
ment used to characterise the dispersion of a variable. It shows how the statistical series or the random
variable is scattered around its average or its expected value. A variance of zero shows that all the
values are identical. A small variance is a sign that the values are close to each other, whereas a high
variance is the sign that they are far apart. We de�ne variance as a weighted sum of squared deviations
from the mean.

� For discrete r.v., V (X) = σ2X =
∑

j

[
P (X = aj) · (aj − E(X))2

]
� For continuous r.v., V (X) = σ2X =

∫ +∞
−∞

[
(x− E(X))2 · f(x)dx

]
We can notice that the variance is expressed as the expected value of (X − E(X))2:

V (X) = σ2X

= E
[
(X − E(X))2

]
= E(X2)− [E(X)]2 . (1.1)

In this last form, which is useful for making calculations, we can see that the variance is the di�erence
between the expected value of the square of the variable and the square of the expected value of the
variable.
It is also important to notice and to remember that the variance of a variable X multiplied by a
constant k is:

V (kX) = k2V (X)

and that the variance of a variable to which a constant k is added is:

V (X + k) = V (X).

Example: estimating the number of boys (X) in a family with two children. If the probability of
having a boy is 1/2, then the law of probability of X is written as:

aj P (X = aj)

0 1/4
1 1/2
2 1/4

The expected value of X is equal to E(X) = (0/4 + 1/2 + 2/4) = 1, and the variance σ2 = 1
4(0− 1)2 +

1
2(1− 1)2 + 1

4(2− 1)2 = 1/2
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Standard deviation: when looking at a continuous probability distribution, what we can visualise is
not the variance directly (which is expressed in the square of the unit of measurement). The parameter
that is expressed in the unit of measurement is the square root of the variance, which is called the
standard deviation:

σ =
√
σ2 =

√
E [(X − E(X))2].

Standardised variable: A variable divided by its standard deviation is called a standardised vari-
able. As a result, the variance of a standardised variable is equivalent to one.

1.2.6 Pair of random variables

A pair of random variables : (X,Y ) is a pair of random variables whenever two di�erent measure-

ments X and Y are observed in the same statistical individual during a probability experiment.

When we carry out di�erent measurements (e.g. height and weight at birth) on the same statistical
individual, the results may depend on each other. For example, it is obvious that, for biological reasons
(allometry), we expect there to be a positive relation between height and weight in human beings at
birth. So, two random variables measured in the same individual are not necessarily independent of
each other.

Notion of covariance : We de�ne the covariance between two quantitative random variables X and

Y as cov(X,Y ) = E [(X − E(X))(Y − E(Y ))].

Notion of independence : We consider that there is independence between two random variables

X and Y when, irrespective of the value taken by X, the law of Y does not change, and vice versa.

From this de�nition, the result, for discrete random variables, is: P (X = a and Y = b) = P (X =
a) · P (Y = b) and for continuous random variables f(x, y) = f(x) · f(y).

Variance of a sum. For any pair of random variables X and Y , the variance of X + Y is written:

V (X + Y ) = V (X) + V (Y ) + 2cov(X,Y ),

If X and Y are independent, then V (X + Y ) = V (X) + V (Y ).

Please note, independence implies zero covariance. However, the opposite is not always the case.
The covariance of standardised variables X and Y is:

ρX,Y = cov

(
X√
V (X)

,
Y√
V (Y )

)
=

cov(X,Y )√
[V (X)V (Y )]

. (1.2)

This is the Pearson correlation coe�cient, a measurement of covariance going beyond the units in
which X and Y are expressed.
It is important to note that the covariance of a variable with itself is simply its variance: cov(X,X) =
V (X). We can deduce the boundaries of ρXY . If X and Y are strictly linked (X = Y ), we have

ρXY =
cov(X,X)√
V (X)V (X)

= 1.

If X and Y are strictly anti-correlated (X = −Y ), we have

ρXY =
cov(X,−X)√
V (X)V (X)

= −1.
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Figure 1.3: Pairs of quantitative random variables. We measure the age, height and weight of a
sample of 350 adult women aged between 20 and 70. Each dot represents a woman. On the left: the
relation between age and height. There is a slight negative dependence, the correlation is −0.04. On
the right: the relation between height and weight in the same individuals shows a strong positive link,
with a coe�cient of correlation of 0.63.

1.3 Notion of n-sample

When a given population is very large, we cannot measure all individuals. Instead, we use a subset of
the population to make inferences concerning information about the population.

n-sample: a subset of n individuals selected at random and independently from the reference popu-
lation. We call Xi the random variable associated with the selection of the individual i (i = 1, ..., n),
and xi the value observed in the individual i. The way the sample is constituted (independent random
selection) means we can make the hypothesis that the random variables Xi are independent and part
of the same law. If the selection really is made at random, without bias, then the sample will be
considered as "representative".

xi observations can be used to make hypotheses concerning the shared law of the Xi, that is the law
of X.

Example: Using a sample of 350 women in the graph (1.3), we can ask whether the observed variables
are independent. Based on this sample, we can also estimate the average and the variance of the
observed variables. This will be studied in chapter 1.5.

1.4 Descriptive statistics

We can study the outcomes (x1, ..., xi, ..., xn) of the random variables Xi from an n-sample of the
reference population.
We can produce a visual representation of the xi by grouping them by class of values. We can also use
the measurements to describe the distribution of the xi (for example, average or variance). We call
these measurements summary statistics.

1.4.1 Qualitative variable

If we study a qualitative variable, then the xi can only have a �nite number of categories or modalities
(a1, ..., aj , ..., aJ).
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Size : size observed in each category

Relative frequency : size of each category compared with the total number of individuals n.

We can show the relative sizes or frequencies in a bar chart.

1.4.2 Quantitative variable

Discrete random variable. If we study a discrete r.v., we can calculate the nj number of each
value aj in the sample or its relative frequency nj

n and create a bar chart.
For example, the table below is from an INSEE survey showing the number of children per woman,
for women born between 1961 and 1965, as well as the frequency of each possible case (zero, one, two,
three or more children):

Number of children per woman 0 1 2 3 > 3

Frequency (%) 13.5 18.2 38.9 20.2 9.2

10
15

20
25

30
35

40

Number of children

%
 w

om
en

0 1 2 3 4+

Figure 1.4: Bar chart. Number of chil-
dren per woman.

Continuous random variable. If we study a continuous r.v., the xi are all di�erent, but we can
group them together by class, by de�ning the adjacent intervals of the values. We then count the
numbers observed in each interval. The histogram or empirical distribution shows the size of each
class. Similarly, each class can be represented by its frequency. In a histogram, on the y axis, we
see either the size, frequency or value, such that the area of the bar is equal to the frequency. The
histogram may vary in visual terms, depending on the boundaries of the classes chosen.

Mode of an empirical distribution : this is the class including the most individuals in the sample.

The mode may vary according to the boundaries of the classes chosen.

It is worth noting that some distributions may have 2 or more peaks, and in this case we use the terms
bimodal or multimodal distribution. This is the case, in particular, when individuals from the sample
belong to di�erent populations (�gure 1.5).

Quantiles. If we group the xi values in ascending order, we can easily calculate the proportion of
observations below a certain value a, Fobs(a).
The median is the value a such that Fobs(a) = 0.5, that is, half of the xi have a value below the
median and half of the xi have a higher value.
The quantile α is the value a such that Fobs(a) = α. We often use quantiles at 5% and 95%, resulting
in an interval containing 90% of the sample. The quantiles at 25% and 75% result in an interval
containing half of the individuals in the sample.
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Figure 1.5: Histograms. Continuous data are grouped into classes. A] Pyramid of ages among bank
employees. The mode corresponds to the class aged 40 to 45. B] The �uorescence intensity of the cell
nuclei in corn leaves measured with �ow cytometry. We can distinguish three populations of nuclei,
which di�er in the degree of �uorescence, pointing to di�erent levels of ploidy. In black, diploid cell
nuclei. In grey, the tetraploid cell nuclei. In white, cell nuclei in phase S of mitosis.

An alternative to the histogram is the box-and-whisker plot or boxplot (1.6), which uses the quantiles
of the empirical distribution. With this representation we can show the distributions of several di�erent
samples in the same graph.

Figure 1.6: Box-and-whisker plot or boxplot. A common representation of the empirical distribu-
tion of a sample. The box corresponds to the interval de�ned by the quantiles 25% and 75%. The limit
of the horizontal bars has a variable meaning depending on the software used and may represent either
the minimal/maximal values observed in the sample or values dependent on quartiles. In the latter
case, the observations of the sample beyond these limits are shown as dots or crosses. The vertical bar
shows the median of the empirical distribution.

Mean and variance. We can use the analogy with expected values and the variance of a random
variable to calculate the mean and the variance of a sample.
The mean of the sample is an indicator of position:

x =
1

n

n∑
i=1

xi

It is often close to the mode, that is, to the most common value.
The variance of the sample gives an indication of the scope of variations around the mean. It is an
indicator of dispersion:

s2n =
1

n

n∑
i=1

(xi − x)2

For a pair of random variables, covariance gives an idea of the linear relation between two variables:
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sxyn =
1

n

n∑
i=1

[(xi − x)(yi − y)] .

1.5 Inferential statistics

We will now move from the sample to the population. There is a quantitative random variation, and
we will use a sample to form an idea of or to estimate the descriptors of the distribution of the random
variable, such as the average or variance, for example.
Each xi is an outcome of a random variable Xi. The Xi values are independent and have the same
law, characterised by their expected value E(Xi) = µX and variance V (Xi) = σ2X .

1.5.1 Estimation of the population mean

We can de�ne the following random variable:

X =
1

n

n∑
i=1

Xi

which is a calculation of the mean of the selection. To do so we use the properties of the sum of
expected values of several di�erent random variables:

E(X + Y ) = E(X) + E(Y )

So it is easy to �nd that E(X) = 1
n

∑n
i=1E(Xi) = µX , since each Xi has the same expected value µX .

Unbiased estimator : an unbiased estimator is a random variable with an expected value that is

exactly equal to the quantity we want to estimate.

So we can say that X is an unbiased estimator of µX , which is written as µ̂X . By using the outcomes
xi from the Xi in a sample, we can thus provide the empirical mean of the sample as an estimation of
the population mean:

x =
1

n

n∑
i=1

xi

The estimator of µX is X, it is a random variable. The estimation of µX is x, it is an outcome of the
random variable X.

Estimator accuracy. The fact that an estimator is unbiased gives no indication of its accuracy. To
gauge its accuracy, we can ask how the estimator varies around its mean, that is, we calculate the
estimator's variance.
For the variance of the estimator X of the mean, if we recall that Xi values are independent and have
the same law, then we have:

V (X) = V

(
1

n

n∑
i=1

Xi

)
=

1

n2
V

(
n∑
i=1

Xi

)

=
1

n2

n∑
i=1

V (Xi) =
1

n2
nσ2X

=
σ2X
n
.

The bigger the size of the sample, the lower the variance of the estimator. It should be noted that
accuracy is measured through standard deviation and so decreases by 1/

√
n with n. To increase

accuracy by a factor of 10, we need to increase the size of the sample by a factor of 100.
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a. b.

c. d.

Figure 1.7: Properties of an estimator. The black dot is the parameter to be estimated in the
population. Each red triangle is an estimation from an n-sample. a. Unbiased estimator. The red
dots are on average close to the parameter. b. Biased estimator. The estimation average di�ers from
the value of the parameter. c. Unbiased and accurate estimator. The red dots are centered on the
parameter and have low variance. d. Unbiased but inaccurate estimator. The estimator has a large
amount of variance.

1.5.2 Estimation of the variance

By using the property of the sum of the expected values, we have

E

(
n∑
i=1

(Xi − µX)2

)
= nσ2X

If µX is unknown, then we cannot use it to estimate the variance, so we will replace µX with its
estimator X, which will modify the expected value. So we can write:

E

(
n∑
i=1

(Xi −X)2

)
= E

(
n∑
i=1

[
(Xi − µX)− (X − µX)

]2)

= E

(
n∑
i=1

(Xi − µX)2 − n(X − µX)2

)
= nσ2X − σ2X
= (n− 1)σ2X . (1.3)

So, as an unbiased estimator of the variance, we can use:

S2
Xn−1

=
1

n− 1

n∑
i=1

(Xi −X)2,

which is also written as σ̂2X .
By using the xi outcomes of the Xi in a sample, we can estimate the variance of the population, which
is written as s2X :

s2X =
1

n− 1

n∑
i=1

(xi − x)2

Corrected empirical variance : s2X is called the corrected empirical variance of the sample. It is an

estimation of the variance of the population.
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Corrected empirical covariance : similarly, sXY is called the empirical covariance of the sample.

It is an unbiased estimation of covariance in the population.

sXY =
1

n− 1

n∑
i=1

((xi − x)(yi − y))

1.6 Summary

We want to know the parameters of the law of distribution of a random variable or a pair of random
variables in a given population. We study an n-sample of individuals from the population. It is possible
to calculate a certain number of summary statistics in this sample. We can also use the sample to
make inferences about the parameters of the population. We use the values measured in the sample
to calculate estimations of the parameters of the population:

Population Estimator Estimation

r.v. X and Y r.v. X1, ..., Xn, observations x1, ..., xn
independent and with the same law

.

r.v. Y1, ..., Yn, observations y1, ..., yn
independent and with the same law

Mean E(X) = µX X x
Variance V (X) = σ2X S2

Xn−1
s2X

Covariance Cov(X,Y ) = σXY SXY sXY
Correlation ρXY ρ̂XY rXY

with:

x =
1

n

n∑
i=1

xi

s2X =
1

n− 1

n∑
i=1

(xi − x)2

sXY =
1

n− 1

n∑
i=1

[(xi − x)(yi − y)]

rXY =
sXY√
s2Xs

2
Y

.
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Chapter 2

Laws and tests

2.1 Normal distributions

2.1.1 Case of discrete quantitative variables

For a discrete variable X with a support a1, ..., aJ , the distribution is given by the probability that the
variable will have the value aj , P (X = aj), for any value of j.
The sum of all the P (X = aj) is equal to 1. We can always represent the normal distribution in a bar
chart (�gure 2.1).

2.1.1.1 Bernoulli distribution

We consider a variable with two possible outcomes (for example, heads or tails, wearing glasses/not
wearing them, man/woman, segregation of dominant monogenic traits in F2-generation). We can
always give the codes 0 and 1 to the two outcomes. For example, we can write X = 1 for tails and
X = 0 for heads.
The law of the variable is given by P (X = 1) = p and P (X = 0) = 1 − p. We then consider that X
follows a Bernoulli distribution, written as B(p). Its expected value is E(X) = p and its variance is
V (X) = p(1− p) (see the equation (1.1)).

Figure 2.1: Bar chart showing the probability law of a Bernoulli distribution variable p = 1/4.

2.1.1.2 Binomial distribution

Imagine that we repeat the Bernoulli process n times. We then have n independent Bernoulli variables
Xi for i = 1 at n, an n-sample. We count the number of times the result is tails, that is, we produce
a new variable Y equal to the sum of the Xi values.

Y =
n∑
i=1

Xi

The r.v. Y follows a binomial distribution of parameters n, the number of times the coin is tossed,
and p, the probability of the coin showing tails. The binomial distribution is written as: B(n; p).

15
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Figure 2.2: Probability law of a Binomial variable. Y ∼ B(20; 0, 3).

The Y law is given by P (Y = k) for k = 0, ..., n.

P (Y = k) = Cknp
k(1− p)n−k,

where Ckn is the combination of k among n.
The expected values of Y is

E(Y ) = E

(
n∑
i=1

Xi

)
=

n∑
i=1

E(Xi) = np

and its variance is

V (Y ) = V

(
n∑
i=1

Xi

)
=

n∑
i=1

V (Xi) = np(1− p).

All the count variables from independent events follow Binomial laws. A nominal characteristic of an
individual can always be described as a Bernoulli variable (whether the characteristic is present or
not). When we look at the number of individuals having the characteristic in an n-sample, we are
dealing with a Binomial distribution with the support {0, 1, ..., n}.

Estimation of p. Often we do not know the probability of success p, that is, the probability for an
individual in the randomly chosen population to have the characteristic. We try to estimate it using
observations in the sample.
From the law of Y we can deduce the law of Z = Y

n , which describes the proportion of success for n
independent draws. Z takes the values { 0n ,

1
n ,

2
n , ...,

n
n}.

P

(
Z =

k

n

)
= P (Y = k) = Cknp

k(1− p)n−k.

We can calculate the expected value of Z:

E(Z) = E

(
Y

n

)
=
E(Y )

n
= p

and its variance:

V (Z) = V

(
Y

n

)
=
V (Y )

n2
=
np(1− p)

n2
=
p(1− p)

n
.
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We can note that Z is an unbiased estimator of p, and that the variance of the estimator decreases
with the size of the sample n. We can thus propose the estimation:

p̂ =
y

n

where y is the number of individuals observed to have the characteristic in the sample.

Example: we want to �nd out the probability p of men aged over 40 su�ering from back pain. We
carry out a survey on 20 men aged over 40. Seven say they su�er from back pain. We can thus estimate
the probability by

p̂ = 7/20 = 0.35

.

2.1.1.3 Poisson distribution

Let there be a random variable Y that can take discrete values 0, 1, 2, 3, ..., +∞ (in theory). If Y
follows a Poisson distribution, we have

P (Y = k) =
λke−λ

k!

and
E(Y ) = V (Y ) = λ

For a Poisson distribution, the mean and the variance are the same.
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B(20,0.3)
P(6)

Figure 2.3: Probability laws for a Binomial variable and a Poisson variable with the same

expected value E(Y ) = np = λ = 6. For the Poisson distribution (in red), the probability of
extreme events (to the right or to the left) is higher, leading to a bigger variance.

The Poisson distribution is sometimes also called the law of rare events because if we have a random
variable X following a binomial law of parameters that is very large, n, and very small, p (n ≥ 50,
p ≤ 0.1 and np < 15), we can approximate this Binomial law to a Poisson distribution with the
parameter np. For example, the number of accidents at a crossroads on a given day. If a large number
of cars pass through it every day and the probability of an accident involving a car each time is low,
then the number of accidents will follow a Poisson distribution.
In this handout, when we study a random variable X, if we know its distribution, we show it with
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the sign ∼ and if it is an approximate distribution we will show with the sign ≈. For example, if
X ∼ B(n; p) with n and p ful�lling the conditions listed above, X ≈ P(np).
If we compare two random variables with the same mean, one following a Binomial law (mean np),
and the other a Poisson distribution (mean λ = np), we can see that the Binomial random variable
will have a smaller variance because np(1− p) < np (see �gure 2.3).
When p becomes very small and n is big, we have np(1 − p) ≈ np, which justi�es approximating the
Binomial distribution by a Poisson distribution.

2.1.2 Case of continuous quantitative variables

There are many probability laws enabling us to model a continuous quantitative variable. The best
known is the normal distribution. However, not all continuous quantitative variables follow a normal
distribution. We will see other distributions in this course.
We should recall that a continuous variable X is described by its density function f(x) or by its
cumulative distribution function F (x) = P (X ≤ x).

2.1.2.1 Uniform distribution

The uniform distribution is characterised by the following property: all the intervals of the same
length included in the distribution support have the same probability. As a result, the associated
density function is a constant.
The density function of a uniform distribution U(a, b) whose support is the interval [a, b] is

f(x) =
1

b− a

and the distribution function F (x) is a linear function:

F (x) =
x− a
b− a

.

The expected value is E(X) = (a+ b)/2, and the variance is V (X) = (b−a)2
12 .
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Figure 2.4: Example of a uniform distribution U(3, 7). The density function is shown on the left,
the distribution function on the right.
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2.1.2.2 Gaussian distribution

A variable X that follows a normal distribution (or Gaussian distribution) with a mean of µ and a
variance σ2 has the following density function:

f(x) =
1

σ
√

2π
e
−(x−µ)2

2σ2

Standard normal distribution. This distribution corresponds to the distribution of a random
variable following the expected value µ = 0 and variance σ2 = 1. We can always go from a normal
variable X ∼ N (µ;σ2) to a standard normal distribution variable by means of a transformation. Thus,
the standardised variable X−µ follows the law N (0;σ2), and the standard normal variable X−µ

σ follows
the law N (0; 1).
As a result, only the standard normal distribution is generally included in statistical software.

Which variables are often modelled as Gaussian random variables?

� Numerous biological variables, such as weight, height, etc.

� A sum of independent random variables following normal distributions follow a normal distribu-
tion. So, in particular if X1, ..., Xn are Gaussian variables independent of the same distribution
N (µ;σ2), then their mean is a normal (Gaussian) distribution N (µ; σ

2

n ).

� Let X1, X2, ..., Xn be independent variables in the same distribution, with a mean µ and a
variance σ2. We want to �nd the mean of X, X =

∑n
i=1

Xi
n . Whatever the distribution of the

Xi, the X distribution tends towards a normal distribution when n tends towards in�nity. This
is the central limit theorem. In practice, if n is quite large (we often take n ≥ 30), we can
make the hypothesis that X follows a normal distribution asymptotically with a mean µ and
variance σ2

n . This will be written X̄ ≈ N (µ;σ2/n) and not X̄ ∼ N (µ;σ2/n)

� A direct application of the central limit theorem is the approximation of the binomial distribution
to a normal distribution. The binomial distribution is a sum of Bernoulli variables with the same
distribution and which are independent. So, if Y follows a binomial distribution B(n; p) and
n > 30, np > 5 and n(1− p) > 5, then Y approximately follows N (np;np(1− p)).

There are distributions other than the normal distribution to describe the quantitative variable dis-
tribution, such as the exponential distribution of the gamma distribution. For example, the random
variables measuring the time before an event takes place often have exponential probability distribu-
tions, with a density function given by:

f(x) = λe−λx

2.2 Test principle

Take a random variable X following a known distribution (for example, a Poisson distribution or a
normal distribution) but with unknown parameters. We can estimate these parameters or try to locate
them in a range of values or else compare them with a reference or between them. We then speak
about hypothesis testing.

Examples

� Is the population of mainland France representative of the French population as a whole?

� Does an operation on cataracts a�ect long-sightedness?

� Are male and female swallows' tails the same size?

� Is the joint angle of workers' arms during installation of waterproof covering on building sites
larger than INRS recommendations?
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One di�culty is to choose the right test. We need to identify the question asked and the nature of the
variables we are studying, in some cases to validate complementary hypotheses a posteriori, etc. Here,
using a simple example, we will set out an approach that can be applied in all hypothesis testing.

2.2.1 How to carry out a statistical test

Imagine we want to check if some equipment used to measure the focal length of contact lenses is
correctly adjusted. The manufacturer says that the accuracy of measurements is such that σ = 0.1.
We have a benchmark with a known focal distance at a value of 16 cm. We carry out n = 10
measurements of focal length of the benchmark using the equipment.

2.2.1.1 Model

We will call X the measurement of the focal length of the benchmark. X is a random variable, since,
as the manufacturer points out, if we repeat the measurement, we will not have exactly the same
result, since this depends on the equipment's accuracy. We have a 10-sample test of independent
measurements Xi. If the equipment is correctly adjusted, we can expect each Xi to follow a normal
distribution N (16;σ2 = 0.01). If the equipment is incorrectly adjusted, the expected value of Xi should
be di�erent from 16. This is what we want to �nd out. We will call µ the unknown expected value of
Xi and we put forward the following model: Xi follows a normal distribution N (µ; 0, 01). This model
presumes that, for the time being, we will trust the manufacturer about the equipment's accuracy
(σ = 0.1 is assumed to be known).

2.2.1.2 Hypotheses H0 and H1

In this test, we can make two mutually exclusive hypotheses:

� H0: expectation that the focal distance measured is 16 (µ = 16)

� H1: expectation that the focal distance measured is di�erent from 16 (µ 6= 16)

Please note that the hypotheses always refer to a feature of the probability law of the random variable.
We can make no hypotheses about the outcome (x1, ..., xn). Even if H0 is true, there is little chance
that the mean of the sample x will be exactly equal to 16.
The principle of the test is to �nd a random variable:
- for which we can calculate an outcome based on observations
- for which we know the distribution under H0.
- for which the distribution under H1 (even if we do not know it) is di�erent.
We call this random variable the test statistic. H0 is called the null hypothesis: this is the
hypothesis we want to test, which will be refuted or con�rmed. In general, it is a quanti�ed hypothesis,
that is to say, we know the value of the parameters and we can thus �nd the distribution of the test
statistic. H1 is called the "alternative hypothesis".

2.2.1.3 Choosing a test statistic

To choose the test statistic we can return to the model. We know that if the Xi values follow a normal
distribution N (µ; 0.01), then X follows a normal distribution N (µ; 0.01/10), and X is an unbiased
estimator of µ. We can calculate an outcome of X based on a sample: x . However, the distribution of
X is not known, since the mean µ is unknown. So, as a test statistic we can put forward the random
variable Z = X−16

0.1/
√
10
, where the distribution under H0 is known. Since we know that

X − µ
0.1/
√

10
∼ N (0; 1).

So, since under H0, µ = 16, we have:

Z =
X − 16

0.1/
√

10
∼H0 N (0; 1).
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We can also calculate an outcome of Z in the n-sample:

z =
x− 16

0, 1/
√

10
.

The random variable Z is therefore a promising candidate as a test statistic for testing H0 vs H1. We
call PH0(z) = PH0(Z ≤ z) the distributive function of the random variable Z under the H0 hypothesis.
If H0 is true, then Z really is a random variable that depends only on X, since the other parameters
are constant. We can note the outcome of Z in a sample as zobs.

2.2.1.4 H0 rejection region and choice of risk α

De�nition of a rejection region We can compare zobs to the theoretical distribution of Z under
H0. If H0 is true, we can expect that most of the outcomes of Z will be close to 0 (X close to 16). It is
unlikely that Z will be very large as an absolute value. If we �nd a high value for zobs, as an absolute
value, we will decide that there is little chance of observing it under H0, and we will reject H0. We

de�ne the rejection region as an interval:

]−∞;−zthreshold] ∪ [zthreshold; +∞[.

This interval, shown in �gure 2.5, contains the test statistic values that have little chance of occurring
if hypothesis H0 is true. To �nd out where the rejection region is situated, we need to study the
location of the distribution of the test statistic under H1: to the right of the distribution under H0?
To its left? To the right or the left?

Choice of risk α Even if H0 is true, the probability that Z is in the rejection region is not zero.
There is thus a certain probability of making an error by rejecting H0, although H0 is correct, which
is called the type I error, written as α. The principle of tests is that we set α a priori, that is before
carrying out the experiment. We will say we are ready to accept the risk α of making a mistake by
rejecting H0 when H0 is in fact correct. By writing as PH0() the probability of an event under the
hypothesis that H0 is correct, we can write:

α = P (rejecting H0 | H0 true) = PH0(rejecting H0)

For the test given above, we have: α = PH0(Z > zthreshold or Z < −zthreshold)

In practice, we often choose α = 5% or α = 1%. In writing, α is the probability shown by the grey
areas under the density function of the test statistic under H0 (see Figure 2.5), in the rejection region
of H0. So we look for the corresponding zthreshold value. It should be noted that the −zthreshold is the
quantile of the order α/2 in the Z distribution, and the zthreshold is the quantile in the (1−α/2) order.
The rejection region is calculated by looking for the quantiles in the Z distribution. Here, we look for
the zthreshold such that:

FH0(zthreshold) = 1− α/2.

The inverse functions of the distribution functions of the normal distributions are available in most
statistical and spreadsheet software. In our example, by setting a risk α = 5%, we have zthreshold = 1.96
(function R : qnorm(p=0.975)). The rejection region for the H0 hypothesis is thus here:

]−∞;−1, 96] ∪ [1, 96; +∞[.

If zobs is in the rejection region, we reject H0 and choose H1 at the risk of type I error α. However, if
zobs is not in the rejection region, we cannot reject H0. But we cannot automatically choose H0 since
we have not checked the risk of type II error in wrongly accepting H0.
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Figure 2.5: Illustration of the rejection region. The black curve is the density function of Z under
H0. The rejection region of the hypothesis H0 is de�ned as an interval that is calculated so that the
area below the curve in the interval of the rejection region is equal to the chosen threshold α, called
alpha in the graph.

2.2.1.5 Carrying out the test: calculating the observed value of the statistic

Up to now, we have not used the numerical values of the sample. Carrying out the test involves
calculating zobs on the basis of the sample.
The values of the 10 measurements are as follows: 16.03 15.89 16.33 16.44 16.07 16.41 16.12 15.94 16.45
16.08.
We can calculate the mean of the sample: x = 16.176, and we know n = 10 and σ = 0.1. Thus we
have

zobs =
16.176− 16

0.1/
√

10
= 5.56.

Bearing in mind the error in measurement stated by the manufacturer, if the machine is well adjusted,
it is unlikely we will arrive at "large values" (in absolute value). The principle of the test is to reject
H0 beyond a given value threshold by selecting the type I error α. If we choose α = 0.05, the threshold
is 1.96. Since 5.56 is larger than 1.96, we are in the rejection region, that is, we are rejecting the H0
hypothesis. In this case, we can conclude that the equipment is probably badly adjusted.

2.2.1.6 p-value

To �nish the test, we calculate the p-value (pval) or the observed level.

p-value : This is the probability that the test statistic is beyond (in the rejection region) zobs under

H0. In other words, it is the value of α that we should have chosen so that a limit of the rejection

region should be zobs. If this probability is lower than the chosen risk α, we will reject H0. The p-value
varies between 0 and 1.

pval = PH0(|Z| > |zobs|)

Here zobs is positive, so pval = 2PH0(Z > zobs) = 2.70·10−8 (function R: 2*(1-pnorm(q=5.56))). This
p-value shows that the probability of �nding an empirical mean beyond 16.176 under the hypothesis
H0 was extremely low.
In the �gure 2.6 we can see the zthreshold and zobs values found in our example. We can also see that
when pval < α, then zobs is located in the test's rejection region.
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Figure 2.6: Illustration of the notion of p-value. The black curve is the density function of Z
under H0. The p-value is de�ned as the area below the curve in the interval of values of z such that
|Z| > |zobs|.

Carrying out the test. If zobs = zthreshold, then pval = α. When zobs moves away from zero,
the p-value decreases, becoming smaller and smaller. Outside the rejection region, we always have
pval > α. So there is another way of carrying out a statistical test:

� Choose the risk α

� Calculate zobs

� Use zobs to calculate the p-value

� If pval < α, we reject H0, if pval > α, we cannot reject H0.

Today, this is what most statistical software does.

2.2.1.7 Conclusion

The test conclusion comes in two parts. The statistical conclusion consists in deciding whether to
accept or reject H0. The biological conclusion requires us to come back to the original question. When
we reject H0, we can say that there is a statistically signi�cant di�erence at the level α.

2.2.2 Type I and II risks, power

When carrying out a statistical test, we do not know the real situation. We do not know if the
hypothesis H0 is true or false. So, when we take a decision after the test, we may be mistaken in two
di�erent ways:

� We might reject H0 when in fact it is true. We can say there is a mistaken rejection of H0, or
false discovery, or a false positive. The probability of rejecting H0 when it is true is called a type
I risk, written as α. This risk α, which is also known as level α and sometimes threshold α, is
always chosen a priori.

α = P (rejection of H0 | H0 true)

� We might retain H0 although it is false. It is a false negative. The probability of a false negative
is called a type II risk, written as β. For H1, we can have a simple hypothesis (for example
µ = 18) but, in general, we have a composite hypothesis (in our example µ 6= 16).
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2.2.2.1 Notion of power

In the case of a simple hypothesis, we de�ne power by

1− β = 1− P (non rejection of H0 | H1 true) .

This is the probability of rejecting H0 if H0 is false. In the case of a composite hypothesis, we de�ne
the power function with a value depending on the real value of the parameter.
In general, β cannot be calculated, since we do not know the statistical test law under H1. It depends
on µ, which is unknown. In the previous example, the test statistic is calculated as Z = (X−16)/ 0.1√

10
.

If H0 is false, then E
(
X
)

= µ 6= 16. The expected value of Z is thus:

E(Z) =
µ− 16

0.1/
√

10

On average, Z will be further away from zero to the extent that µ is di�erent from 16. Here, the power
of the test increases when µ is further away from 16.
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Figure 2.7: Power of a statistical test. The �ne line is the distribution of X under H0 (µ = 16).
The bold line has two examples of the distribution of X for the real value of µ (µ = 16.2 to the left,
and µ = 16.7 to the right). For these tests, the alternative hypothesis is H1: µ 6= 16. In each graph,
the grey areas show the level of the test. These areas correspond to the area below the density under
H0 in the rejection region of H0. The hatched area below the density for the real value of µ is the
power of the test. We can see that the power increases when there is a gap between the real value of
µ and the supposed mean under H0. We use the term "power function", since the power depends on
µ whose value is unknown.

More generally, we can see that the statistics in this test to �nd the mean can be written:

Z =
√
n

(X − µH0)

σ

As noted above, we can expect that Z will �uctuates around zero under H0. If we are under H1, then
the expected value of Z is

E(Z) =
√
n

(µ− µH0)

σ
6= 0.

Thus, the power of the test will be stronger to the extent that µ is di�erent from µH0 (�gure 2.7).
However, for a given value of µ, this mean value will be bigger to the extent that the size of the sample
n is large and the variance σ2 is small. The experimenter cannot check µ. On the other hand, we

can choose to increase the power of the test by increasing the size of the sample or by carrying out
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experiments in the most homogeneous conditions possible, to decrease the variance. A power graph
shows the relation between the size of the sample and the power of the test, for the di�erent values set
for the other parameters (�gure 2.8).
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Figure 2.8: Power curves. We can represent the power of the test according to the size of the sample
for di�erent values of the mean di�erence (µ − µH0), for σ = 0.1. For a sample with the size n = 20,
we are practically sure of �nding di�erences of 0.1 units. We need a sample of size n = 80 to have
the same chance of detecting di�erences of an average of 0.05, whereas a di�erence of 0.01 will only be
detected in about 10% of cases.

Experimental planning is a sub-discipline of statistics enabling us to draw up (depending on the
question asked and the constraints linked to experiments) experiment plans to maximise the power of
the tests.

2.2.2.2 Unilateral test versus bilateral test

In our example, we could have an alternative hypothesis that is not a di�erence but an unequality:
H0: on average, the focal distance measured is 16 cm
H1: on average, the focal distance measured is higher than 16 cm

There are thus two ways to express the hypothesis H1:

� Bilateral test: when we have no a priori idea about the value of the parameter, we choose

H1 : µ 6= µH0.

In this case, we will reject H0 both for the positive and negative values of the test statistic.

� Unilateral test: when we know a priori that the value of the parameter cannot be larger or
smaller than the value chosen under H0. We then de�ne

H1 : µ > µH0

in the �rst case and
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H1 : µ < µH0

in the second. We will reject H0 for the positive and negative values, respectively, of the test
statistic.

We should note that whatever the form of H1, the hypothesis H0 is always the same and consists in
putting forward one or several numerical values for the parameters of the model. So, in a unilateral
test to the right (H1 : µ > µH0), it is not possible to test the hypothesis H0 µ < µH0 because we cannot
quantify the test statistic. So, we choose the most "unfavourable" hypothesis H0, that is, the one that
has the least chance of being rejected, namely µ = µH0.
Choosing the H1 hypothesis de�nes the shape of the rejection region of the test. Some

tests only have one possible formulation of the H1 hypothesis. (�gure 2.9).
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Figure 2.9: Rejection region in the case of a bilateral test and a unilateral test (to the

right). The black curve is the density function of Z under H0. The grey areas correspondent to the
risk α. For each type of test, the dotted lines show the limits of the rejection region. For the unilateral
test, the rejection region is only on the right and the zthreshold limit is slightly to the left of the upper
limit for the bilateral test.

2.2.2.3 How to carry out a statistical test

To sum up, we have just seen, with the help of an example, the general approach to follow in carrying
out any statistical test. This approach can be divided into seven stages:

1. Choice of a model: which variable(s) will be studied? What is its law (their laws)? How can we
translate the question in terms of the model's parameters?

2. Formulation of the H0 and H1 hypotheses.

3. Choice of a test statistic and determination of its law under H0.

4. Choice of the type I risk α (also called level) and de�nition of the rejection region

5. Calculation of the observed value of the statistic

6. Calculation of the p-value

7. Statistical (rejection or non-rejection of H0) and biological (answer to the question asked) con-
clusion.
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The only stages requiring anything beyond a basic knowledge in statistics are stages 1 and 3.
The modelling stage consists in determining the parameters in�uencing the distribution law of the
observations. In this course we will see a number of standard cases that you could use in most cases
you will come across. More generally, the modelling stage consists in describing how the experimental
data are produced. If you know how to simulate an experiment, then you will be able to model it.
The stage of choosing a test statistic is a �eld of research in itself. We need to �nd a random variable

that takes into account the experimental data and that can be calculated only on the basis

of these data, for which the law under H0 is known. The choice of a test statistic depends
closely on the model. Here again, during the course we will see the appropriate test statistics for the
most common models.

2.3 Multiple tests

2.3.1 The problem linked to carrying out multiple tests

It often happens that from a single sample, we carry out the same kind of statistical test, with the
same H0 hypothesis, on a large number of di�erent random variables on the same individuals or we
make several tests on a single variable observed over a large number of samples.

Examples

� We carry out a genome scan on a sample of a population of inbred lines to determine whether
there is segregation distortion in the population. For a large number of them (K = 1500) we
have the positions in the genome (for example, SNPs) of the observed frequency of two parental
alleles in the sample. For each of the K positions, we will test the H0 hypothesis that there is
no segregation distortion, that is, that the frequency of the parent 1's allele is 0.5. We conduct
1500 statistical tests based on the same sample of lines.

� INSEE's health survey collects biometric variables (height, weight, gender), as well as social
indicators (salary, socio-professional category, occupation). The list of occupations includes n =
125 categories of di�erent occupations. We want to know if it is possible to rank the occupations
by the average height of the people working in them. To do so, we will compare the average
height in each occupation, that is, we will make K = n(n− 1)/2 comparisons 2 to 2.

When we carry out K statistical tests at the level α, we will expect to reject H0 wrongly (false positive)
with a probability α for each test.

Number of false positives: In the case ofK tests at the level α, V is the number of wrongly rejected
cases of the H0 hypothesis. V is a random variable. If H0 is true for all tests, then V ∼ B(K;α). If
K is very large, we can have quite a high number of false positives. For example, if we carry out 100
tests at the threshold 5%, we will expect on average 100× 0.05 = 5 false positives (if H0 is true for all
the tests).

2.3.2 Methods for controlling the global α risk or the false positive rate

2.3.2.1 Bonferroni correction

We can notice that if we decrease the threshold of the test, the number of false positives will necessarily
decrease. So, if we carry out 100 tests at the 5� threshold and not 5%, and the H0 hypothesis is true
for all tests, then we will expect on average 100× 0.005 = 0.5, that is, zero or a single false positive.

Bonferroni correction: : the Bonferroni correction in the case of multiple K tests consists in carrying

out each test at the threshold α/K.

We should note that when the threshold of a test decreases, it becomes more di�cult to reject the H0
hypothesis, even if it is false. To this extent, the Bonferroni correction is highly conservative.



28

2.3.2.2 False Discovery Rate

The reasoning behind the Bonferroni correction is that the H0 hypothesis is true for all tests. In reality,
the H0 hypothesis may be false for some tests. We thus need to consider four possible situations:

� False positive: V is the number of cases where H0 is rejected when it is true,

� False negative: T is the number of cases where H0 is retained when it is false,

� True positive: S is the number of cases where H0 is rejected when it is false,

� True negative: U is the number of cases where H0 is retained when it is true,

with K = V +T +S+U . The rejection rate is V+S
K and the rejected hypotheses include false positives

and true positives.

False Discovery Rate : FDR = V/(V + S), is the proportion of cases where H0 is wrongly rejected

among the case where H0 is rejected.

Probability law of the p-value of a test under H0 We should recall that a test statistic is a
random variable associated with an n-sample, which is calculated from Xi variables in the n-sample.
For example, we have seen that, if X is a Gaussian random variable with expected value µ and variance
σ2, then the statistic Z = X−µH0

σ/
√
n

follows a law N (0; 1) under H0.
A statistical test consists in de�ning the H0 and H1 hypotheses such that the test statistic:

� can be calculated in �gures from an outcome of the n-sample,

� follows a law of known parameters under the H0 hypothesis.

In the example we have been studying (compliance test on the mean with known variance), we know
µH0 and σ, and we can calculate

zobs =
x− µH0

σ/
√
n

from the sample. We can also calculate the p-value associated with the sample:

pobs = PH0(|Z| > |zobs|).

If we carry out another experiment, we will �nd a di�erent value for zobs and pobs. So, the p-value

associated with a statistical test is a random variable, which we can call P .
The probability law of P is easy to calculate. The support of P is the interval [0, 1] since P is a
probability. Moreover, if we know the statistical test law, we can calculate, for any value of z, the
probability

p = PH0(|Z| > |z|).

We can deduce the distribution function of P by calculating

F (p) = P (P ≤ p) = PH0(|Z| > |z|) = p,

and deduce from it the density function:
f(p) = 1

by using F (p) =
∫ p
0 f(p)dp.

Thus, the probability law of the p-value of a statistical test is a uniform law U(0, 1).
By using the law of P , we again come across the notion of statistical risk. If we run a test at the level
α, we retain H0 if p > α, and we reject H0 if p ≤ α. So, the probability of making a bad decision if
H0 is true (false positive) is PH0(P ≤ α) = F (α) = α.

The FDR can be calculated a posteriori from the distribution of p-values from the K tests, while
taking into account that the expected distribution of p-values under H0 is a uniform distribution. On
the other hand, if H1 is true, we can expect an excess of very low values from the p-value. The observed



Université Paris-Saclay: Biostatistics (2020�2021) 29

distribution of p-values thus results from a combination of several distributions: the distribution of
tests under H0 (uniform) and the distributions of tests under H1 (depending on the value of H1 but
with an excess of low values). αFDR is the level at which each test should be carried out to guarantee,
overall, a given FDR value. Most statistics software can today calculate the αFDR from the observed
distribution of p-values from the K tests carried out.
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Figure 2.10: Principle for calculating the FDR. To illustrate the calculation principle, we will
again use the example of the test given in chapter 2.2.1. We carry out this test for 1500 machines. For
each machine we make n = 30 measurements. We carry out a bilateral test with H0: µ = 16 as against
H1: µ 6= 16. We will simulate a set of data, by considering that 1000 machines are correctly adjusted,
that is, under H0 (µ = 16 ) and 500 machines are not correctly adjusted, that is, under H1(µ 6= 16,
we take a mean between 16.01 and 16.2). Left: distributions of p-values for the machines under H0
(in white) and under H1 (in red). Right: distribution of p-values for all the machines tested. At the
level 5%, the calculated FDR is 11.5%, that is to say, 11.5% of the machines for which we rejected
H0 are false positives. At the level 1%, we have an FDR of 3.4%. If we want to apply the Bonferroni
correction, we need to apply a level of 0.00003 for an overall level of 5% at each test. In this case,
we �nd no false positives. This level is too "stringent", since the calculation made for the Bonferroni
correction assumes that all the machines are well adjusted, which is not the case.
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Chapter 3

Tests of conformity

When we study the distribution of a random variable in a population, we sometimes want to know if
one of the parameters of the probability distribution of the random variable is equal to

a particular value. The test statistic is then generally called a test of conformity, and changes
depending on the type of variable studied and the question asked.
Here are a few examples:

� We want to check whether a piece of equipment used to measure the focal length of contact lenses
is correctly adjusted. The manufacturer says that the accuracy of measurements is such that
σ = 0.1. We have a benchmark with a known focal distance at a value of 16 cm. We carry out
n = 10 measurements of focal length of the benchmark using the equipment. In this case, we are
studying a quantitative r.v., where we know the variance but not the mean. In some conditions,
we can apply a normality (Gaussian) test as described in the previous chapter.

� Wild type drosophila have long wings. We are studying a pure mutant strain, called theminiature

strain, with individuals with small wings. Crossing �ies from the miniature strain and wild type
�ies produces F1 descendants of the wild phenotype, irrespective of the direction of the crossing.
If the character is controlled by a locus where the dominant allele is long wings, we will expect,
when crossing the F1 �ies, that 3/4 of the individuals will have the wild phenotype and there will
be 1/4 of miniature individuals among the descendants. This is a qualitative random variable.
In some conditions, we can apply the X 2 test of conformity (chi-square test).

� We want to know the e�ect of an injection of insulin on the blood sugar level of diabetic patients.
In a sample of patients, we measure the di�erence in blood sugar levels before and two hours
after injections. If the treatment has no e�ect, then on average the di�erence will be zero. In
some cases, we could use the Student's t-test.

The choice of the test statistic depends on the nature of the random variable studied.

3.1 Discrete random variables: conformity to a known distribution

3.1.1 The X 2 (chi-square) test of conformity

3.1.1.1 Example

We perform a genotype test on a sample of 300 recombinant inbred lines of wheat, derived from a
cross between two pure lines for a set of micro-satellite markers. The recombinant inbred lines are
from ten or so self-fertilised generations from the initial hybridisation, which makes them practically
homozygotes. We would therefore expect a 1 : 1 segregation in the descendants for each marker. A
deviation from the 1 : 1 segregation is called a meiotic distortion, which may result from bias during
meiosis or from an e�ect of selection (the allele in one of the parents could have a selective advantage
over the allele in the other parent). We call a1 the female parent's allele in the initial hybridisation,
and a2 the male parent's allele in the initial hybridisation. The collected data are given in a count
table:

Genotype a1a1 a2a2 Total
Number of lines n1 n2 n

1. Model. We call X the random variable associated with a micro-satellite locus of a recombinant
population line. Since there are only two parental lines in the beginning, the support of X is
{a1, a2}, where a1 and a2 are the alleles carried by each of the two parents. The probability
distribution of X is a discrete distribution, described by:
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P (X = a1) = p ; P (X = a2) = q = 1− p.

In the absence of meiotic distortion, we expect p = 0.5. If there is meiotic distortion, we expect
p 6= 0.5, but the value of p depends on the type of mechanism at work and it is not known. We
can consider an n-sample {X1, ..., Xn} corresponding to a random draw of n recombinant lines.

If we call Ya1 the random variable measuring the number of times that Xi = a1 in the sample, we
know that this random variable follows a Binomial distribution B(n; p), and that E(Ya1) = np.
We can say that the expected value of the class a1 is m1 = np. With the same reasoning, we can
show that the expected value of the class a2 is m2 = nq.

We have an outcome from an n-sample {x1, ..., xn} of X.

2. Hypotheses H0 and H1. We choose a quanti�able H0 hypothesis.

H0 : p = 0.5
H1 : p 6= 0.5

3. Choice of a test statistic. The test statistic is the X 2 (pronounced chi-squared) statistic,
which depends on the di�erence between the expected values under H0 and the observed values.
In this example, There are only two modalities. The test statistic is a sum of two terms:

Z =
2∑
j=1

(nj −mj)
2

mj
. (3.1)

Under the H0 hypothesis, we can expect to see small values for Z, that is, that the observed
numbers should be similar to the expected values. Under H1, we expect to �nd bigger di�erences
between the observed and the expected values, and so the values of Z will tend to be bigger than
under H0. We should note that, according to the equation 3.1, Z is always positive.

Under H0, the distribution of Z is a X 2 distribution, where the parameter is the number of degrees
of freedom. In the case of a test of conformity, the number of degrees of freedom is

the number of classes of the qualitative variable studied minus 1. In this example, there
are two classes (a1 and a2), and therefore a single degree of freedom:

Z ∼H0 X 2
1 .

Please note, the X 2 distribution for the statistic Z is an asymptotic distribution. In other words,
the Z distribution under H0 is close to a X 2 distribution when the expected values of the classes
are large enough. We consider this approximation as valid for the expected values above or equal
to 5. We can therefore apply this test only if the expected values are above or equal to 5.

4. Rejection region. Depending on the expression of Z (3.1 equation), any deviation between the
observed values and the expected values will increase the value of Z. So we can reject H0 for the
values of Z that are too large. The rejection region take the form:

[zthreshold; +∞[

We want to �nd the value of zthreshold such that PH0(Z > zthreshold) = α so zthreshold is the
quantile of order 1− α in the X 2

1 distribution.

5. Outcome of test. The values of zthreshold are tabulated for any level α. The value of zobs is
calculated using the 3.1 equation in which the expected values of the classes are calculated under
H0, and the p-value is calculated using the cumulative distribution function:

pval = 1− FX 2
1
(zobs).

R function: chisq.test(x, p=prob), where x is the vector of ni and prob the vector of proba-
bilities under H0.
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Validation of conditions of application. We check, a posteriori, that all the expected values mj

are higher or equal to �ve. It should be noted that if one or more classes have an expected value below
�ve, it is possible to run the test again, combining classes and reducing the number of modalities and
degrees of freedom.

3.1.1.2 General case

We study an n-sample of a random variable X with the support {a1, ..., aJ}. The probability distri-
bution is known under H0:

PH0 (X = aj) = pj

Under H0, the expected values of the class j can be calculated:

mj = npj

and the test statistic

Z =
J∑
j=1

(nj −mj)
2

mj

approximately follows a X 2
J−1 distribution under the H0 hypothesis, provided that the expected values

are large enough (mj ≥ 5).
For a test of conformity, the degrees of freedom are the number of classes minus 1. The
observed values nj in each class are linked together by the relation

∑J
j=1 nj = n. The same is true

for expected values. So, the test statistic is a sum of J terms, but the J th term of the sum is deduced
from the other terms.

3.1.2 Fisher's exact test

When the conditions of the application of the X 2 test are not met (with at least one class having an
expected value < 5), and we do not want to group classes, we can carry out a Fisher's exact test.
The principle of this test consists in simulating data under the H0 hypothesis and comparing the
observed statistic zobs with the Z distribution simulated under H0. In the case of a test of conformity,
we simulate T draws of n-samples in the X probability distribution under H0. For each draw t, we
calculate the value zt of Z. We then estimate the p-value of the test by the proportion of cases where
zt > zobs:

pval =
Number of cases where zt > zobs

T

The higher the number of draws, the closer the simulated distribution under H0 will be to the true Z
distribution under H0. In practice, we can take T = 2000.

3.2 Continuous random variables: tests on the mean

We study an n-sample X1, ..., Xn of a continuous random variable X. We will look at two situations:

1. Gaussian The random variables Xi are independent, normal (Gaussian) with the same distri-
bution N (µ;σ2). In this case, the empirical mean X̄ follows a normal distribution X̄ ∼ N (µ; σ

2

n )

2. Large samples The random variables Xi are independent, have the same distribution, with a
mean µ and variance σ2. We make no hypotheses about the distribution of the Xi but the size
of the sample is large enough (n ≥ 30) for the central limit theorem to be applied. In this case
X̄ ≈ N (µ; σ

2

n )
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We want to know if the mean µ is equal to a known reference value µH0. Depending on our initial
approach, we can choose one of three tests:
H0 : µ = µH0 as against H1 : µ 6= µH0

or
H0 : µ = µH0 as against H1 : µ < µH0

or
H0 : µ = µH0 as against H1 : µ > µH0

Please note, the choice of the H1 hypothesis must not be based on the values of the sample but on
what you want to test, and this results from previous studies. Similarly, H0 must be quanti�able, so
µH0 must have a numerical value.

3.2.1 Gaussian case, known variance

If the Xi follow a normal distribution N (µ;σ2) and we know σ, then the test statistic Z below follows
a normal standardised distribution under H0:

Z =
√
n

(X − µH0)

σ
∼H0 N (0; 1) (3.2)

The statistical test is carried out as shown in the example in chapter 2. We then need to check the
conditions of application by ensuring in a graph that the observed values have a distribution resembling
a Gaussian distribution (see below).

3.2.2 Gaussian case, unknown variance: Student's t-test

If the Xi follow a normal distribution N (µ;σ2) and we don't know the value of σ in the population,
which is true in most cases, we can develop a test statistic by replacing σ in the equation 3.2 with its
estimator Sn−1.
In this case, the statistic

T =
√
n

(X − µH0)

Sn−1
∼H0 Tn−1 (3.3)

follows a Student's t-distribution at n − 1 degrees of freedom under hypothesis H0. Here, the lower
degree of freedom results from the fact that we have replaced σ with its estimator Sn−1. The Student's
t-distribution is a symmetric law with a mean of zero. It tends asymptotically towards a normal
distribution N (0; 1) when the number of degrees of freedom increases. In practice, we can use the
distribution N (0; 1) instead of the distribution Tddl when ddl ≥ 30.
The rest of the statistical test takes place in the same way as before. We call tobs the value of the test
statistic in the sample.

Rejection region and p-value. If H0 is true, then the mean of the X sample should be close to
the expected mean µH0, and the test statistic T will be close to zero. If H0 is false, we will expect high
absolute values for T . The form of the rejection region depends on the H1 hypothesis.

� H1 : µ 6= µH0: we reject H0 for large values of T , whether positive or negative. The rejection
region is made up of two intervals:

]−∞,−tthreshold] ∪ [tthreshold,+∞[.

By using the symmetrical properties of the Student's t-distribution, the p-value is calculated as
follows:

pval = 2(1− FTddl(|tobs|)).

� H1 : µ > µH0: we reject H0 for large positive values of T . So the rejection region is the interval:

[tthreshold,+∞[.



Université Paris-Saclay: Biostatistics (2020�2021) 35

The p-value is calculated as:
pval = 1− FTddl(tobs).

Please note, in this case we use tobs and not its absolute value. Negative values of tobs correspond
to a p-value higher than 0.5 and not to a rejection of H0.

� H1 : µ < µH0: we reject H0 for the large negative values of T . So the rejection region is the
interval:

]−∞,−tthreshold].

The p-value is calculated as:
pval = FTddl(tobs).

Please note, we also use tobs in this case and not its absolute value. The positive values of tobs
correspond to a p-value higher than 0.5 and to the non-rejection of H0.

Validation of conditions of application. If the size of the sample is small (n < 30), we need
to check that the distribution of X is Gaussian. We can use a speci�c graph to do so. This is the
quantile-quantile graph, also called the quantile-quantile plot or Q-Q plot.
We know that if X ∼ N (µ;σ2), then X−µ

σ ∼ N (0; 1), and the quantiles in the X distribution are linked
to the quantiles in the X−µ

σ distribution by the relation:

Qα(X) = µ+ σQα

(
X − µ
σ

)
So, in a graph we can compare the quantiles observed in the sample (x1, ..., xn) with the expected
quantiles in a normal distribution N (0; 1) (�gure 3.1). We can check that the dots on the Q-Q plot
are in a straight line, which is basically the case here.
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Figure 3.1: Quantile-quantile plots. The two graphs were made using simulated data with X ∼
N (µ = 50;σ2 = 202). Two sizes of samples were used, n = 30 (left) and n = 300 (right). The dotted
lines correspond to expected means (0 on the x-axis and 50 on the y-axis). The incline of the straight
lines is equal to the expected deviation (σ = 20).

3.2.3 Non-Gaussian case, large n

Even if Xi does not follow a normal distribution, the central limit theorem guarantees that if the size
of the sample is big enough (n > 30), then the mean X approximately follows a normal distribution
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N (µ; σ
2

n ). What's more, the law of large numbers guarantees that the estimator S2 is very close to σ2.
So, whether we know σ2 or not, the statistic

T =
√
n

(X − µH0)

Sn−1
≈H0 N (0, 1) (3.4)

approximately follows a normal distribution N (0, 1). The statistical test is conducted as above, us-
ing the normal distribution N (0, 1) for the calculation of the threshold and the p-value. The only
application condition is the size of the sample, which must be large enough.

3.2.4 Non-Gaussian case, small n

If we have few observations, we must carry out a non-parametric test (see section 3.5).

3.3 Paired data

It may happen that we want to compare two random variables corresponding to di�erent characteristics
of a single individual in a population. For example:

� We want to compare the e�cacy of two moisturisers A and B. We apply one moisturiser to
patients' right hands and the other to the left hand, and then measure the result after a few
hours.

� We try to compare two test methods (blood tests and saliva tests) used to estimate the prevalence
rate of the vector of malaria. We use both methods on each patient in a hospital and compare
the prevalence rates estimated by each method.

� We want to know if the deer's rear and front legs are the same length. We measure the di�erence
in length between the front and rear legs on a sample of 354 deer living in Fontainebleau Forest
to see if on average the length of the front and rear legs is the same.

� To �nd out whether a medicine for cholesterol is e�ective, we measure the cholesterol level of 60
patients before and after treatment.

Model. We consider an n-sample of a pair of random variables {(X1i, X2i), i = 1, ..., n}. We want
to know whether X1 and X2 have the same mean. We calculate the di�erence

Yi = X1i −X2i,

and we are interested in the random variable Y =
∑
i Yi
n . If Y follows a normal distribution, then

Y ∼ N
(
µ; σ

2

n

)
. If Y does not follow a normal distribution but the size of the sample is large enough

(n ≥ 30), then Y ≈ N
(
µ; σ

2

n

)
. Here µ is the expected value of Yi and σ2 the variance in the

population. If the treatment has no e�ect, we expect that all the Yi will be distributed around zero,
and in particular, that the mean will equal zero: µ = 0. However, we do not necessarily know the
variance σ2, which we can estimate by S2

n−1 in the sample.

Hypotheses H0 and H1. We make the following hypotheses:
H0 : µ = 0
H1 : µ 6= 0
or, depending on the question asked,
H1 : µ > 0 or µ < 0
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Test statistic: we come back to a test of conformity on the mean. If the variance of Y , σ2, is
unknown, then the test statistic will be of the following kind

T =
√
n

Y

Sn−1
.

There are two possible cases for the test statistic distribution under H0:

� Y follows a normal distribution. Under H0, T ∼H0 Tn−1

� n is large enough. Under H0, T ∼H0 N (0, 1)

3.4 Con�dence interval on the mean

3.4.1 De�nition

Issue. We consider an n-sample of a random variable X1, ..., Xn which describes a population. We
do not know the mean µ or the variance σ2 of X in the population. We can use the probability distri-
bution of Xi to put forward a probable interval for the unknown mean µ, given the observations.

Con�dence interval: this is an interval containing the true value of the parameter with a certain

degree of probability set beforehand. Thus, a con�dence interval with a risk α contains the unknown

value of the parameter with a probability of 1− α.

3.4.2 Calculation of the con�dence interval of a mean

Estimator of the mean. We can estimate the unknown mean by the empirical mean of the sample:

X =
1

n

n∑
i=1

Xi

If X follows a normal distribution, then the random variable

T =
X − µ
Sn−1√
n

(3.5)

follows a Student's t-distribution with n−1 degrees of freedom, and we can calculate the value tα such
that

PH0 (−tα ≤ T ≤ tα) = 1− α.

Using the relation 3.5, we can write:

PH0

−tα ≤ X − µ
Sn−1√
n

≤ tα

 = 1− α,

and we see that it is possible to frame the unknown value of µ with two values depending on X, S2
n−1

and tα:

PH0

(
−tα

Sn−1√
n

+X ≤ µ ≤ tα
Sn−1√
n

+X

)
= 1− α.

So, in this example, the con�dence interval for µ with risk α is:

IC1−α =

]
X − tα

Sn−1√
n
,X + tα

Sn−1√
n

[
. (3.6)
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We should recall that S2
n−1 is the estimator of the variance σ

2 of the population, and that it is calculated
as follows:

S2
n−1 =

1

n− 1

n∑
i=1

(
Xi −X

)2
.

It may also be useful to remember that when n is large, the value t0.05 tends towards 1.96. So we have:

IC0.95 =

]
X − 1.96

Sn−1√
n
,X + 1.96

Sn−1√
n

[
.

In practice, the con�dence interval is calculated by replacing X and S2
n−1 with their outcomes x and

s2n−1 in the sample in question.
If X does not follow a normal distribution, but the sample is fairly large, we can use the same approach,
remembering in this case that the T distribution (de�ned in 3.5) is close to a normal distributionN (0.1).

3.5 Continuous random variables: non-parametric tests

Non-parametric tests make no hypotheses about the probability distribution of the random variable.
Their name comes from the fact that we make no hypotheses about the parameters of the distribution.
In practice, we use them when the distribution of the random variable is unknown, and/or the numbers
are not large enough to make an approximation using a known distribution. In a given population, we
look at a quantitative aspect with which we associate a random variable X. We call L the probability
distribution of X, which is unknown and has a density f . We consider an n-sample taken from the
population {X1, X2, ..., Xn}.

3.5.1 Test on the median

Tested hypotheses. We want to �nd out if the median of the distribution is equal to a given value
m (for example m = 115). We make the following hypotheses:
H0: the median of X is m, in other words P (X ≤ m) = 0.5
H1: the median of X is di�erent from m.
We could also use a unilateral formulation for the hypothesis H1, either H1: the median of X is higher
than m, or H1: the median of X is lower than m.

Test statistic. Under the H0 hypothesis, we expect half of the values {X1, X2, ..., Xn} to be lower
than m. We can consider the random variables Yi such that Yi = 1 if Xi > m and otherwise zero. We
call Z the number of Xi above m:

Z =

n∑
i=1

Yi.

Under the H0 hypothesis, the Z distribution is a binomial distribution B(n; 0.5).
NB: To calculate the test statistic, we will not consider the outcomes of X equal to m. If we delete the
values, we need to take this into account to calculate n.

Example. The F252 inbred line of maize is, among other things, characterised by the median of the
height of the plants, which is m = 115 cm. We have a batch of seeds. We want to check whether they
really are F252 seeds. We grow a sample of n = 10 plants and measure their height after �owering.
We call X the random variable "height after �owering". We will test:
H0: the median height of plants from the batch of grains is 115.
H1: the median height of plants from the batch of grains is di�erent from 115.
We �nd the following values for X and Y :
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Plant xobs=Height (cm) yobs
1 119.68 1
2 113.22 0
3 108.49 0
4 105.11 0
5 112.52 0
6 120.18 1
7 125.15 1
8 114.13 0
9 136.34 1
10 114.11 0

Under H0, the Z distribution is B(10; 0.5). Here, we have chosen a bilateral test. The rejection region
of the test is symmetrical to 5. It takes the form [0.5−a]∪ [5 +a, 10]. The value of a is �xed according
to the risk α chosen so that 2 ∗ PH0(Z ≤ 5− a) ≤ α.
We �nd zobs = 4. The p-value is calculated as

pval = PH0(Z ≤ 4) + PH0(Z ≥ 6) = 2 ∗ PH0(Z ≤ 4) = 2 · FB(10;0,5)(4) = 0, 754

So we cannot reject H0 at the threshold α = 0.05.
Function R : 2*pbinom(4,size=10,prob=0.5)

3.5.2 Wilcoxon rank-sum test

Model. We went to know if the density is symmetrical in relation to a given value a. One of the
ways to proceed is to compare the distributions of X − a and a − X. To do so, we de�ne two new
variables. The �rst,

Ri = rank|Xi − a|,

measures how far Xi deviates from a when we study the ranks. The second, Si is equal to +1 or −1
depending on whether Xi deviates from a in positive (Si = +1) or negative values (Si = −1).
If X − a and a −X have the same distribution, then we expect to �nd the same number of negative
deviations as positive ones. In particular, the sum of negative ranks must be close to the sum of
positive ranks.

Hypotheses H0 and H1. H0: X − a and a−X have the same distribution as against H1: X − a
and a−X do not have the same distribution.

Test statistic. We call T+ the sum of the positive ranks (sum of Ri for which Si = +1) and T− the
sum of negative ranks (sum of Ri for which Si = −1). Under the hypothesis H0, the statistic

W = min(T+, T−)

follows the Wilcoxon distribution, which is tabulated.
We notice that if the ranks are well shared out on either side of a, we expect that T+ = T−. What's
more, the sum of all the ranks (T+ + T−) is equal to:

1 + 2 + ... + n =
n(n+ 1)

2
.

So under the H0 hypothesis, we have

E(W ) =
n(n+ 1)

4
.
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Example. We can again take the previous example, with a = 115:

Plant Height (cm) X − a Ri Si
1 119.68 +4.68 5 +1
2 113.22 �1.78 3 �1
3 108.49 �6.51 7 �1
4 105.11 �9.89 8 �1
5 112.52 �2.48 4 �1
6 120.18 +5.18 6 +1
7 125.15 +10.15 9 +1
8 114.13 �0.87 1 �1
9 136.34 +21.34 10 +1
10 114.11 �0.89 2 �1

So we �nd T+
obs = 5 + 6 + 9 + 10 = 30 and T−obs = 3 + 7 + 8 + 4 + 1 + 2 = 25, so wobs = 25. The p-value

is calculated under R using 2*psignrank(25,10). We �nd pval = 0.846. So we cannot reject the H0
hypothesis.

3.6 Summary statement

With a test of conformity we can compare one or more parameters of a probability distribution with
known reference values. Depending on the nature of the random variable and the question asked, we
will use di�erent statistical tests.

Discrete random variable

For each possible value {a1, ..., aJ} of X we know the probability PH0(Xi = aj) = pj . The test statistic
is calculated from the deviations between the numbers observed in each class nj and the expected
numbers under H0 mj = npj . Under H0, this statistic follows a X 2 (chi-squared) distribution:

Z =
J∑
j=1

(nj −mj)
2

mj
≈ X 2

J−1

The estimation of the Z distribution using the X 2 distribution is only valid if all the mj are higher

than or equal to 5. Otherwise, we cannot run a Fisher's exact test.

Continuous random variable, test on the mean

We want to know if the expected value of X in the population is equal to a known value a.

1. X follows a normal distribution,

� Known variance. Gaussian test.

Z =
√
n
X − a
σ

∼H0 N (0; 1)

� Unknown variance. Student's t-test.

T =
√
n
X − a
sn−1

∼H0 Tn−1

2. X does not follow a normal distribution but n ≥ 30,

� Gaussian test

T =
√
n
X − a
sn−1

≈H0 N (0, 1)
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3. Small samples, non-parametric tests

� Test on the median. Under H0, the number of values of X that are larger than the
median a follows a binomial distribution B(n; 0.5).

� Signed-rank test. Wilcoxon rank-sum test.

It should be noted that we can always use a non-parametric test, but these tests are less powerful
(it is more di�cult to reject H0). So if we have a Gaussian variable or a large sample, we prefer
to use a parametric test.
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Chapter 4

Tests of homogeneity

Tests of homogeneity are used in cases where we have two or more samples, and we want to know if the
populations they are based on have shared characteristics, without necessarily knowing the parameters
of the distribution of the random variable in these populations.
Here are a few possible cases:

� In the human population, are Swedes on average taller than pygmies?

� Is the conductance of the optical nerve on average lower in a group of individuals su�ering from
an in�ammation of the nervous system than in a group of individuals with no in�ammation?

� Is there sexual dimorphism for tail length in the population of French swallows?

� In a population of inbred strains of maize, are the genotypes in a genetic marker linked to a
di�erence in the width of leaves?

� Is the number of births evenly distributed throughout the year in all French departments?

Here again, the choice of the test statistic depends on the nature of the random variable being studied.

4.1 Discrete random variables: X 2 test

4.1.1 General case

This time, we have several ni-samples. Each one comes from a di�erent population, with the support
of a random variable X {a1, ..., aj , ..., aJ}, and we want to know whether this variable follows the same
law in each population. We call Xi the random variable associated with a draw in the ith population.
After sampling, we can sum up the data in a contingency table where each line represents a sample
and each column to one of the possible values of Xi:

Support a1 ... aj ... aJ Total
Sample 1 n11 ... n1j ... n1J n1.
... ... ... ... ... ... ...
Sample i ni1 ... nij ... niJ ni.
... ... ... ... ... ... ...
Sample I nI1 ... nIj ... nIJ nI.
Total n.1 ... n.j ... n.J n

where nij is the number observed in the sample i for the class aj . The marginal frequencies are
the sums on the lines or the columns of the table, written as ni. and n.j , respectively. The size of the
sample i is thus ni., the total number of individuals belonging to class aj is n.j and the total frequency
is n.

1. Model. Each sample is taken from a population. So we can associate a probability distribution
to each sample:

P (Xi = aj) = pij

where pij is the frequency of the class aj in the population i.

2. Hypotheses H0 and H1. We state as hypothesis H0 that the samples all follow the same
probability distribution:

43
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H0 : P (Xi = aj) = pj

that is, that the frequency of each class aj is the same in each population. We also have
∑J

j=1 pj =
1. The alternative hypothesis H1 is that at least one sample does not follow this probability
distribution:

H1 : ∃i, P (Xi = aj) = pij 6= pj

3. Test statistic. Under the H0 hypothesis, we can estimate the frequency of a class aj by using
the marginal frequencies:

p̂j =
n.j
n

The expected frequencies for the class aj in the sample i are calculated as

mij = ni.p̂j =
ni.n.j
n

.

The test statistic is the X 2 statistic:

Z =
I∑
i=1

J∑
j=1

(nij −mij)
2

mij
. (4.1)

Under the H0 hypothesis, the test statistic approximately follows a X 2 distribution, providing
that the expected frequencies are large enough:

Z ∼H0 X 2
(I−1)(J−1)

The number of degrees of freedom (abbreviated as ddl) is calculated as follows: it is the
number of independent terms of the sum, that is, the number of terms of the sum minus the
number of restrictions.

To calculate the expected frequencies, we use all the marginal sums, that is to say:∑
j nij = ni. (I − 1 independent sums)∑
i nij = n.j (J − 1 independent sums)∑
i ni. =

∑
j n.j = n (1 sum).

The total number of terms of the sum is IJ . So we have:

ddl = IJ − (I − 1)− (J − 1)− 1 = (I − 1)(J − 1).

Validation of conditions of application. Just like the X 2 test of conformity, we need to
check that the expected frequencies are higher or equal to 5 in each class. If the conditions of
application are not met, we can make groupings according to class (if this is relevant biologically)
or a Fisher's exact test.

4.1.2 Exact test

For the tests of conformity, we can carry out a Fisher's exact test by simulating the Z distribution
under H0. This test will not be shown in detail here.
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4.1.3 Examples

Here are a few examples of data that can be analysed using a X 2 test of homogeneity.

� INSEE records the number of births each month in every French department. We want to know
if births are distributed through the year in the same way in all departments.

� We are measuring the frequencies of haplotypes by resequencing in a region of the genome
in di�erent populations of thistles in �elds in the Île-de-France region. We want to know if
haplotypical frequencies are the same in all populations (dispersal of seeds), or if they di�er from
one �eld to another (dispersal by layering).

� A type of exam that is quite easy to correct is the multiple-choice test (MCQ). For a given
question, each answer has the same chance of being chosen if students answer at random, but
the right answer has more chances of being chosen if the students have learned their lessons. By
analysing the answers to an MCQ test, we can �nd out whether the students have been working
or not.

4.2 Continuous random variables: tests on the mean

We have two independent samples of a random variable X. So we have ni-samples. We will write as
Xij the variable corresponding to the j-th individual of the sample from the population i (i = 1.2).
Several situations can be considered:

� Each sample is Gaussian and has the same variance:

Xij ∼ N (µi;σ
2)

� Each sample is Gaussian with di�erent variances:

Xij ∼ N (µi;σ
2
i ) and σ21 6= σ22

� The size of the sample is large enough (ni ≥ 30) for us to apply the central limit theorem: the
empirical mean Xi approximately follows a normal distribution. We do not make hypotheses
about the equality of variances. We have

Xi ≈ N
(
µi;

σ2i
ni

)
.

4.2.1 Comparison of two means, Gaussian case, equal variances

4.2.1.1 Test of hypotheses

Model. We have two independent samples of a random variable X. Each sample is Gaussian and
has the same variance σ2, Xij ∼ N (µi;σ

2). The Xij are independent.

Hypotheses H0 and H1. We state the following hypotheses:

H0 : µ1 = µ2

as against
H1 : µ1 6= µ2 (bilateral test)

or
H1 : µ1 < µ2 or H1 : µ1 > µ2 (unilateral test)

or
H1 : µ1 > µ2 (unilateral test).
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Test statistic. We can use the test statistic:

T =
(X1 −X2)

S
√

1
n1

+ 1
n2

(4.2)

Under the H0 hypothesis, the test statistic follows a Student's t-distribution with n1 + n2 − 2 degrees
of freedom:

T ∼H0 Tn1+n2−2 (4.3)

Since we have

X1 ∼ N
(
µ1;

σ2

n1

)
and

X2 ∼ N
(
µ2;

σ2

n2

)
.

so, as we have two independent samples,

X1 −X2 ∼ N
(
µ1 − µ2;σ2

(
1

n1
+

1

n2

))
,

hence
X1 −X2 − (µ1 − µ2)

σ

√(
1
n1

+ 1
n2

) ∼ N (0; 1).

Under H0 µ1 = µ2, so we simply have:

X1 −X2

σ

√(
1
n1

+ 1
n2

) ∼H0 N (0; 1).

Since σ is unknown, we can replace it by its estimator S, hence the equation 4.2. This changes the
probability distribution, since for the denominator, we replace a parameter with a value given by a
random variable, hence the result 4.3.
To �nd the expression of S2, we will use the two estimations of the variance of the population (from
each of the samples). We can write S2

1 = SC1
n1−1 and S2

2 = SC2
n2−1 (SC = sum of squares). So the total

SC is (n1 − 1)S2
1 + (n2 − 1)S2

2 and the number of ddl (degrees of freedom) is n1 + n2 − 2. Hence:

S2 =
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2
. (4.4)

Rejection region and p-value. If H0 is true, then the di�erence between the two empirical means
X1 and X2 will �uctuate around 0. If H0 is false, the distribution of T will not be centred around 0
and will be located to the left or right of the distribution under H0. The form of the rejection region
depends on the H1 hypothesis. For a bilateral test, since the Student's t-distribution is symmetrical,
it will take the form:

]−∞,−tthreshold] ∪ [tthreshold,+∞[

For a bilateral test, the p-value is calculated by using the symmetrical property of the Student's
t-distribution:

pval = 2
(

1− FTn1+n2−2(|tobs|)
)

Validation of conditions of application. In a graph (Q-Q plot) we check that the two random
variables X1 and X2 follow a normal distribution. If this is not the case, but the samples are large
(ni > 30), we can use the test with the Gaussian approximation of the mean. If it is not the case,
and we have a small sample or the samples are too small for checking using graphs, we have to use a
non-parametric test.
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4.2.1.2 Con�dence interval

We can develop a con�dence interval for the unknown di�erence between the two means, µ1−µ2. The
random variable

T =

(
(X1 − µ1)− (X2 − µ2)

)
S
√

1
n1

+ 1
n2

also follows a Tn1+n2−2 distribution. We cannot calculate its value because µ1 and µ2 are unknown,
but we can calculate the value tα such that

P (−tα ≤ T ≤ tα) = α.

Using a little algebra, as we did in the section on the tests of conformity, we �nd:

IC1−α(µ1 − µ2) =](X1 −X2)− tαs
√

1

n1
+

1

n2
, (X1 −X2) + tαs

√
1

n1
+

1

n2
[. (4.5)

Example. We are measuring the average number of seeds per fruit in 50 female plants and 50
hermaphrodite plants in the Gypsophila genus. The observations are summed up in the table below:

n xi s2ini−1

50 15.64 135.37
50 17.30 149.26

The commune variance can be estimated as (cf. equation 4.4) :

s2 = (49× 135.37 + 49× 149.26)/98 = 142.31.

We �nd the con�dence interval for the di�erence (µ2 − µ1):

IC95% =]− 6.23,+2.90[.

Note: Zero is included in the con�dence interval. We can �nd the test conclusion: there is no signi�cant
statistical di�erence between the two means at the chosen level α.

4.2.2 Comparison of two means, Gaussian case, unequal variances

In most cases, we do not know the mean or the variance of the two samples. We can run an F-test of
equality of variances (see below). It may so happen that we cannot make the hypothesis of equality of
variances. In this case, we can use the Welch's t-test, but this is an imprecise test.

Model. We have two independent samples of a random variable X. Each sample is Gaussian, Xij ∼
N (µi;σ

2
i ). We have σ21 6= σ22. The Xij are independent.

Hypotheses H0 and H1. We state H0: µ1 = µ2 as against H1: µ1 6= µ2.
We can also use a unilateral test, taking as an alternative hypothesis: H1: µ1 > µ2 or H1: µ1 < µ2 .

Test statistic. Under the H0 hypothesis, the test statistic is

W =
(X1 −X2)√

S2
1n1−1

n1
+

S2
2n2−1

n2

Under H0, this statistic follows a Student's t-distribution asymptotically, but with a di�erent number
of degrees of ν, which we call e�ective degrees of freedom, which depends on the estimations of variances
of X1 and X2:
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ν =

(
S2
1
n1

+
S2
2
n2

)2
S4
1

n2
1(n1−1)

+
S4
2

n2
2(n2−2)

So,
W ≈H0 T (ν)

By default, the t.test function of R software assumes the inequality of variances and performs a
Welch's t-test. Please notes that the distribution under H0 is an asymptotic law. In other words, the
distribution under H0 is only known when the sizes of the two populations are large.

4.2.3 Comparison of two means, non-Gaussian case, large samples

Model. We assume that we have two independent samples. The mean of the Xij is written µi and
their variance as σ2i . We make no hypothesis about the distribution of the Xij but assume that the
samples are large enough (ni ≥ 30) for us to make the hypotheses that

Xi ≈ N
(
µi;

σ2i
ni

)
.

.

Hypotheses H0 and H1. We state H0: µ1 = µ2 as against H1: µ1 6= µ2.
As for the other tests, we can also state an alternative unilateral hypothesis.

Test statistic. We will use the test statistic

Z =
(X1 −X2)√

S2
1n1−1

n1
+

S2
2n2−1

n2

Since we have large samples, we consider that the di�erence in means follows a Gaussian distribution
asymptotically and that the estimators of variances converge towards the true values of the variances.
So, under the H0 hypothesis, Z follows a standard normal deviate asymptotically:

Z ≈H0 N (0; 1)

4.2.4 Non-parametric Mann�Whitney U test

If we know nothing about the random variables X1 and X2, and the size of the samples is too small
to apply the central limit theorem (we are not sure whether X1 and X2 are Gaussian), we can always
carry out a non-parametric test, based on ranks.

Model. The idea of this test is to compare two values chosen at random, one from the �rst sample,
and the other from the second sample. If the random variables follow the same probability distribution,
then there is a �fty percent chance that the �rst value is lower than the second:

P (X1 ≤ X2) = P (X2 ≤ X1) = 0.5.

.
We can rank the n = n1 +n2 elements in the two samples and then de�ne, for each individual, its rank
in the sequence formed. If the probability distributions are the same, the ranks of individuals in the
two samples should be comparable. It should be noted that the sum of all the ranks is equal to

1 + 2 + 3 + ...+ n =
n(n+ 1)

2
.



Université Paris-Saclay: Biostatistics (2020�2021) 49

Hypotheses H0 and H1. We state:

H0 : P (X1 ≤ X2) = P (X2 ≤ X1) = 0.5.

H0 will always be true if both populations follow the same probability distribution.

We can carry out a bilateral test by stating:

H1 : P (X1 ≤ X2) 6= P (X2 ≤ X1),

or a unilateral test, for example:

H1 : P (X1 ≤ X2) < P (X2 ≤ X1).

In both cases, H1 implies that the probability distributions of both populations are di�erent.

Test statistic. We can calculate the sum R1 of the ranks of individuals in the �rst sample, and the
sum R2 of the ranks of individuals in the second sample, then calculate, for each sample, the di�erence
with the expected minimal value (if the individuals in the sample are in the smallest ranks from 1 to
n1 or n2 depending on the sample in question):

U1 = R1− n1(n1 + 1)/2

U2 = R2− n2(n2 + 1)/2

Since R1 + R2 = n(n + 1)/2, we have U1 + U2 = n1n2. So, if the ranks of the two samples are
comparable (H0 hypothesis), we expect a mean value of n1n2

2 for each of the two random variables.
Each of these variables follows a distribution that can be given in table form under H0. In practice, the
tables show the smallest distribution of the two variables, so the test statistic is: U = min(U1, U2).

Example. A medical analysis laboratory uses two di�erent pieces of equipment to measure patients'
blood sugar. The technician wants to know whether the two pieces of equipment provide the same
measurements. To do so, he uses post-prandial blood sugar data (1 hr 30 mins after a meal) obtained
in the course of a day by the laboratory. The norm is a value below 1.40 g/L. The data can be shown
as follows:

Blood sugar 1.64 1.05 1.58 1.20 1.43 1.35 1.10 1.65 1.25 1.63 1.51 1.43 1.32 1.27
Equipment 1 1 1 1 1 1 2 2 2 2 2 2 2 2

R rank 13 1 11 3 8.5* 7 2 14 4 12 10 8,5* 6 5
* Non-integral value since there are two 8ths at the same rank.

The sizes of the samples are n1 = 6 and n2 = 8. We can use the table to calculate R1 = 43.5 and
R2 = 61.5. So we �nd

U1 = 43.5− 6× 7/2 = 22.5

U2 = 61.5− 8× 9/2 = 25.5

The test statistic is equal to U = 22.5. The p-value can be calculated using the function wilcox.test(x1,x2)
in R, where x1 is the vector of values from equipment 1, and x2 the vector of values from equipment
2. We �nd a p-value of 0.8972, and we cannot reject H0.

4.3 Test of homogeneity on the variance

Model. We have two samples with a random variable X. We call Xi the random variable corre-
sponding to the sample i. We assume that each sample is Gaussian:

Xi ∼ N (µi;σ
2
i )

We want to know whether the variances in the two populations are equal.
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Hypotheses H0 and H1. We state the following hypotheses:

H0 : σ21 = σ22 = σ2

as against
H0 : σ21 6= σ22

Test statistic. To �nd a test statistic, we use the following property: if X follows a Gaussian
distribution, then

S2
n−1
σ2
∼ X 2

n−1.

This property is true for each of the two samples. So, under the hypothesis H0,

F =
S2
1n1−1

S2
2n2−1

is a relation of two random variables, each following a X 2 distribution. The result is an F-distribution
Fn1−1
n2−1 .

Shape of the rejection region and p-value. Unlike the normal distribution and the Student's
t-distribution, the F-distribution is not symmetrical. The quantile on the left is not the opposite of
the quantile on the right. However, if F ∼ Fn1−1

n2−1 , then 1/F ∼ Fn2−1
n1−1 . Moreover, the values of F are

always positive.
Under H0, we expect S2

1 and S2
2 to estimate the same quantity σ2, and so their relation must be close

to 1. Very large or very small values in the relation are less probable under the hypothesis H0. So the
form of the rejection region is:

[0, finf] ∪ [fsup,+∞[.

For a test at the level α, the values of finf and fsup are the quantiles at α/2 and 1− α/2 of the Fn1−1
n2−1

distribution.
To calculate the p-value, we will calculate the probability under H0 of an area of the form [0, a]∪[b,+∞[
where a and b are respectively located to the left and right of the median of the Fn2−1

n1−1 distribution,
which we will write here as m.

� If fobs > m, then b = fobs and the p-value is calculated as

pval = 2 ∗ P (F ≥ fobs) = 2

(
1− FFn1−1

n2−1
(fobs)

)
� If fobs < m, then a = fobs and the p-value is calculated as

pval = 2 ∗ P (F ≤ fobs) = 2FFn1−1
n2−1

(fobs)

Under R, the distribution function of the F-distribution is obtained using the function pf(fobs,n1-1,n2-2).

4.4 Summary statement

With the tests of homogeneity we can compare the parameters of the distribution laws of two random
variables to see if they are equal. We will run di�erent tests depending on the nature of the random
variable and the question asked.

1. discrete r.v.: X 2 tests. The support contains J classes. We can compare I samples. The
theoretical sizes mij are calculated by ni.n.j

n where ni. is the sample size i and n.j is the number
of individuals from the class j in the I samples.
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Z =

I∑
i=1

J∑
j=1

(nij −mij)
2

mij
∼H0 X 2

(I−1)(J−1)

The theoretical sizes must be higher than or equal to 5 in each class.

2. continuous r.v., test on the mean

� Gaussian samples: Xij ∼ N (µi, σ
2
i ) Student's t-test.

� Equal variances

T =
(X1 −X2)

S
√

1
n1

+ 1
n2

∼H0 Tn1+n2−2

� Unequal variances

W =
(X1 −X2)√

S2
1n1−1

n1
+

S2
2n2−1

n2

≈H0 Tν

� Non-Gaussian but large samples (ni ≥ 30)

Z =
(X1 −X2)√

S2
1n1−1

n1
+

S2
2n2−1

n2

≈H0 N (0; 1)

� Small samples with no information about the X1 and X2 distribution: Mann�Whitney
U test.

3. Continuous Gaussian r.v., test on the variance: F-test

F =
S2
1n1−1

S2
2n2−1

∼H0 Fn1−1
n2−1 .
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Chapter 5

Pairs of random variables and statistical

dependence

5.1 The X 2 test for independence

Model. In a population, we will look at an n-sample of a pair of qualitative variables:

{(X1, Y1), (X2, Y2), ..., (Xn, Yn)}

Each of these variables is de�ned by its support and by its probability distribution. This means that we
can characterise each individual in the population with two variables. For example, in a population of
cats, we can characterise each individual by its main fur colour (a1 = grey, a2 = ginger, ..., ak = white)
and its sex (b1 = F, b2 = M).

Random variable Support Probability distribution
Xi (a1, ... , aK) P (Xi = ak) = pk (unknown)
Yi (b1, ... , bL) P (Yi = bl) = ql (unknown)

We count the number of nkl outcomes in the sample where Xi = ak and Yi = bl. The results can be
shown in the form of a contingency table:

Support b1 ... bl ... bL Total
a1 n11 ... n1l ... n1K n1.
... ... ... ... ... ... ...
ak nk1 ... nkl ... nkL nk.
... ... ... ... ... ... ...
aK nK1 ... nKl ... nKL nK.
Total n.1 ... n.l ... n.L n

We can estimate P (Xi = ak) = pk or P (Yi = bl) = qk using the marginal e�ects nk. and n.l:

p̂k =
nk.
n

(5.1)

q̂l =
n.l
n
. (5.2)

We can ask whether X and Y are independent. If this is the case, then

P (Xi = ak and Yi = bl) = P (Xi = ak)× P (Yi = bl) = pkql

Assuming the hypothesis of the independence of the two variables, we can thus calculate the (average)
theoretical numbers in each section of the table:

mkl = np̂kq̂l =
nk.n.l
n

.

H0 and H1 hypotheses. We assume
H0: X and Y are independent: P (Xi = ak and Yi = bl) = pkql, for every k, l
H1: X and Y are not independent: we have k, l such that P (Xi = ak and Yi = bl) 6= pkql
Here, there is only one way of presenting the alternative H1 hypothesis.
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Test statistic and distribution under H0. We have calculated the expected numbers in each
class under H0. If H0 is true, the numbers will vary around these values. Under H0, the test statistic:

Z =

K∑
k=1

L∑
l=1

(nkl −mkl)
2

mkl
≈H0 X 2

(K−1)(L−1) (5.3)

follows a law of X 2
(K−1)(L−1) asymptotically. So, if the theoretical numbers are large enough, under

H0, Z approximately follows the law X 2
(K−1)(L−1).

Rejection region: Under H1, there will be a wider gap on average between the theoretical numbers
and observed numbers than under H0. The distribution of the test statistic under H1 is therefore
located to the right of the distribution under H0. So, we will reject H0 for the large values of Zobs.
The threshold will be chosen according to the selected α.

Conditions of application: the theoretical numbers must be higher or equal to 5 in each class:
∀k, ∀l,mkl ≥ 5.

5.2 Correlation

5.2.1 Pearson parametric test

Model. We consider an n-sample of a pair of Gaussian random variables

{(X1, Y1), (X2, Y2), ..., (Xn, Yn)}

Gaussian pair : When we observe two random variables for each individual, we say there is a pair of

random variables. A pair of quantitative random variables is a Gaussian pair if each linear combination

a ∗Xi + b ∗ Yi is Gaussian.

In practice, we will test the two variables for normality (case a = 0 and b = 0) and check that the
relation between the two variables seems linear using a graph.

Comment: If X and Y are independent, then Cov(X,Y ) = 0, while the opposite is only true in
certain cases. For a Gaussian pair, zero covariance between X and Y (Cov(Xi, Yi) = 0) shows the
independence of the variables. Thus, to check on the independence of a Gaussian pair, we test the
nullity of the correlation coe�cient ρXY which is, we will recall, a measurement of the covariance not
computed in units.

Hypotheses H0 and H1. We will assume we have a Gaussian pair. We want to test the indepen-
dence of two variables. The hypothesis H0 is that X and Y are independent, which we can express
by:

H0 : ρXY = 0 (zero correlation).

The hypothesis H1 is that X and Y are not independent, and we can either choose a bilateral test:

H1 : ρXY 6= 0 (the correlation is not zero)

or a unilateral test:
H1 : ρXY < 0 (the correlation is negative)

or

H1 : ρXY > 0 (the correlation is positive).
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Test statistic and law under H0. We can estimate the correlation using the estimator below,
which measures the linear relation between two random variables:

rXY =
SXY

SXn−1SYn−1

=

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2

Under the hypothesis H0, the test statistic is:

Z =
√
n− 2

rXY√
1− r2XY

∼H0 Tn−2

following a Student's t-distribution at n− 2 ddl.

Conditions of application. The test is valid for Gaussian pairs of random variables. However, for
a large sample (n ≥ 30), we will have a similar result, providing we do not move away from a linear
relation.

5.2.2 Comment on the correlation coe�cient

The correlation coe�cient of two random variables measures the degree of linear dependence between
these two variables (�gure 5.1a), of the type

Y = a+ bX + ε (5.4)

where a and b de�ne the relations of dependence, and ε is a random variable representing measurement
errors. We will see in the linear model chapter how to model these errors.
We can show that b, the gradient on the right, is:

b =
cov(X,Y )

V (X)
=
σXY
σ2X

We should note that there is a relation between b and the Pearson correlation coe�cient (equation
1.2). Because

ρXY =
cov(X,Y )√
[V (X)V (Y )]

=
σXY√
σ2Xσ

2
Y

,

so

b = ρXY

√
V (Y )

V (X)
= ρXY

√
σ2Y
σ2X

.

5.2.3 Necessary precautions

The analysis of the correlations between random variables can lead to mistaken interpretations. The
measure of the linear correlation (or the covariance) is not always a good indicator of the dependence
between two random variables. An analysis of correlation must always be accompanied by a graphic
analysis. The following points should never be forgotten:

� Independence and correlation. If two random variables are independent, then their covari-
ance is zero. However, the inverse is not always true (�gure 5.1b). Two random variables can be
linked to each other but still have zero covariance.

� Non-linear dependence. Cases of non-linear dependence can lead to an incorrect estimation
of the relation of dependence (�gure 5.1c).
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Figure 5.1: Example of correlations between characters. We can model a situation where the
value of Y depends on X and on a random error that is the same in the four situations. (a) Linear
model: Y = 1+0.5X+ ε. (b) Non-linear model: Y = cos(X)+ ε. (c) Non-linear model: Y = X

3+X + ε.
(d) Structured population for X: same relation as in (a) (Y = 1 + 0.5X + ε), but the values of X are
grouped around 2 and 6.

Model Type r̂XY p-value
(a) linear 0.90 < 2.2e−16

(b) cos 0.04 0; 071
(c) hyperbolic 0.25 0; 01
(d) X structured 0.88 < 2.2e−16

Table 5.1: Results of Pearson test for data simulated in the �gure 5.1.

� Dependence and causality. Non-zero covariance between X and Y (�gure 5.1a) does not
necessarily imply a relation of causality between the two variables. There may be a random
variable Z that determines both X and Y , resulting in a linear relation between X and Y . The
relation of causality is between Z and X and between Z and Y , but not between X and Y .

� Structured population. Let us assume that the variable X clearly divides the population into
two large classes. Within each class of values of X, the correlation between X and Y is weak
or zero. The correlation between Y and X re�ects the structured population for X (�gure 5.1d)
and in this case becomes harder to interpret.

The Table 5.1 shows the result of the Pearson test for sets of data simulated in the �gure 5.1 and
corresponding to four di�erent cases of dependence between Y and X.

Please note, we must always combine the statistical test with a visual examination to

check that the application conditions of the test have been veri�ed.
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5.2.4 Spearman's rank correlation coe�cient

When the size of the sample is too small (< 30), the random variables are not Gaussian or the relation is
not linear, we can replace the parametric test with a non-parametric test by working on the correlations
of rank. The aim is to replace the values of observations by their rank and to study the di�erence in
rank Di. If X and Y are perfectly correlated, then the rank Xi will follow rank Yi and the di�erence
in ranks will be very small. On the other hand, if there is no relation between X and Y , there will be
a random di�erence in rank.

Spearman's correlation coe�cient. Spearman's rank correlation coe�cient is given by

rS = 1−
6
∑

iD
2
i

n2(n− 1)
.

Example. We want to study the relation between the annual consumption of chocolate (kg a year
per person) and the accumulated number of Nobel Prize winners per 10 million inhabitants in all
countries in Europe. The idea is that annual chocolate consumption re�ects social level. We would
expect a positive relation, but we only have values taken from a few countries (n < 30). We produce
new discrete random variables, corresponding to the ranking of each variable, and we measure di, the
di�erence in rank between Xi and Yi.

Country Chocolate consumption Nobel Prizes Xrank Yrank di
Greece 2.5 2 1 1 0
Poland 3.9 3 2 2 0
Netherlands 4.2 11 3 4 �1
France 6.2 9,8 4 3 +1
United Kingdom 9.8 19 5 5 0
Switzerland 12 32 6 6 0

Table 5.2: Relation between chocolate consumption and number of Nobel prizes.

Hypotheses H0 and H1. We assume H0: there is no correlation between X and Y , as opposed to
H1: X and Y are correlated.

Test statistic. For small samples, the rS distribution under hypothesis H0 is tabulated (it does not
correspond to a known distribution). For large samples, we have an asymptotic result and we can
consider that the transformation of the following rS approximately follows a Student's t-distribution:

rS

√
n− 2

1− r2S
≈ Tn−2.

5.2.5 Summary statement

The independence tests help us to check the hypothesis of zero covariance between a pair of random
variables. To do so, we need to have a measurement for each random variable for every individual in
the n-sample.

1. Pairs of discreet r.v.: X 2 test of independence

We have a contingency table giving the numbers observed in each of the classes de�ned by the
combination of two random variables. The theoretical numbers mij are calculated by using the
marginal frequencies
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Z =

K∑
k=1

L∑
l=1

(nkl −mkl)
2

mkl
∼H0 X 2

(K−1)(L−1)

The theoretical numbers must be higher than or equal to �ve in each class.

2. Pair of continuous random variables

� Pearson's test For a Gaussian pair:

Z =
√
n− 2

rXY√
1− r2XY

∼H0 Tn−2

If we have a large sample (n ≥ 30), there is an asymptotic result:

Z =
√
n− 2

rXY√
1− r2XY

≈H0 Tn−2

� Spearman's rank test. The rank correlation coe�cient is calculated as:

rS = 1−
6
∑

iD
2
i

n2(n− 1)
,

where Di is the di�erence in rank between the two random variables for the individual i.
The test statistic is

rS

√
n− 2

1− r2S
≈H0 T (n− 2).

This distribution is only valid for large samples, otherwise the distribution is given in the
form of a table.



Chapter 6

The linear model

The linear model consists of a family of models, including the analysis of variance model, the regression
model and the analysis of covariance. The overall issue is as follows: we study the relations between
a continuous random variable Y and a certain number of descriptive variables X(1), X(2), ..., X(P ).
We want to know if the mean of Y changes according to the value of the descriptors. The descriptive
variables may be qualitative or quantitative. In all cases, we will produce a model of the relations of
dependence between Y and X using a linear model. In other words, we assume that we can explain Y
as the sum of several factors, including the mean e�ect of the variables X(p) and a random variable ε,
which sums up the e�ects of unknown or non-veri�able factors that can lead to variations in Y .
Here are a few examples of problems that can be dealt with using the general linear model:

� We want to know whether the average production of wheat (hundreds of units per hectare)
changes depending on the region in France. We carry out a survey in di�erent regions to �nd
annual yields.

The variable to be explained, Y , is the yield of wheat in a farm according to the region, written
as (a1, ..., ai, ..., a13), where ai is the name of the ith region of France (13 regions in all). We
conduct samples of n farms in France. We can list the farms from the region i with ai. And we
can produce a model of the yield from the farm j in the region i, written as Yij by:

Yij = µi + εij

where µi is the average in the region ai and where εij is the random deviation between this
average and the yield from the farm j. We can ask whether the averages per region are di�erent.
This type of problem is dealt with in the section One-way analysis of variance.

� We want to study the speci�c diversity of beetles according to soil type (grazing land or otherwise)
and geographic region (mountains or plains). The variable Y to be explained is the speci�c
diversity of beetles, which can be described as the cumulative e�ects of soil type, X(1), the
region, X(2), and a random variable summing up the speci�c features of the sampling site. The
model is as follows:

Yk = µ+ t
X

(1)
k

+ r
X

(2)
k

+ εk

where µ is a general mean. If we indicate each sample by soil type (i) and by region (j), we
have:

Yijl = µ+ ti + rj + εijl

Here, l shows the replicate for the soil (i) and the region (j). We want to know if there are mean
di�erences between soil types (t1 6= t2) or between regions (r1 6= r2). This type of issue is dealt
with in the section 2-way analysis of variance.

� We want to know if there is a relation in mammals between weight at birth and adult size. The
variable Y to be explained is adult size, and the descriptive variable X is weight at birth. We
study a sample of mice in captivity, but with parents living in a natural environment in various
regions of the world. This time X is a continuous variable. We can produce a model of a linear
relation between Y and X with

Yk = a+ bXk + εk

where b is the coe�cient of proportionality between Y and X and where ε measures all the
unveri�ed events (which we will consider as random) that may occur in the course of a life to
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change the relation between Y and X. We want to know if the coe�cient of proportionality b is
di�erent from zero. This type of problem is dealt with in the section Linear regression.

� The relation of proportionality between weight at birth and adult size may vary according to the
mammal species under consideration. We conduct the same study as before, but now consider
three species: mice, human beings and pigs. We have two descriptors, the species (qualitative
variable) and weight at birth (X, continuous variable). By indicating the sampled individuals
according to their species (i), we can write

Yik = ai + biXik + εik

We want to know if there are size di�erences between the species, and if there are di�erences
between the species for the coe�cient of proportionality between weight at birth and adult size.
This type of problem is dealt with in the section Analysis of covariance.

6.1 One-way ANOVA, mean comparison tests

Issue. We examine several n-samples from the same Gaussian Y random variable, but from I di�erent
populations. We name Yik the random variable for the kth individual of the sample from the population
i. We want to know if the mean of this variable depends on the population in which we �nd it. Please
note, with the ANOVA we cannot establish causal links but a statistical link.
We write as ni the size of the sample from the population i (noted as N =

∑I
i=1 ni). We presume that

the variance of the variable is the same in each of the I populations, but that the means are potentially
di�erent, that is, that each Yik follows a normal distribution N (µi;σ

2).

Linear model. We can rewrite the above statement using a mathematical formula helping us to give
the information in shorter form:

Yik = µi + εik, εik iid N (0;σ2) (6.1)

The εik are called the residuals of the model and correspond to the deviations of statistical individuals
when compared with the average in their population. σ2 is called the residual variance. iid means
identically and independently distributed and is a reminder that Yik are from n-samples, that is, that
they are independent and from the same distribution of a single sample.
We can also reformulate the model by de�ning µ, the general mean and αi = µi − µ, the gap between
the mean for the population i and the general mean.

Yik = µ+ αi + εik, εik iid N (0;σ2) (6.2)

Examples

� We want to know if French people's average level of cholesterol depends on the region where they
live. µi is the average level of cholesterol in the region i, and εik represents the deviation between
µi and the value of the individual k, a deviation due to genetic di�erences or di�erences in diet
that cannot be explained by the in�uence of the region where they live. As a result, the expected
value of εik is zero.

� We want to compare the weight gained by a breed of cows during the summer grazing period in
di�erent �elds in order to make recommendations to breeders. µi is the average weight gain after
a season in �eld i, and εik represents the variations between two cows due to genetic di�erences
or individual di�erences about how and where they graze, which cannot be explained by the
average quality of the �elds. As a result, the expected valued of εik is zero.
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Estimators for averages. To estimate the mean in each population µi, we will use an estimator.
To minimise the number of written �gures, we generally use the symbol point (·) instead of a number
to write that we have made an average (please note: in chapter 4, this symbol meant a sum total).
Thus:

Yi. =
1

ni

ni∑
k=1

Yik

is used to estimate the average in the population i. Similarly,

Y.. =
1∑
i ni

∑
i

∑
k

Yik

is used to estimate the general average µ. We should note that if I is the number of populations, the
relation

Y.. =
1

I

I∑
i=1

Yi.

is only true if all the ni are equal.
We can note that an estimator of αi is α̂i = Yi. − Y...

Estimator of the residual variance. We can use the linear model (6.2) to estimate the residual
variance. We have:

εik = Yik − µi

Since the means µi are unknown, we can replace them by the empirical means Yi.. The residual variance
can then be estimated as the empirical variance of εik:

σ̂2 =
1∑

i(ni − 1)

∑
i

∑
k

(Yik − Yi.)2 =
1∑

i(ni − 1)
SSR.

SSR is the Sum of Squared Residuals. The corrective term
∑

i(ni − 1) = N − I used to estimate the
residual variance from the SSR are the associated degrees of freedom, also written as ddlR. So we
have σ̂2 = SSR

ddlR
.

Standard error : a standard error (SE) is the residual standard deviation estimated from several

samples:

SE =

√
SSR

ddlR
. (6.3)

We can use this estimation of the standard error to develop a con�dence interval for the mean of each
population.

Comparison of means test, ANOVA 1

We try to determine whether the mean is the same in all the populations or if at least one population
di�ers from the others.

� Model. The model is the linear model (6.2)

� Hypotheses H0 and H1. H0 : ∀(i, j) µi = µj , H1 : ∃(i, j) µi 6= µj .
We can reformulate them: H0 : ∀i αi = 0, H1 : ∃i αi 6= 0

� Test statistic. To write down the test statistic, we start by analysing the variance described
below. The empirical variance of Y is calculated from the total sum of squared deviations:

SST =
∑
i

∑
k

(Yik − Y..)2
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that we can analyse by using

SST =
∑
i

∑
k

((Yik − Yi.) + (Yi. − Y..))2

=
∑
i

∑
k

(
(Yik − Yi.)2 + (Yi. − Y..)2 + 2(Yik − Yi.)(Yi. − Y..)

)
=

∑
i

∑
k

(Yi. − Y..)2 +
∑
i

∑
k

(Yik − Yi.)2 +
∑
i

∑
k

2(Yik − Yi.)(Yi. − Y..)

If we develop the last term, we have:∑
i

∑
k

(Yik − Yi.)(Yi. − Y..) =
∑
i

∑
k

(
YikYi. − YikY.. − Y 2

i. + Yi.Y..
)

=
∑
i

Yi.
∑
k

Yik − Y..
∑
i

∑
k

Yik −
∑
i

niY
2
i. +

∑
i

Yi.niY..

=
∑
i

Yi.niYi. − Y..
∑
i

niYi. −
∑
i

niY
2
i. +

∑
i

Yi.niY..

=
∑
i

niY
2
i. −NY 2

.. −
∑
i

niY
2
i. +NY 2

..

= 0

So, we can deduce

SST =
∑
i

∑
k

(Yi. − Y..)2 +
∑
i

∑
k

(Yik − Yi.)2

= SSA+ SSR

The principle of the test statistic is to compare the size of the SSA and the SSR. It is written as:

F =

SSA
ddlA
SSR
ddlR

where ddlA is the number of degrees of freedom of SSA, that is, the number of independent terms
in this sum. We can see that SSA =

∑
i

∑
k(Yi. − Y..)2 =

∑
i

∑
k α̂i

2. There is I term αi linked
by the relation

∑
i αi = 0 so ddlA = I − 1.

Under the hypothesis H0, the test statistic follows an F-distribution FddlAddlR .

� Choice of risk. We choose the risk α of being mistaken in rejecting H0.

� Rule of decision. Under H1, we expect the test statistic to be somewhat bigger under H1 than
under H0, so we will reject H0 for "large values" in the test statistic R = {F ∈ [flim;∞[} with
flim the quantile of 1− α.

� Veri�cation of conditions of application. When writing out the model, we made the hy-
pothesis that the residuals are independent, Gaussian and identically distributed according to the
N (0, σ2) distribution. We will check in a graph that this hypothesis is acceptable. The approach
for checking if this is the case is explained in chapter 6.2 2-way analysis of variance.

We often sum up the results of the test in an ANOVA table:

Factor ddl SC* SCM** F p-value
A I − 1 SSA SSA/ddlA FAobs

PH0(FA > FAobs
)

R N − I SSR SSR/ddlR
* Sum of squares.
* Sum of mean squares.
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Tukey's HSD test.

If we reject the hypothesis H0, this means that at least one population di�ers from the others (on
average). In this case, we will try to compare the means 2 by 2. If there is I population, this amounts
to carrying out I(I − 1)/2 tests. To do so, we can use the Tukey-Kramer HSD (Honestly Signi�cant

Di�erence) test.

� Model. The model is the linear model (6.2)

� Multiple hypotheses (one per pair (i, j)) H0: µi = µj , H1 : µi 6= µj .

� Test statistic for each test

T =
X̄i − X̄j√

( 1
ni

+ 1
nj

)SE2

We can see that this statistic is similar to the Student's t-test but that the variance is calculated
with all the observations and not only the ones from samples from the populations i and j.

� Choice of risk and rule of decision. The distribution under H0 is given in table form and
takes into account the fact that several tests have been carried out, and so we have arti�cially
increased the value of risk of the �rst kind.

6.2 2-way analysis of variance

We saw above that the one-way ANOVA is a statistical method used to test whether the mean value
of a quantitative variable depends on the variations of a qualitative variable (called a factor). If we
bring out the fact that the mean value of the variable depends on the factor, we can then compare the
means according to the groups de�ned by this factor. The groups can be de�ned by more than one
factor. Here we will look at the case where the groups are de�ned by two factors. We can recall that
the ANOVA cannot establish a causal link but only a statistical link.

6.2.1 2-way analysis of variance without interaction, balanced design

Issue. It may happen that the populations we are studying can be put into multiple categories. For
example, we may want to know the fattening capacity of several cattle breeds in di�erent �elds. We
can still describe the data using a linear model:

Model

Yijk = µij + εijk, εijk iid N (0;σ2). (6.4)

This time, the number of unknown means is equal to the sum of the number of levels of each factor
(breed and �eld). We may want to separate the e�ect of the two factors. For example, we could ask
whether there are di�erences between breeds, on the one hand, and between the �elds, on the other.
We may want to compare the sizes of the variations between �elds and between breeds. In this case,
it is simpler to identify each of the factors by rewriting the model (6.4) :

Yijk = µ+ αi + βj + εijk, εijk iid N (0;σ2),
∑
i

αi = 0,
∑
j

βj = 0. (6.5)

Moving from model (6.4) to model (6.5) brings to light additional terms. µ is the general mean. αi
is the deviation from the mean for individuals in the breed i. βj is the deviation from the mean for
the individuals in �eld j. The parameters αi and βj are de�ned as deviations from the mean, and
so the sum of αi, as well as the sum of βj , is zero. The αi, as well as the βj , are therefore not
independent of each other. The residuals here are always assumed to be independent and to have the
same distribution. We write as nij the number of observations in the group de�ned by the combination
of factors (i, j): for this combination, k = 1, ..., nij .
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This model is called an additive model, since we presume that the e�ects of the breed and of the �eld
are added together. This means that we assume that the deviations between breeds are constant in all
the �elds, and that the deviations between �elds are constant between the breeds.

Estimators of parameters We can estimate a number of parameters:

� Y... is the estimator of the general mean µ.

� Yi.. − Y... is the estimator of αi, the deviation from the general mean of individuals in the breed
i.

� Y.j. − Y... is the estimator of βj , the deviation the general mean of individuals in the �eld j.

� We can also calculate the estimated residuals: Yijk − Yi.. − Y.j. + Y...

Variances. The empirical variance of the Y is calculated from the total sum of squared deviations:

SST =
∑
i

∑
j

∑
k

(Yijk − Y...)2

Analysis of variance: the case of balanced design

For a balanced design, that is, when the number of observations is the same for each combination of
factors (∀(i, j) nij = n), we can analyse SST as follows:

SST =
∑
i

∑
j

∑
k

((Yijk − Yi.. − Y.j. + Y...) + (Yi.. − Y...) + (Y.j. − Y...))2

=
∑
i

∑
j

∑
k

(Yi.. − Y...)2 +
∑
i

∑
j

∑
k

(Y.j. − Y...)2 +
∑
i

∑
j

∑
k

(Yijk − Yi.. − Y.j. + Y...)
2

= SSA+ SSB + SSR

SSA depends on the parameters α and ε, SSB depends on the parameters β and ε, SSR only depends
on ε.

Degrees of freedom. We call I the number of levels of factor A, J the number of levels of factor
B and N the total number of observations. If we express the terms of the squared deviation sums
SSA, SSB and SSR according to the parameters and constraints of the model (6.5), we will notice
that there are I − 1 independent terms for SSA (ddlA = I − 1), J − 1 independent terms for SSB
(ddlB = J − 1), and N − 1− ddlA− ddlB independent terms for SSR (ddlR = N − I − J + 1).

ANOVA tests

A reminder of the model:

Yijk = µ+ αi + βj + εijk, εijk iid N (0;σ2),
∑
i

αi = 0,
∑
j

βj = 0.

We use the analysis of the sum of the squared deviations to carry out several independent statistical
tests.

� E�ect of factor α

1. Model. The linear model (6.5).

2. Hypotheses H0 and H1. H0: all the αi are null, there is no factor e�ect. H1: at least
one of the αi is di�erent from zero.
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3. Choice of a test statistic. Under the hypothesis H0, the random variable F =
SSA
ddlA
SSR
ddlR

follows an F-distribution FddlAddlR .

4. Rule of decision. We reject H0 for the large values of F , that is, if the size of the inter-
group variations de�ned by A (SSAddlA) is higher than the size of the residual variations SSR

ddlR .
The limit will be the quantile 1− α of the distribution FddlAddlR .

� E�ect of factor β

1. Model. The linear model (6.5).

2. Hypotheses H0 and H1. H0: all the βj are null, there is not factor e�ect. H1: at least
one of the βj is di�erent from zero.

3. Choice of a test statistic. Under the hypothesis H0, the random variable F =
SSB
ddlB
SSR
ddlR

follows an F-distribution FddlBddlR .

4. Rule of decision. We reject H0 for the large values of F , that is, if the size of the inter-
group variations de�ned by B (SSBddlB ) is higher than the size of the residual variations SSR

ddlR .
The limit will be the quantile 1− α of the distribution FddlBddlR .

ANOVA table. The ANOVA table summarises all the statistical tests carried out.

Factor ddl SS CM* F p-value
A I − 1 SSA SSA/ddlA FAobs

PH0(FA > FAobs
)

B J − 1 SSB SSB/ddlB FBobs
PH0(FB > FBobs

)

R N − I − J + 1 SSR SSR/ddlR
* Mean Square.

The table enables us to make a direct conclusion about each hypothesis.

Conditions of application. The tests described above apply in the case of a balanced design. To
test the e�ects of factors in the case of an unbalanced design, see 6.2.3. Moreover, we need to check the
model's basic hypotheses, namely, that the residuals are independent and have the same distribution.
To do so, we use graphs.

� Graph of residuals. To check that the residuals are independent, we represent the relation
between the predicted values in graphic form:

Ŷij = µ̂+ α̂i + β̂j

and the observed residuals:
ε̂ijk = Yijk − Ŷij

so, for each value predicted by the estimated mean of the group ij, Ŷij , we have nij residuals.

Under the hypothesis of independence, we expect to �nd no relation between the two measure-
ments.

The �gure 6.1 shows the graph obtained with a two-way model without interaction in the example
for cows. For each combination of environment and breed factors, we have a predicted value and
�ve di�erent values for the residuals. We see that the deviations between the residual values are
of the same size irrespective of the combination.

� Quantile-quantile plot. If the hypothesis of the normal character of the residuals proves to be
correct, then εijk

σ ∼ N (0; 1). For each statistical individual in a set of data, we can calculate a
reduced residual:

eijk =
ε̂ijk
σ̂
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To see whether these reduced residuals follow a normal distribution, we can calculate the empir-
ical quantiles (or observed quantiles) of their distribution and compare them to the theoretical
quantiles of the distribution N (0; 1). We recall that the quantiles of normal distributions are
tabulated in statistical analysis software and correspond to the inverse function of the cumula-
tive distribution function. If the residuals do follow a normal distribution, we expect that the
dots corresponding to the di�erent pairs of quantiles (observed, theoretical) will be aligned in a
straight line y = x. If we do not use non-standard residuals, we expect to see a linear relation
between the observed quantiles and the theoretical quantiles (�gure 6.1).
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Figure 6.1: ANOVA : model validation. LEFT : Graph of residuals. We show the residuals
according to the values predicted for the two-way model without interaction. Each dot corresponds
to an observation for which we have calculated the value predicted by the model, on the x axis, and
the deviation from the prediction, that is, the observed residual, on the y axis. RIGHT : Quantile-

quantile plot. If the residuals are Gaussian, then the dots on the Q-Q plot should be aligned along
a straight line, which is the case in this example.

6.2.2 Two-way analysis of variance with interaction, balanced design

Model. The model (6.5) assumes that the di�erences between breeds are constant, as are the dif-
ferences between �elds. We may choose to make the model more complex by introducing a term of
interaction between the two factors, to take into account the fact that the di�erences between breeds
are not necessarily identical in all �elds:

Yijk = µ+ αi + βj + θij + εijk, εijk iid N (0;σ2)∑
i

αi = 0,
∑
j

βj = 0,
∑
i

θij =
∑
j

θij = 0.

In the example with cattle, the model includes the fact that the e�ect of the �elds may depend on the
breed (table below). The e�ect of interaction is the di�erence between the expected value predicted
by the additive model and the expected valued of each population.



Université Paris-Saclay: Biostatistics (2020�2021) 67

Field Breed 1 Breed 2 Total
P1 µ+ α1 + β1 + θ11 µ+ α2 + β1 + θ21 µ+ β1
P2 µ+ α1 + β2 + θ12 µ+ α2 + β2 + θ22 µ+ β2
P3 µ+ α1 + β3 + θ13 µ+ α2 + β3 + θ23 µ+ β3
Total µ+ α1 µ+ α2 µ

Means. We can calculate several means

� Y... is an estimator of the general mean

� Yi..−Y... is an estimator of αi the deviation between the general mean and the mean of individuals
in the breed i.

� Y.j.−Y... is an estimator of βj the deviation between the general mean and the mean of individuals
of the �eld j.

� Yij. − Yi.. − Y.j. + Y... is an estimator of θij the e�ect of interaction between i and j, that is to
say, the deviation from the added e�ects of the two factors.

� Yijk − Yij. are the residuals for an n-sample

Analysis of variance: cases of balanced design.

As before, in the case of a balanced design, we can analyse the sum of the total squared deviations:

SST =
∑
i

∑
j

∑
k

(Yijk − Y...)2

=
∑
i

∑
j

∑
k

[(Yi.. − Y...) + (Y.j. − Y...) + (Yij. − Yi.. − Y.j. + Y...) + (Yijk − Yij.)]2

=
∑
i

∑
j

∑
k

(Yi.. − Y...)2 +
∑
i

∑
j

∑
k

(Y.j. − Y...)2

+
∑
i

∑
j

∑
k

(Yij. − Yi.. − Y.j. + Y...)
2 +

∑
i

∑
j

∑
k

(Yijk − Yij.)2

= SSA+ SSB + SSI + SSR

where SSI is the sum of squares due to interaction.

Degrees of freedom. As before, we call I the number of levels of factor A, J the number of levels
of factor B and N the total number of observations. If we express the terms of the sums of squared
deviations SSA, SSB, SSI and SSR according to the parameters and constraints of the model (6.5),
we notice that there are I − 1 independent terms for SSA (ddlA = I − 1), J − 1 independent terms
for SSB (ddlB = J − 1), (I − 1)(J − 1) independent terms for SSI (ddlI = (I − 1)(J − 1)) and
N − 1− ddlA− ddlB − ddlI independent terms for SSR (ddlR = N − IJ).

ANOVA tests

As before, we use the analysis of the sum of the squared deviations to carry out several independent
statistical tests. Along with the e�ects of the factors A and B, we carry out an additional test for the
e�ect of interaction. Below, we will only describe the latter:

1. Model. The linear model (6.5)

2. Hypotheses H0 and H1. H0: all the θij are null, there is no e�ect of interaction. H1: at least
one of the θij is di�erent from zero.

3. Choice of a test statistic. Under the hypothesis H0, the random variable F =
SSI
ddlI
SSR
ddlR

follows

an F-distribution FddlIddlR, with ddlI = (I − 1)(J − 1).
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4. Rule of decision. We reject H0 for the large values of F . If there is no e�ect of interaction
(e�ect θ), SSI

ddlI and SSR
ddlR are two possible estimations for the residual variance. On the other

hand, if it exists, SSIddlI will be larger than SSR
ddlR .

ANOVA table. The ANOVA table sums up all the statistical tests that have been carried out:

Factor ddl SS CM F p-value
A I − 1 SSA SSA/ddlA FAobs

PH0(FA > FAobs
)

B J − 1 SSB SSB/ddlB FBobs
PH0(FB > FBobs

)

I (I − 1)(J − 1) SSI SSI/ddlI FIobs PH0(FI > FIobs)

R N − IJ SSR SSR/ddlR

Using the table, we can make conclusions directly for each hypothesis. Please note: the introduction
of additional parameters in the model has reduced the number of degrees of freedom of the residual.

Conditions of application. We need to check the basic hypotheses of the model, namely that the
residuals are independent and have the same distribution. To do so, we make use of graphs like the
graph of residuals and the quantile-quantile plot (�gure 6.1).
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Interpretation. In the example in the �gure 6.2, the variations in the variable X are explained by
two factors, A (two levels, A1 and A2) and B (two levels, B1 and B2). We can calculate four means
Xij.. The expected value of these means is equal to:

E(Xij.) = µ+ αi + βj + θij

We can show these means in a graph according to the levels of factor B, by choosing a di�erent colour
according to the levels of factor A.

Figure 6.2: Graph showing interaction in a case with two factors. Each graph corresponds to
a possible result of the ANOVA. Signi�cant factors (A,B,I) are shown. An ANOVA result corresponds
to a representation of the means of each combination of factors. The x axis is the level of factor
B. The y axis is the calculated mean in the sample. For each situation, the means are shown by
squares. The vertical line corresponds to the residual standard variation σ̂R. The four graphs at the
top correspond to a lack of interaction. The four graphs at the bottom correspond to situations with
signi�cant interaction.

We can notice several things:

� When the interaction is not signi�cant, the di�erences between A1 and A2 are constant, whatever
the level of factor B. Similarly, the di�erences between B1 and B2 are constant, whatever the
level of factor A. The straight lines run in parallel.

� When no factor is signi�cant, all means are equal.

� A signi�cant interaction e�ect corresponds to deviations between the means of a factor that
varies according to the level of the other factor. The straight lines are no longer parallel. In
other words: the e�ect of factor A depends on the level of B and vice versa.

6.2.3 Two-way analysis of variance, unbalanced design

When the design is unbalanced, that is, when we do not have the same number of observations for
each combination of factors, we cannot note the analysis of variance as before. In this case, we can test
the e�ect of a factor and the interaction by comparing the interlocking models. Di�erent approaches,
which we will call Type I, Type II and Type III, are possible. Here we will show type I and type III.
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a) Models

We will look at a series of models.

M0 : Yijk = µ+ αi + βj + θij + εijk

M1 : Yijk = µ+ αi + βj + εijk

M2 : Yijk = µ+ αi + εijk

M3 : Yijk = µ+ εijk

M4 : Yijk = µ+ αi + θij + εijk

M5 : Yijk = µ+ βi + θij + εijk

(6.6)

For each model, we assume (when the parameter is used in the model):

εijk iid N (0;σ2)
∑
i

αi = 0,
∑
j

βj = 0,
∑
i

θij =
∑
j

θij = 0.

We say that two models interlock if, when we place constraints on the parameters of one of them,
we obtain the other. For example, M1 is interlocked in M0, because when we make the hypothesis
∀(i, j) θij = 0 in M0, we obtain M1.

b) Test of comparison of two interlocked models

We will take the example of the comparison between M0 and M1.

Model We will consider the model M0 : Yij = µ+ αi + βj + θij + εij

Hypotheses tested H0 : ∀(i, j) θij = 0 versus H1 : ∃(i, j) θij 6= 0

Test statistic and distribution under H0 If H0 is true, then the residual variance σ2 is the
same for both models. However, if H0 is false, we expect the residual variance of the model M0
to be bigger than that of the model M1, since it describes the data less well. So we use a test
statistic to compare the residual variances in both models. In a linear model, the residual variance
is estimated by the sum of squared residuals: For the model M0, SSR0 =

∑
i

∑
j

∑
k(Yijk − ỸijM0

)2,

where ỸijM0
= Yijk = µ̂+α̂i+β̂j+θ̂ij is the value predicted by the model M0 with α̂, β̂, γ̂ the estimators

of α, β, γ. For the model M1, SSR1 =
∑

i

∑
j

∑
k(Yijk − ỸijM1

)2, where ỸijM1
= Yijk = µ̂+ α̂i + β̂j is

the value predicted by the model M1 with α̂, β̂ the estimators of α, β. If H0 is true, then the di�erence
(SSR0 − SSR1) should be "close" to zero. We use the test statistic:

F =

SSR1−SSR0
(I−1)(J−1)

SSR0
n−IJ

Under the hypothesis H0, F follows an F-distribution: F ∼ F((I−1)(J−1),N−IJ). In this statistic, we
divide the di�erence (SSR0 − SSR1) by the di�erence of degrees of freedom of each term and SSR0

by its number of degrees of freedom.

Choice of risk and rejection region We will reject H0 for the large values of F. The limit of the
rejection region is the quantile 1− α in the distribution F((I−1)(J−1),N−IJ)

c) Testing the e�ects

To test the e�ect of the factors A, B and their interactions, we can proceed in several di�erent ways.
By default, anova(lm()) in R uses Type I.
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Type I We will add the e�ects as we go along. In this case, the order in which we add the factors
is important. To test the factor A, we will compare the models M3 and M2. Then, to test the e�ect
of factor B, we will compare the models M2 and M1. Lastly, to test the interaction, we will compare
the models M1 and M0, as described above. We will use this method when there is a natural order of
factors and there will be of no point in testing the e�ect of B without taking into account A.

Type III In this approach, to test the e�ect of interaction, we will compare M0 and M1, as in the
analysis of Type I. However, to test the e�ect of A, we will compare M0 and M5. To test the e�ect of
B, we will compare M0 and M4.
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6.3 Linear regression

When studying a biological system (metabolic network, nervous system, forest ecosystem, etc.), we
can characterise it using several variables with values collected through a speci�c study (experiment,
�eld study, clinical observations, etc.). For example: we want to study life history strategies in the
yeast Saccharomyces cerevisiae. We conduct experiments to measure growth rate, the size of cells, the
biotic capacity, the rate of resource consumption and the mortality rate in di�erent strains of yeast.
Each strain will be characterised by these di�erent totals. Often, the question asked is: "What are the
relations between these variables?". One method used to answer this question is linear regression. With
this method we can study the linear variations of a quantitative variable according to the variations
of one or several other quantitative variables. We will begin by describing the relation between two
variables, that is, the simple linear regression, then we will generalise by discussing multiple linear

regression.

Figure 6.3: Biotic capacity and average size of cells of di�erent strains of yeast S. cerevisiae

measured using batch cultures initially containing 1% (lozenges) or 15% (squares) of glucose . The
colour of the dots depends on the ecological niche where the strains have been sampled. (based on
Spor et al., 2009, BMC Evol. Biol. 9:296)

6.3.1 Simple linear regression

If we take the example presented in the introduction, we can measure the average size of cells in
di�erent strains of yeast and their biotic capacity, that is, the maximum size of a population at a given
level of resources.
In the �gure 6.3, if we study each environment (1% or 15% glucose) separately, we see that the biotic
capacity decreases in a linear way with the size of cells. It seems "natural" to draw a straight line in
the middle of the cluster of dots. To say there is a linear relation means that we know the average size
of a cell for a given strain, and we will be able to predict its biotic capacity from a linear relation. Of
course, this prediction will not be the same as the value observed, but the prediction should be better
than if we used the mean biotic of all the strains as a prediction. So the linear regression can provide
an equation for this straight line and quantify the margin for error on predictions.

6.3.1.1 Model

To present the formulation, we will use data from a study designed to estimate the e�ect of water
supply on the yield of parcels of wheat. In the �gure 6.4 showing these data, we can see 30 dots
corresponding to 30 parcels of land that have been watered to di�erent degrees and where we can
observe yields.



Université Paris-Saclay: Biostatistics (2020�2021) 73

We will take a note of:

� n the number of observations (n = 30)

� Yi the yield from the ith parcel of land sampled (i = 1 to n)

� xi amount of water supplied to the ith parcel of land sampled (i = 1 to n)

We consider that we can predict the yield Yi by the supply of water xi with the possibility of error εi.
So we can write:

Yi = a+ bxi + εi

where the residuals εi are independent Gaussian random variables and distributed identically according
to N (0;σ2) (σ2 unknown). The part a + bxi is called the prediction. We say that the yield is the
explained variable and the supply of water is the explanatory variable. Another way of writing down
this model is to say that the variables Yi are independent Gaussian random variables and distributed
according to N (a+ bxi;σ

2).
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Figure 6.4: Yield of wheat from parcels of land according to water supply. Each dot links
the supply of water in a piece of land to the yield measured on the same piece of land.

6.3.1.2 Parameter estimators

We want to estimate the unknown values a and b in data from the sample. We can look for the straight
line that is "closest" to all the dots by de�ning a criterion with which to quantify the distance between
the dots and the straight line (�gure 6.5). We call this criterion the squared error, de�ned as the sum
of the squared sum of distances between Yi and its prediction a+ bxi.

Squared error = SSR =
∑n

i=1(Yi − (a+ bxi))
2

The aim is to �nd the values of a and b that will minimise the squared error. We can also de�ne the
mean of the sample for the variable to be explained Y =

∑n
i=1 Yi
n , and the mean of the sample for the

explanatory variable x =
∑n
i=1 xi
n .

The values of a and b that will minimise the squared error are values that cancel the derivatives ∂SSR
∂a

and ∂SSR
∂b (providing that the second derivatives are positive). By resolving the system of two equations
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Figure 6.5: Representation of the distance between a measurement and the linear regres-

sion. The parameter estimators a and b of the linear regression are chosen so as to minimise the
squared sum of these distances.

to two unknowns thus de�ned, we �nd that the estimators of a and b that minimise the squared error
are:

â = Y − b̂x (6.7)

b̂ =

∑n
i=1(Yi − Y )(xi − x)∑n

i=1(xi − x)2
. (6.8)

â and b̂ are calculated from observations of x and y in the sample.

6.3.1.3 Hypothesis testing on the model

We want to test the hypothesis H0 : b = 0 compared with H1 : b 6= 0. We can note that under H0, the
predicted value of Y is a constant a which is estimated as the empirical mean of Y , Y .

Analysis of the variance. The linear regression model seeks to explain the variations of Y from the
variation of x. To do so, we can analyse the variations of Y in two sources of variation, the variations
explained by the variations of the explanatory variable and the residual variations. Below, we write
Ŷi = â+ b̂xi the prediction of the model, and Y the prediction of the model under the hypothesis H0.∑n

i=1(Yi − Y )2 =
∑n

i=1(Yi − Ŷi)2 +
∑n

i=1(Ŷi − Y )2

If we have SST =
∑n

i=1(Yi − Y )2, SSres =
∑n

i=1(Yi − Ŷi)2 and SSreg =
∑n

i=1(Ŷi − Y )2,
we can write:

SST = SSreg + SSres.

Test statistic and distribution under H0. Under the hypothesis H0, the test statistic

F =
SSreg

1
SSres
n−2

follows an F-distribution F1,n−2.

6.3.1.4 Model's consistency with data

To assess the quality of the model, we need to: 1) check a posteriori if the hypotheses provided by the
model are substantiated; 2) estimate the degree of variance of Y explained by the model.
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Figure 6.6: Checking the residuals' homoscedasticity. We need to check that the variance of the
residuals does not depend on the predicted values. In these graphs, we cannot see the variance directly,
but we can get an idea of the variance by observing the deviation of the residuals from the mean (0).
On the left-hand graph, the residuals are homoscedastic. On the right-hand graph, the variance of the
residuals increases with the predicted values.

Analysis of residuals. One of the hypotheses underlying the model is that the residuals are inde-
pendent, Gaussian and identically distributed. In particular, we make the hypothesis that the mean
and the variance of the residuals do not depend on the predicted values. When the variance does not
depend on the predicted values, we use the term homoscedasticity. In the opposite case, we use the
term heteroscedasticity. To �nd out which is the case, we can examine a Q-Q plot of the standardised
residuals, as well as the graph showing the observed residuals ei = yi − (â + b̂xi) according to the
predicted values ŷi = â + b̂xi where â and b̂ are the estimations calculated in line with the equations
(6.7) and (6.8).

Coe�cient of determination. The degree of variance explained by the model is:

R2 = SSreg
SST .

We call it the coe�cient of determination. It varies between 0 and 1.
The �gure 6.7 shows two models of linear regression, estimated from two di�erent sets of data.

Estimator of the residual variance. An estimator for the residual variance of the model is:

σ̂2 = SSres
n−2

6.3.1.5 Tests and con�dence interval for the parameters

Estimator distribution â and b̂, con�dence intervals and tests on parameters. The estima-
tors of the a and b parameters are random variables. The estimator distribution is given respectively
by:

â− a
V̂ ar(â)

∼ Tn−2 and
b̂− b
V̂ ar(̂b)

∼ Tn−2,

where V̂ ar(â) and V̂ ar(̂b) are the variances of â and b̂.
We can deduce an interval of con�dence of 1− α for each of the parameters:

IC(a) = [â− t1−α/2
√
V̂ ar(â); â+ t1−α/2

√
V̂ ar(â)]
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Figure 6.7: Models of regression for two sets of simulated data. The equations of the two
straight lines are very similar, but the dots are less scattered for y1 than for y2. The degree of
explained variance is higher in the �rst case. The right-hand graph represents the empirical distribution
of residuals for the variable y1 (hatched) and for y2 (grey).

IC(b) = [̂b− t1−α/2
√
V̂ ar(̂b); b̂+ t1−α/2

√
V̂ ar(̂b)].

We can also test for the nullity of each parameter. For example, for the nullity of parameter a:

H0 : a = 0 as against H1 : a 6= 0

We can take as a test statistic: T =
â√

V̂ ar(â)

. Under the hypothesis H0, the test statistic follows a

Student's t-distribution Tn−2.

R Output

The �gure 6.8 represents the output obtained with the R software using the function
lm(yield∼water,data=tab).
In the table tab, yield is a column showing the observations of the yield and water a column with
the water supplied. The line intercept concerns the parameter a. The line water concerns the
parameter b (the parameter multiplying the supply of water in the model). The column Estimate

gives estimations of the two parameters a and b, the column Std.Error gives an estimation of the

standard errors in the estimators
√
V̂ ar(â) and

√
V̂ ar(̂b). The columns t-value and p-value give,

respectively, the observed value of the test statistic and of its p-value for the tests for nullity of a and
b described above. In the second boxed text, Residual standard error is an estimation of σ and
Multiple R-squared provides the determination coe�cient R2.
The estimation of a (7.75) corresponds to the original y-axis. The estimation of b (4.73) corresponds
to the gradient of the straight line. When we examine the p-value, we can see that the parameter a
is not signi�cantly di�erent from 0, whereas the parameter b is signi�cantly di�erent from 0. So, we
can interpret its value: if we increase the supply of water by one unit, the yield will increase by 4.73.
Independently of the fact that a is not signi�cantly di�erent from 0, we can notice that the original
y-axis has no biological meaning: the model has been validated for values of water between 3 and 9,
and the linear relation is probably not true if the supply of water is too low. According to this model,
the variations in the supply of water explain R2 = 48% for the variance in the yield. We can thus ask
whether other variables might not provide extra information that would help improve the quality of
our prediction.
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> reg <- lm(rendement~eau,data=tab)
> summary(reg)

Call:
lm(formula = rendement ~ eau, data = tab)

Residuals:
     Min       1Q   Median       3Q      Max 
-11.1109  -4.2246  -0.0836   3.5482  13.6164 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   7.7473     5.1099   1.516    0.141    
eau           4.7273     0.9352   5.055 2.39e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.667 on 28 degrees of freedom
Multiple R-squared:  0.4771, Adjusted R-squared:  0.4585 
F-statistic: 25.55 on 1 and 28 DF,  p-value: 2.388e-05

Figure 6.8: R output for linear regression

6.3.2 Multiple linear regression

Often the variations in the explained variable depend linearly on the variations of several variables and
not just on one, as in the previous section. For example, the yield may depend not only on the water
supply, but also on the supply of nitrogen, on the temperature or soil acidity. We will use this example
to show the procedure for the multiple regression model.

6.3.2.1 The model

As in the case for a single regression, we write Yi for the yield of the ith piece of land sampled (i = 1
at n). This time we consider that the yield depends in a linear way on the supply of water to the piece
of land x1i, the supply of nitrogen x2i, soil acidity x3i and temperature x4i. The previous model can
thus be modi�ed as follows:

Yi = a+ b1x1i + b2x2i + b3x3i + b4x4i + εi

where, as in the case of the model for simple regression, the residuals εi are independent Gaussian
random variables and identically distributed according to N (0;σ2).

6.3.2.2 F-test

The hypotheses tested are:

H0 : b1 = b2 = ... = bp = 0 as against H1 : ∃j, bj 6= 0

The test is based on the analysis of the variance shown in the previous section, which is still valid in
the case of the multiple regression model. The element SSreg has p degrees of freedom, the element
SSres has n− p− 1 degrees of freedom. The test statistic is:

F =
SSreg/p

SSres/(n− p− 1)
.

Under the hypothesis H0, this statistic follows an F-distribution F pn−p−1. To choose the rejection region
and to perform the test, the procedure is the same as for the ANOVA tests above.
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Validation of conditions of application. As before, we need to check that the residuals really are
independent, Gaussian and identically distributed by examining the observed residuals. We can also
run a Fisher's exact test to see whether the predictions from the model are better than if we predicted
yield only by average yield.

6.3.2.3 Estimators of parameters and tests for nullity on each parameter

We will not give details here about the estimators for each parameter. If we give b0 = a and p the
number of explanatory variables (here p = 4), the distribution of these estimators is given by:

T =
b̂j − bj
V̂ ar(b̂j)

∼ Tn−p with j = 1, ..., p

We can thus build the p tests:

H0 : bj = 0 as against H1 : bj 6= 0 with j = 1, ..., p

6.3.2.4 Selection of a model

Issue. We can try to �nd the combination of explanatory variables which best predict the observa-
tions. This is a complicated problem since the number of possible combinations increases very quickly
along with the number of descriptors.
For example, we may want to compare a model predicting the yield from the water and nitrogen
content in the soil (Ma) with a model predicting the yield from the temperature alone (Mb):

Ma : Yi = a+ b1x1i + b2x2i + εi

Mb : Yi = a+ b4x4i + ε′i

Since the explanatory variables are not the same, the residuals will di�er in the two models. A criterion
for choosing could be the model with the lowest residual variance or the best determination coe�cient.
However, when we add descriptors with a signi�cant e�ect on the characteristic of interest to us, the
residual variance necessarily decreases, since we will describe the observations better and better. Thus,
if we knew absolutely all the factors determining the yield of wheat, we would be able to predict Y
with no error. A good compromise consists in choosing the model that best describes the data with the

fewest possible parameters.

Likelihood. The likelihood of a model is the probability of observing the values of a sample with
the given values of the parameters. We can calculate it by using an estimation of the parameters of
the model and the probability distribution of the random variables. Within the framework of a linear
model, if the residuals are Gaussian, there is a relation between the likelihood of the model and the
sum of squared residuals.

Akaike information criterion. The AIC is calculated as the di�erence between the model's likeli-
hood function and a penalty proportionate to the number of parameters to be estimated:

AIC = 2p− 2 ln(L)

where p is the number of parameters of the model and L the likelihood. The best model is the one
with the lowest AIC.
A strategy for the multiple linear regression consists in testing all the models and choosing the best
one on the basis of the AIC.
Other strategies exist, which involve selecting models repeatedly. We can start with the most simple
model and try at each step to remove or add a descriptor, basing ourselves on the AIC for choosing
the descriptor to remove or add.
We should end up with a subset of descriptors giving the best observations about the variables we are
interested in.
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Example. In the example about wheat, here is the result of the �nal stage of selection. The procedure
involves successively adding all the explanatory variables. The last step consists in trying to remove
one of them:

Step: AIC=109.11

yield = water + nitro + temp + acid

Model Df Sum of Sq RSS Cp

<none> 816.31 388.15 109.11

- acid 1 39.59 855.90 108.53

- temp 1 80.59 896.90 109.93

- water 1 232.35 1048.66 114.62

- nitro 1 384.21 1200.52 118.68

In the column Model, the line <none> corresponds to the model chosen at the previous step. In this
case, it is the complete model. The other lines correspond to the complete model minus one of the
descriptors. For each sub-model, Df is the number of degrees of freedom gained or lost, Sum of Sq is
the regression sum of squares (SSreg), RSS is the residual sum of squares (SSres) and Cp gives the
Akaike Information Criterion for each sub-model.
We can see that the best model is the one including all the descriptors except soil acidity (AIC =
108.53).
The following step consists in examining the estimated coe�cients.

Coefficients Estimate Std. Error t value Pr(>|t|)

(Intercept) -19.98903 9.58214 -2.086 0.04693 *

water 3.54548 1.05064 3.375 0.00233 **

nitro 0.07036 0.02078 3.386 0.00226 **

temp 1.26031 0.85770 1.469 0.15372

We see that all the coe�cients are positive. The descriptors are thus positively correlated to the yield.
On can note that the coe�cient of the temperature variable does not signi�cantly di�er from zero. It
is likely that the fact of adding this variable helps to increase the likelihood of the model (and thus
decreasing the AIC), even if we cannot show that the coe�cient is signi�cantly di�erent from 0 with
a test.
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6.4 Analysis of covariance

6.4.1 Example: allometric relationships in �sh

The article by Yu et al. (BMC Evolutionary Biology, 2014, 14:178) presents a study about the allomet-
ric relationships between body size and brain size in vertebrates. In a single species, we can typically
see an allometric relationship in the form:

W = CP b

where W is the brain mass, P the body mass and C a constant. b is called the allometric coe�cient.
We can carry out a change in the variables to arrive at a logarithmic scale:

ln(W ) = ln(C) + b ln(P )

On the log scale, we can see that brain mass increases proportionally to body mass. The authors looked
at the factors that might explain the changes in the allometric coe�cient between species, helping us to
understand the big di�erence in brain size between, for example, mammals and birds. Their hypothesis
is that there is an energy cost in increasing brain size. They show that we can di�erentiate endothermic
species (mammals, birds, insects) from ectothermic species (�sh, reptiles, amphibians), with higher
coe�cients in endothermic species (C = 0.078, b = 0.689) than in ectothermic species (C = 0.014,
b = 0.578). To check on the role of temperature in the body-brain allometric relationships, they
sampled databases (http://fishbase.org) to represent the di�erent �sh species and wide-ranging
environments in terms of water temperature (Table 7.2).

Environment Average temperature Nb species
Polar 1°C 34
Temperate 15°C 70
Tropical 25°C 88
Sub-tropical∗ 20�30°C 17
* The species taken into account in this environment are

17 species of sharks maintaining a body temperature be-

tween 20 and 30 °C, using a system of muscular contrac-

tions.

Table 6.1: Sample of 209 species living at di�erent temperatures.

The �gure 6.9 is taken from the article and shows the allometric relationships for each group of species
on a logarithmic scale.
We can see a linear relationship for each environment between body mass and brain mass. However,
species living in di�erent environment seem to behave di�erently, with variations in the constant C
and in the allometric coe�cient b.

6.4.2 Nested models and hypotheses tests

To simplify, we call Y the random variable corresponding to the logarithm of the brain mass, X the
logarithm of the body mass, and a = ln(C). We have a random sample of species in each environment.
We note the environments by i (i = 1, ..., p, p = 4), and the species in an environment by j. The
pair (Yij , Xij) constitutes two continuous random variables. We can put forward the following model,
which takes into account a di�erence depending on the habitats for the constant a and the allometric
coe�cient b:

Yij = ai + biXij + εij (6.9)

with εij the random variable describing the residuals of the model which we presume are independent
and have the same distribution N (0;σ2).
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Figure 6.9: Body-brain allometric relations in �sh. Each dot corresponds to a species, and each
colour to a type of habitat, as described in the Table 7.2. We recall that the "sub-tropical" environment
corresponds to a sample of 17 species of sharks.

6.4.2.1 Hypothesis test

The questions raised are as follows:

� Are there any di�erences between the environments for the y scale at the origin a ? The two
hypotheses are

H0 : a1 = a2 = ... = ap = a

H1 : ∃(i, i′), ai 6= ai′

� Are there any di�erences between the environments for the allometric coe�cient b? The two
hypotheses are

H0 : b1 = b2 = ... = bp = b

H1 : ∃(i, i′), bi 6= bi′

Let us look at the second question. We can use a model to describe each hypothesis:

M0 : Yij = ai + bXij + εij

and
M1 : Yij = ai + biXij + ε

′
ij

If H0 is true, then the residual variance σ2 is the same for both models. However, if H0 is false, we
expect that the residual variance of the model M0 should be bigger than the variance of model M1,
since it describes the data less well.
M0 and M1 are two nested models. The model M0 is a sub-model of M1, with bi = Cte. We can thus
develop a test statistic to compare the residual variances in the two models.
In a linear model, the residual variance is estimated by the sum of squared residuals:
For the model M0, SSR0 =

∑
i

∑
j(Yij − ŶijM0

)2, where ŶijM0
= âi + b̂Xij is the value predicted by

the model M0.
For the model M1, SSR1 =

∑
i

∑
j(Yij − ŶijM1

)2, where ŶijM1
= âi + b̂iXij is the value predicted by

the model M1.
If H0 is true, then the di�erence (SSR0−SSR1) should be close to zero. We can note that SSR0−SSR1

corresponds to the sum of squared residuals corresponding to the e�ects bi.
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In this case, the tests statistic is

F =

SSR0−SSR1
p−1
SSR1
n−p−1

∼H0 Fp−1,n−p−1.

6.4.2.2 Comparison of the two models: results table.

The table of results is presented as follows. The �gures given here correspond to the allometric data
described in the Table 6.1 for n = 209 species.

Model res.df SSR model.df SSM F pvalue

M0 204 11.30

M1 201 10.78 3 0.52 0.23 0.023

For each model, we give the sum of squared residuals (SSR) and the corresponding degrees of freedom
(res.df). For the most complete model, we show the number of additional parameters (model.df)
and the deviation SSM = SSRM0 − SSRM1, then the value of the test statistic F and the associated
pvalue. We �nd here that the model M1 has three more parameters than the model M0 (model.df).
When we study di�erent gradients we can slightly reduce the sum of squared residuals (compare the
column SSR for M0 and M1). Here, under H0, the statistic F follows a distribution F3.201. The p-value
is 0.023. So we can reject H0 at the threshold of 5%.

6.4.2.3 Comparison of several nested models and AIC

In the present example, we can write several nested sub-models to test out di�erent hypotheses on the
allometric coe�cients or on the constants. As before, we can then compare the models two by two
using a Fisher's exact test. We can also choose the model that best describes the data using a criterion
such as the Akaike Information Criterion (see the section on multiple regression).
The table below shows di�erent models derived from the (6.9) model, the estimated number of param-
eters (including σ2) and the value obtained for the AIC.

Model Predicted value Nb parameters AIC
M111 Ŷij = âi + b̂iXij 9 �8,50
M110 Ŷij = âi + b̂Xij 6 �4,66
M011 Ŷij = â+ b̂iXij 6 8,32
M100 Ŷij = âi 5 508,3
M001 Ŷij = â+ b̂Xij 3 202,6

Table 6.2: Analysis of covariance: comparison of nested models. For each model, the residual
variance may be di�erent. The complete model (M111) here is the one with the lowest AIC.

As an example, the �gure 6.10 gives the predicted values for the three models tested: the complete
model (M111), the model M110 and the model M100. We can see that the best model is the one
that is most complete, M111, which predicts both the di�erences between the environments for the
allometric coe�cient and for the constant. The graph of the model M110 shows the predicted values
by assuming a single allometric coe�cient for all the species. Visually, we have the impression of a
correct adjustment, which explains the relatively high p-value of 0.02 when we compare the models
M111 and M110. Lastly, the graph M100 shows the di�erences on the y-axis, above all with a big
di�erence between the subtropical sharks and the other species, irrespective of their environment.

6.4.2.4 Validation of the conditions of application

Once we have chosen the best model, we just need to con�rm the conditions of application. Here, as is
always the case for the linear model, we need to check the independence and normality of the residuals.
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Figure 6.10: Analysis of covariance: comparison of models. Each graph represents data (relation
between body weight and brain mass) and the values predicted for a model. The dots are the observed
values, the straight-line segments are the values predicted in each environment. The colour code
corresponds to the di�erent environments.

To do so, we create a graph showing the relation between predicted values and residuals, and carry
out a Q-Q plot of the residuals.

6.4.3 Estimation of the model's parameters

In our example, the best model is the complete model. We can then ask, for each type of parameter
(constant and allometric coe�cients), which coe�cients are signi�cantly di�erent from the others. We
can use the estimations of coe�cients and their interval of con�dence to carry out compliance tests
(for example, a1 = 0 as against a1 6= 0) or the comparison tests two by two (for example a1 − a2 = 0
as against a1 − a2 6= 0).
The R software has a number of statistical tests about estimated coe�cients. It is important to be
able to decipher the function's output summary. By default, R lists the coe�cients in alphabetical
order of the level of factors. Here, there are four environments called "polar", "subtropical", "tropical"
and "temperate" in the data �le. The polar environment is the �rst in alphabetical order and will be
considered as a reference. The parameters of the model M111 are:

Environment Coe�cients
Polar a1, b1
Subtropical a2, b2
Temperate a3, b3
Tropical a4, b4

R gives the estimated value of coe�cients â1 and b̂1, then the di�erences between the other coe�cients
and the reference. A di�erence between two coe�cients is called a contrast. For each contrast, R gives
the estimated value, the standard error, and carries out a compliance test in relation to a value of zero.
The software displays the value of the test statistic (Student's t-test) and the p-value.

Biological conclusion of the study. When we interpret the results in the table 6.3, we can see
that all the constants are lower in the polar environment. For the same body mass, the average brain
size will be larger in species living in a tropical or temperate habitat that among those living in a polar
habitat. For sharks living in a subtropical environment, brain size will be much bigger.
We can see that we have not highlighted the di�erence between the allometric coe�cients of the
polar species and the subtropical or temperate species (the di�erences b2 − b1 and b3 − b1 are not
signi�cant). However, the species living in a tropical environment have a higher allometric coe�cient
than the species living in polar habitats. For these species, we can indeed see in the �gure 6.10 that
the gradient of the regressive straight line is steeper.
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Estimation Coefficients Estimate Std. Error t value Pr(>|t|)

a1 (Intercept) -2.46539 0.11 -21.53 < 2e− 16***
b1 X 0.59653 0.04 15.07 < 2e− 16***
a2 − a1 envsubtropical 0.87230 0.25 3.39 0.00085**
a3 − a1 envtemperate 0.48939 0.13 3.81 0.00018***
a4 − a1 envtropical 0.54941 0.12 4.52 0.00001***
b2 − b1 envsubtropical:X 0.08587 0.07 1.26 0.21085
b3 − b1 envtemperate:X 0.02137 0.05 0.463 0.64363
b4 − b1 envtropical:X 0.10262 0.04 2.31 0.02167*

Table 6.3: model 111: tests on the estimated coe�cients obtained using the function lm

in the R software.



Chapter 7

Principal Components Analysis

7.1 Introduction

In biology, we often have quantitative data associated with individuals. To study this type of data,
we generally represent individuals with dots placed on a frame according to the values of each variable
(�gure 7.1).

Figure 7.1: Frames in two and three dimensions

Although this representation is perfectly adapted to a set of data made up of two or three variables,
it can prove more complex when we are looking at a larger number of variables. In this case, we will
make use of varied methods of analysis that will take into account the distribution of several di�erent
variables. With these methods we can simplify the set of data by identifying the most informative
combinations of variables: the principal components.

By carrying out an analysis on the principal components, we will be able to

� Visualise correlations between the variables

� Visualise relations between the individuals

� Identify the variables that can di�erentiate between individuals.

7.2 Principle

Principal component analysis (PCA) is a method of factor analysis in multivariate statistics.
Based on data made up of individuals (in a line) described by quantitative variables (in columns), the
method is used to calculate latent variables, that is, linear combinations of observed variables and thus
to identify the ones that best sum up the variance contained in the initial set of data. PCA can also
reduce the number of descriptive variables while limiting information loss.

We can begin to grasp PCA by using a geometric approach. Based on data placed in a frame, we will
show them in a new system of coordinates, maximising the distances between individuals.
The example in the �gure 7.2 illustrates the changed frame allowing us to maximise the dispersion of
the object according to the �rst axis Y1, then Y2, etc., of the new frame Y . PCA will not deform the
initial object, since the distances between the points are preserved, but our viewpoint of the object is
modi�ed.
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Figure 7.2: Principle of changing the frame during PCA.

7.3 Method

7.3.1 Reminder about the distances between two points

PCA is a method based on distances using the Euclidean distance between individuals in a set of data.
The Euclidean distance d(A,B) between two points A and B located in a two-dimensional space (�gure
7.3) is given by the relation:

d(A,B) =
√

(xB − xA)2 + (yB − yA)2.

Figure 7.3: Distance between two points in a two-dimensional frame

In a space with J dimensions, we can generalise the expression:

d(Ai, Ai′) =

√√√√ J∑
j=1

(xi′j − xij)2

- Ai and Ai′ are two points in a frame X

- xij , the coordinate of point Ai on the axis Xj

- xi′j , the coordinate of point Ai′ on the axis Xj

7.3.2 The initial frame

We will consider a set of data made up of n individuals and J variables. We can represent these data
using a scatter plot in J dimensions with each dot representing an individual.
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The individuals

We can describe the scatter plot of individuals by its centre of gravity G (i.e. the point of which the
coordinates are the mean values of the variables) and its inertia IG (i.e. its dispersion).

The coordinates of the centre of gravity are:

G = [x.1, x.2, x.3, ...x.J ]

where x.j is the mean of the coordinates of n dots on the axis Xj .

The inertia of a scatter plot is de�ned by the sum of squared distances of each dot in the centre of
gravity, weighted by the mi weight of each dot:

IG =
n∑
i=1

mid
2(G, xi).

Here, we consider that each individual has the same weight and we write
∑n

i=1mi = 1, so mi = 1
n .

We then have:

IG =
n∑
i=1

1

n
d2(G, xi) =

1

n

n∑
i=1

J∑
j=1

(xij − x.j)2 =
J∑
j=1

1

n

n∑
i=1

(xij − x.j)2 =
J∑
j=1

s2j

We �nd the variance of individuals according to the axis Xj , written as s2j . In the case of standardised
variables, the variance of each variable equals 1, so IG = J (number of variables).

The variables

We can describe the variables and their relations by calculating the variances of each of them and the
covariances of each pair of variables.
These data are stored in a variance-covariance matrix (squared matrix with dimensions J × J). The
diagonal of this matrix contains the variances (always positive), and the other cells contain the covari-
ances between pairs of variables. The matrix is thus symmetric. To go beyond units of measurement,
we often use standardised variables, and in this case the variance-covariance matrix becomes the cor-
relation matrix. This means we can give the same weight to all the variables, and the weight does not
depend on the size of the variable.

7.3.3 Calculation of new axes

Based on the representation of data according to the J dimensions, we will carry out changes on the
frame. We de�ne G as the origin of the new frame. The axes Y1, Y2, ..., Yk, ..., YK will be calculated
sequentially. They will all go through G, and since they are independent, they are orthogonal. We
should note that K = J , since changing the frame does not change the number of dimensions of the
space. Constructing new axes means constructing new variables, known as latent or virtual variables,
which are linear combinations of the variables observed in the initial set of data, such that:

Yik = ak1xi1 + ak2xi2 + .....+ akJxiJ

with:

- Yik, the coordinate of the ith dot on the kth axis Y

- akj , the coe�cient associating the initial variable j with the latest variable k in the new frame.
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Figure 7.4: X and Y frames and projection of the dot x1 on the new frame Y .

7.3.3.1 The main axis

The main axis is written as Y 1. When we change frames, the total inertia IG of the scatter plot stays
the same, but we will seek to maximise the inertia of the scatter plot along the new axis Y1, while
minimising the residual inertia around the latter (�gure 7.4).

IG =
1

n

n∑
i=1

d2(G, xi) =
1

n

n∑
i=1

d2(G, yi1) +
1

n

n∑
i=1

d2(yi1, xi)

IG = total inertia = inertia explained by Y1 + residual inertia

The aim is to maximise the distance d2(G, yik) bearing in mind that

K∑
k=1

IYk = IG = cte.

and that Yk are independent. The solution involves calculating vector space and optimisation under
constraint (cf. Appendix). The resulting solution is:

� the eigenvalues λk = IYk

� the eigenvectors −→a1 = (a11, a12, ...a1J), ...,−→ak = (ak1, ak2, ...akJ), ...,−→aK = (aK1, aK2, ...aKJ).

Each virtual variable (or PCA axis) has a characteristic value λk called eigenvalue and representing
its empirical variance (λk = IYk = σ2Yk). The

−→ak are characteristic vectors, called eigenvectors. For
the �rst axis, we thus have the eigenvalue λ1 and the eigenvector −→a1. The eigenvalues and eigenvectors
are the ones from the variance-covariance matrix of the initial variables.

7.3.3.2 The following axes

The maximum inertia not supported by the �rst axis Y1 will be supported by the following axis Y2,
etc. The new variables will pass through G and, since they are independent of each other, Y2 will be
perpendicular to Y1. The axes will thus be listed by decreasing level of inertia, and the sum total of
inertia is equal to the total inertia of the scatter plot.

IG = IY1 + ...+ IYk + ....+ IYK

IG =
∑K

k=1 σ
2
k in the case of a PCA on non-standardised variables

IG = K in the case of a PCA on standardised variables, since each standardised variable has a variance
equal to 1
IYk : inertia explained by the axis Yk

So, the share of inertia explained by the �rst p components can be written as
∑p
k=1 IYk
IG

.
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7.3.4 Interpreting the results of a PCA

7.3.4.1 Selection of main components

The previously calculated latent variables have the number K and are listed according to their de-
creasing eigenvalues. To interpret the results of a PCA, we will look for the latent variables that best
explain the dispersion of the scatter plot.
To do so, we make a bar chart of the eigenvalues, also known as a scree plot.

Figure 7.5: Scree plot of characteristic values (left), shown in terms of percentage of inertia
(right)

The latent variables are on the horizontal axis and the eigenvalues are on the vertical axis (or the
percentage of inertia of each component). The bar chart always decreases and the shape of the graph
will help us determine which v variables should be taken into account. We can, for example, choose v
such that > 50% of the inertia is explained. Sometimes, we see "an elbow" in the bar chart, that is, the
eigenvalues fall sharply. This helps us locate the component coinciding with the beginning of the fall.
On the �gure 7.5, this criterion would lead to selecting the �rst component of the PCA. In practice,
we will consider at least the �rst two components so that we can show the variables and individuals
on a 2D graph.

7.3.4.2 Representation of variables

Above we saw that the main components were linear combinations of initial variables. We show the
relations between the di�erent initial variables and the main components in a correlation circle (�gure
7.6).

Interpreting the relations between the initial variables and principal components

The two perpendicular axes in this graph show two principal components of the PCA: Y1 and Y2. Each
initial variable is represented by a vector with its origin in the frame's origin. The outer limit of these
vectors is the point whose coordinates on the main axes are associated with the measurement of the
correlation with each of the principal components.
With this 2D representation we can interpret the relations between the initial variables and the two
components. In fact, in the area of dimension K, the vectors corresponding to the initial variables are
all of length 1 and describe a sphere of a radius equal to 1 (in the case of standardised variables).
The more a variable is represented in the 2D graph, the more the outer limit of the vector will be close
to the correlation circle (�gure 7.7a)
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Figure 7.6: Correlation circle

Interpreting the relations between the initial variables

In the correlation circle, we can also interpret the relation between two variables. The relations between
projected variables can only be interpreted when the two variables are close to the correlation circle
(�gure 7.7). This is the case for the example in the �gure 7.7a but not for the one in the �gure 7.7b.
The angle formed by two vectors shows a correlation between the variables that they represent according
to the relation:

cos(
−→
X1,
−→
X2) = r(X1, X2)

If the two vectors are superimposed the correlation is maximal (= 1). When they form an angle at 180◦

the variables they represent are perfectly anti-correlated, and when they are orthogonal the variables
are not correlated.

(a) (b)

Figure 7.7: Two examples of correlation circles

7.3.4.3 Representation of individuals

The principal components correspond to new quantitative variables that will be used to place the
individuals from the set of data in a frame formed by the two principal components of the PCA.
The origin of the frame is the point G(0.0), and each individual i is shown by a dot on the graph with
its coordinates being the values yik on the axis Yk. By making a projection on each of the axes of the
PCA, we will be able to identify the modes of individuals that have been isolated according to each of
the axes.

Please note
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� Using a representation in the form of a correlation circle, we can only interpret the behaviour of

variables with a vector close to the edge of the circle, since these dots are projected best in the

factorial area.

� The 2D projection can bring out proximity between two dots that are in fact far apart.

� In the case where we identify more than three main components, we will need to interpret the

graphic representations for each pair of components.

7.4 Example of interpretation of a PCA

We have data on the morphology of �owers in three species of iris (Iris setosa, I. versicolor and I.

virginica) (en cm).

Species Sepal length Sepal width Petal length Petal width
I. versicolor 5 3.1 1.7 0.3
I. virginica 4 3.7 1.5 0.2
I. versicolor 4.2 2.8 1.8 0.2
I. setosa 4.7 3.1 1.6 0.2
... ... ... ... ...

Table 7.1: Set of data on the morphology of irises. Out of 150 individuals belonging to three
species of iris, we have a qualitative variable (the species) and measurements for four quantitative
variable.

We want to know if the variables can be used to di�erentiate the three species.
After calculating the principal components, we look at the graph of characteristic values in order to
identify the principal components to be taken into account (�gure 7.8).
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Figure 7.8: Graph of characteristic values on the Iris set of data.

The �rst principal component seems to explain most of the variance in the initial set of data. But we
will still project the individuals on the map described by the �rst two components.
If we colour the dots according to the plant species and project them along the axis PC1 (Y1) and
PC2 (Y2), we can see that PC1 is almost perfectly distinguished from the three species, whereas this
is not the case for the PC2 axis. The reference axes also show the percentage of variance in the set
of data for each component. We note that axis 1 has 73% and axis 23% of the variance in the set of
data, or a total of 96% for map 1-2.
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Figure 7.9: Individuals factor map (PC1, PC2)

We want to �nd out which initial variables are represented on each of the two components. The
correlation circle shows us that the variables are projected near the correlation circle, so we can
be con�dent about the angles between the variables to deduce the correlations from them. Axis 1
represents 3 of the 4 initial variables, while axis 2 mainly represents sepal width.
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Figure 7.10: Correlation circle for the Iris data

Conclusion In this example, the three species mainly di�er by the lenth of petals and sepals and the
width of petals, with Virginica having the highest lengths, and setosa the lowest ones. Within each
species, individuals vary for sepal width, independently of the three other traits.
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7.5 Appendix: calculation of the inertia on the �rst axis

To calculate the inertia IY1 shown on the �rst axis, we will �rst calculate the distance G-yi1

d(G, yi1) =

√
(
−−→
Ga1.

−−→
Gxi)2

=

√
(
−−→
Ga1.

−−→
Gxi)(

−−→
Gxi.
−−→
Ga1) (since the dot product is symmetrical)

=
√
aT1XiXT

i a1 (the dot product written in matrix form)

So that:

- yi1, the orthographic projection of the ith point on the axis Y1

We thus deduce IY1 ,

IY1 =
1

n

n∑
i=1

d2(G, yi1)

=
1

n

n∑
i=1

aT1XiX
T
i a1

= aT1

[
1

n

n∑
i=1

XiX
T
i

]
a1

= aT1 Σa1

- Σ, the variance / covariance matrix

We will thus try to maximise aT1 Σa1. We also know that ‖
−−→
Ga1‖2 = aT1 a1 = 1 since

−−→
Ga1 is the unitary

vector of the axis Y1.
Here we have a problem of optimisation under constraint, which could be processed using the Lagrange
multiplier method by means of which we obtain the equation:

aT1 Σa1 − λ1aT1 a1 = 0

By using aT1 a1 = 1, we get
aT1 Σa1 = λY1

Each latent variable (or axis of the PCA) has an eigenvalue λk representing its empirical variance
(λk = IYk = σ2Yk). The

−→ak are the eigenvectors.


