M1 D²HP Development of Drugs and Health Products

TU08 Biotechnology

Introduction to gene therapy: Viral vectors

Dorine Bonte (dorine.bonte@universite-paris-saclay.fr)

November 6th 2024

Content

∽ The viral vectors

∽ Retroviral / Lentiviral vectors

Adenoviral vectors

rAAV vectors (adeno-associated viruses)

The viral vectors

Viral vector

∽ Definition

Genetically modified virus to transfer and express its own genes or foreign genes

Advantages of viral vectors

Cloning of the genome of different viruses

Possible handling in bacterial plasmids

Production of recombinant viruses by reintroduction into their host cells

∽ 4 main objectives

Production of specific proteins in cell culture

Vaccination

Gene therapy

Anticancer agents

	Characteristics sought for a viral vector	
	 Adaptable cellular tropism * high efficiency 	
Targeting and expression	 Expression of the transgene * expression level control * expression stability: integration or episomal form 	
	Carge genetic material	
Production	Easy to produce vectors, low cost	
	Production of high titers of viruses	
	Low or absent recombination	
Safety	Control Con	
	Minimal toxicity * safe	
	 Minimal immune response * directed against the components of the viral vector and / or the transgene * Little / no inflammatory response 	

Main viral vectors

Retroviral / Lentiviral vectors

Adenoviral vector

rAdeno-associated virus (rAAV)

2 types of viral vectors

Replicative vectors

- * independently replicating vectors
 - no use in gene therapy
 - use in molecular biology, cell biology, vaccinology and protein expression

Non replicative vectors

- * recombinant viruses that replicate only in cells expressing deleted viral genes
- * use in molecular biology, cell biology and gene therapy

Construction and production of a typical viral vector

- ☞ Identify a gene not essential for replication
 - or conditionally necessary
- ☞ Replace this (these) gene(s) with the transgene

Viral vector and transgene

9

Large-scale production

Example with figures on AAV

⇒ Gene therapy Hemophilia B Factor IX

Amount of AAV injected per patient = 2.10^{11} viral particles per kg

so 1.5.10¹³ (15,000 billion) for a 70 kg patient

In theory, Y = 100% so 1 liter of culture In pratice, Y = 1% so 100 liters of culture

Bioreactors of 100 - 200 L

Purification and quality control of vectors

Control of viral vectors

Identity and purity	DNA identity	Sequencing Restriction map
	Physical titration of the viral suspension	Photometry
	Biological titration of the viral suspension	Lysis plaques / Cytopathic effect (RT-)PCR
	Viral vector purity (empty viral capsids)	Photometry
Activity	In vitro transgene transfer efficiency	PCR
	Expression of the protein of interest in vitro	SDS-PAGE Western-Blot ELISA Immunocytochemistry
	Functionality of the protein of interest	Cell / animal models
	Testing for bacterial and fungal contaminants	Sterility test
	Search for endotoxins	Endotoxin test (LAL)
Safety / Sterility	Search for mycoplasmas	Culture in specific media Cell culture Epifluorescence, PCR
	Search for adventitious viruses in vitro	Tests on indicator cells PCR
	Search for replicative particles	Tests on permissive cells

Biosecurity and risk levels (High / Low)

Biosafety	High risk	Low risk
Replication of the vector	Replicative vector	Non replicative vector
Design of the vector	Use of 2 plasmids for production Viral genes present and expressed	Use of 3 plasmids for production Viral genes deleted
Transgene	Oncogene, gene encoding a toxin, tumor suppressor gene	Non oncogene, structural gene
Production scale	Large	Laboratory
Animal host	Permissive host Humanized animals	Non permissive host
Handling of animals	Vector administration (use of needles)	-

Difficulties in using viral vectors

- ☞ Size of the transgene
- **Transient stability of the transgene**
- ∽ Random insertion of the transgene into the genome
 - ✤ risks of endogenous gene activation
 - ♦ cancer occurrence
- Difficulty regulating therapeutic gene expression
 completely inappropriate expression
- Infection of non-target cells
- Potential immunogenicity
- Risk of recombination with a wild-type virus
- ☞ Large-scale production
 - ♦ difficult and expensive

Retroviral and lentiviral vectors

Lentiviral particle

Virion

Multiplication cycle of the HIV (Genus Lentivirus)

Production of lentiviral vectors (1)

⇒ 3 plasmids to be transfected to make recombinant lentivirus

Encapsidation plasmid (p8.91) that expresses the proteins necessary for the formation of the capsid (*gag*, *pol*) and the regulating elements (*tat*, *rev*) and is deleted of the sequence ψ

Envelope plasmid (pVSV-G) that expresses the envelope glycoproteins of the vesicular stomatitis virus (VSV-G)

Production of lentiviral vectors (2)

Infection of target cells

Cells expressing GFP

Advantages of lentiviral / retroviral vectors

☞ Envelope glycoprotein that can be substituted by another protein allowing infection ⇒ modification of the tropism

b G protein of VSV

☞ Ideal vectors for gene replacement

✤ transgene stably integrated into the cell genome

Possible integration of the transgene into mitotic and non mitotic cells
 true only for lentiviral vectors

∽ Long-term expression of the transgene

Very limited immune response

Low risk of recombination

b construction fractionation

Limitations of lentiviral / retroviral vectors

∽ Small insert

♦ limited to 7-8 kb

Problem to produce high titers of infectious viruses

Lack of effective cell targeting

Some cell types difficult to infect

C Random integration

✤ risk of insertional mutagenesis

∽ Safety problems

Adenoviral vectors

Adenoviral particle

Multiplication cycle of the adenovirus

[Huraux, 2003, Traité de Virologie Médicale]

Different generations of adenoviral vectors

Production in HEK 293 cells expressing the necessary viral proteins = transcomplementation

25

[Figure adaptée Alba et al., 2005, Gene Therapy]

Advantages of adenoviral vectors

- Low pathogenicity in an immunocompetent person
- **Well characterized and easily manipulated genome**
- Production of high titers of infectious viruses
- Tropism for widely expressed receptors
- Vectors transducing quiescent cells
- No integration of the viral genome
 b persistence of the viral genome in episomal form
- ☞ High expression of the transgene
- Induction of strong cellular and humoral immune, systemic and mucous responses

♦ adapted to vaccination strategies (oral route for example)

Limitations of the adenoviral vectors

☞ Persistence of transgene expression limited in time

Immune response = major obstacle
 prevalence = 80% in the population

☞ Inflammatory response

Difficult re-administration

Risk of theoretical recombination with endogenous viruses

rAAV (Adeno-Associated Virus) vectors

Genome of serotype 2 AAV

AAV-WT

Multiplication cycle of the AAV

Recombinant AAV

⇒ Obtaining a non replicative vector carrying the transgene of interest

Tissue targeting possible with the AAV

☞ Serotypes of AAV

✤ different tropism depending on serotype

Another example = AAV-2 (widely used) can transduce muscle, brain, retina, liver, and lungs

⇒ Select the specific serotype of the target tissue

AAV receptors/co-receptors and tissue preferences

Serotypes	Main receptors	Co-receptors	Tissue tropism
AAV1	Sialic acid (N-bound)	Unknown	SM,CNS, retina, pancreas
AAV2	HSPG	FGFR1, HGFR, LamR, CD9 tetraspanine	SM, CNS, liver, kidneys
AAV3	HSPG	FGFR1, HGFR, LamR	Hepatocarcinoma, SM
AAV4	Sialic acid (O-bound)	Unknown	CNS, retina
AAV5	Sialic acid (N-bound)	PDGFR	SM, CNS, lungs, retina
AAV6	Sialic acid (N-bound), HSPG	EGFR	SM, SM (IV), heart, lungs
AAV7	Unknown	Unknown	SM, retina, CNS
AAV8	Unknown	LamR	Liver, SM, CNS, retina, pancreas, heart
AAV9	Galactose (N-bound)	LamR	Liver, heart (IV), brain (IV), SM (IV), lungs, pancreas, kidneys (IV)

CNS: Central Nervous System ; **EGFR**: Epidermal Growth Factor Receptor ; **FGFR1**: Fibroblast Growth Factor Receptor 1 ; **HGFR**: Hepatocyte Growth Factor Receptor ; **HSPG**: Heparan Sulfate Proteoglycan ; **IV**: Intravenous ; **PDGFR**: Platelet-Derived Growth Factor Receptor ; **SM**: skeletal muscle

Production of recombinant AAV (1)

Different methods of production

- Classical method of transfection \checkmark
- Stable encapsidation and production cell lines
- Herpes Simplex Virus RepCap system 🗸
- Baculovirus / insect cells system

Production of recombinant AAV (2)

Production of recombinant AAV (3)

☞ Use of a helper Herpes Simplex virus

Herpes virus used for rAAV production:

Replication deficient HSV-1 (e.g. ΔICP27), produced on trans-complementing cells (expressing ICP27)

Advantages of AAV vectors

- Non-pathogenic AAV in an immunocompetent person
- Replication dependent on a helper virus
 - ✤ adenovirus or herpesvirus
- Potential infection of mitotic and non mitotic cells
- ∽ Persistence of the viral genome
 - * possible integration specifically into the AAVS1 site of chromosome 19
 - Solve the second second
 - * no risk of insertional mutagenesis

Limitations of AAV vectors

∽ Small insert

♦ maximum 4.5 kb

∽ Low production of viruses

∽ Low level of transgene expression

Risk of contamination of the production

♦ if using a helper virus

Summary of the different viral vectors (1)

Vector	Maximum size of the transgene	Transduction of quiescent cells	Transgene stability (term of expression)	Immune response	Risks	Cell targeting
Retrovirus	8 kb	No	Long	No	Integration Mutagenesis	Large
Lentivirus	8 kb	Yes	Long	No	Integration Mutagenesis	Large
Adenovirus	7.5-35 kb	Yes	Transient	Yes	Inflammatory response	Large
AAV	4.5 kb	Yes	Long / Transient	No	-	Specific according to serotype

Summary of the different viral vectors (2)

Feature	Adenoviral vector	Helper-dependent adenoviral vector	AAV vector	Retroviral vector	Lentiviral vector		
Particle size (nm)	70–100	70–100	20–25	100	100		
Cloning capacity (kb)	8–10	~30	4.9 (10 after heterodimerization of two AAV virions)	8	9		
Chromosomal integration	No	No	No (yes if <i>rep</i> gene is included)	Yes	Yes		
Vector yield (transducing units/ml)	High (10 ¹²)	High (10 ¹²)	High (10 ¹²)	Moderate (10 ¹⁰)	Moderate (10 ¹⁰)		
Entry mechanism	Receptor (CAR)-mediated endocytosis, endosomal escape and microtubule transport to the nucleus		Receptor-mediated endocytosis, endosomal escape and transport to the nucleus	Receptor binding, conformational change of Env, membrane fusion, internalization, uncoating, nuclear entry of reverse-transcribed DNA			
Transgene expression and practical application	Weeks to months; highly efficient short- term expression (e.g. for cancer or in acute cardiovascular diseases)	>1 year; highly efficient medium- to long-term expression	>1 year; medium- to long-term gene expression for non-acute diseases (onset of transgene expression after ~3 weeks)	Long-term correcti defects	on of genetic		
Oncolytic potential?	Yes	No	No	No (but has potential to spread through the tumour without lysis, thereby spreading a suicide gene that encodes a pro-drug-converting enzyme)			
Emergence of replication- competent vector <i>in vivo</i> ?	Possible but not a major concern	Negligible, low risk	Possible but not a major concern	Risk is a concern	Risk is a concern		
Infects quiescent cells?	Yes	Yes	Yes	No	Yes		
Transcriptional targeting affected by chromosomal integration site?	No	No	No	Yes	Yes		
Risk of oncogene activation by the vector?	No	No	No	Yes	Yes		
AAV, adeno-associated virus; CAR, coxsackie and adenovirus receptor; Env, viral envelope protein.							

[Waehler et al., 2007, Nature Reviews Genetics]

40