LICENCE VILLEBON-CHARPAK

TRAVAUX DIRIGES: CHIMIE - L1

T. Boddaert, A. Özgümüs, Y. Bourdreux, J. Roques

Partie 1 : Structure de la matière

- 1. Pour l'ensemble des molécules suivantes, déterminer :
 - la formule brute
 - le nombre d'insaturations
 - la structure de Lewis
 - les fonctions chimiques présentes
 - le modèle VSEPR des atomes marqués d'un point
 - l'hybridation des atomes de Carbone marqués d'un point

$$\begin{array}{c|c}
 & O & O \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

- 2. Ecrire les représentations schématiques simplifiées (topologiques) pour chacun des composés suivants.
 - $_{a)}$ $CH_{3}-CH_{2}-CH_{2}-CH_{2}OH$
- d) H₃CO₂C-CH-CH-CH₂-CH=C-CH₃
- e) CH₃-CH₂-OCOCH₃
- c) $CH \equiv C CH = CH CH_2 O CH_3$
- 3. Dessiner les molécules b) et c) de l'exercice précédent en représentation de Cram.

Partie 2: Nomenclature et fonctions chimiques

4. Nommer les composés suivants :

5. Pour chacun des composés suivants, donner la formule brute, préciser le nombre d'insaturations et préciser les fonctions chimiques présentes :

6. Nommer les composés suivants :

a)
$$\stackrel{\text{OH}}{\longrightarrow}$$
 b) $\stackrel{\text{H}_2N}{\longrightarrow}$ c) $\stackrel{\text{O}}{\longrightarrow}$ d) $\stackrel{\text{O}}{\longrightarrow}$ e) $\stackrel{\text{O}}{\longrightarrow}$ $\stackrel{\text{O}}{\longrightarrow}$

- 7. (facultatif) Identifier et nommer les groupes caractéristiques contenus dans les molécules suivantes et donner le nom de la famille de composés correspondante :
 - a. l'acroléine, responsable du fumet de la viande grillée : CH₂=CH-CHO
 - b. l'acide lactique présent dans les yaourts : HOOC-CHOH-CH₃
 - c. la putrescine contribuant à l'odeur des cadavres : H₂N-C₄H₈-NH₂
 - d. la butanedione présente dans le fromage : CH₃-CO-CO-CH₃
 - e. l'arôme de la tomate : CH₃-(CH₂)₂-CH=CH-CHO
 - **f.** l'arôme des champignons : CH₃-CO-CH=CH-(CH₂)₃-CH₃
- 8. Ecrire la formule semi-développée des composés appelés :
 - a. méthylpropanal
 - **b.** 2-chlorocyclohexanol
 - c. acide-3-méthylbutanoïque
 - **d.** acide 2,3-dihydroxybutan-1,4-dioïque
 - e. éthanoate de 3-méthylbutyle
 - **f.** 3-éthyl-2-méthylpentane
 - g. butynedial
 - h. 1-bromo-4-méthoxybenzène
 - i. 1,1,1-trifluoro-4-hydroxypentan-2-one
 - j. acide 3-amino-2-oxopentanoïque
- 9. *(facultatif)* Entourez et nommez les fonctions ou groupements fonctionnels des molécules suivantes puis nommez-les.

Partie 3 : Isomérie

- 1. On considère les hydrocarbures de formule brute C₇H₁₆. Préciser tous les isomères de chaînes possibles en formule topologique.
- 2. Présenter de façon ordonnée l'ensemble des formules topologiques correspondant à la même formule brute pour :
 - $a. C_3H_5C1$
- b. C₄H₉Cl
- c. C₄H₈O (facultatif)
- 3. On cherche les composés isomères de constitution de formule brute C₃H₆O.
 - a. Quelles sont les quatre fonctions que l'on peut obtenir ?
 - **b.** Pour deux d'entre elles, une insaturation est nécessaire sur la chaîne carbonée. Citez les deux manières d'introduire une insaturation dans une chaîne carbonée.
 - **c.** En procédant de manière systématique, écrire les formules topologiques de tous les composés possibles.

Conformation, configuration et stéréoisomérie

Partie 1: Conformations

- 1. Représenter en projection de Newman la (ou les) conformation(s) la (ou les) plus stable(s) pour le 2-méthylbutane.
- 2. Représenter chacun des composés A et B dans sa conformation "chaise" la plus stable. En déduire quel est le composé le plus stable (A ou B?).

$$H_3C$$
 $C(CH_3)_3$
 $C(CH_3)_3$
 B

Partie 2: Configurations

- Classer les groupes suivants par ordre de priorité décroissante d'après les règles de Cahn,
 Ingold et Prelog :
 - **a.** N, H, Cl, Br, S, D
 - **b.** CH₃, C₂H₅, CH₂F, OH, F, C(CH₃)₃
 - **c.** C_6H_5 , $CH=CH_2$, $CHBr_2$, CH_2I , C=N
- 2. Indiquer la configuration absolue (R ou S) des atomes de carbone asymétrique des molécules représentées ci-dessous.

$$H_3C^{1111111}$$
 $H_3C^{1111111}$
 H_3C^{111111}
 H_3C^{111111}
 H_2C^{11111}
 H_2C^{11111}
 H_3C^{11111}
 H_3C^{11111}

- 3. Préciser la configuration (E ou Z) des alcènes suivants :
 - a) CH₃ CHO b) CH₂=CH CH₂CH₂OH c) C₆ H₅ B₁ CH₂CH₃ CH₂CH₃ CH₂OH

Partie 3 : Stéréoisomères, chiralité, activité optique

- 1. On considère les isomères de configuration du 1,3-diméthylcyclohexane.
 - a. Les dessiner en représentation de Cram et indiquer s'ils sont optiquement actifs.
 - **b.** Pour chacun des stéréoisomères, écrire l'équilibre conformationnel qui existe entre les deux formes chaise et indiquer le conformère le plus stable.
- 2. Quelle relation relie les couples suivants (énantiomère, diastéréoisomère ou isomère de conformation) ? Les composés suivants sont-ils chiraux?

3.

4. *(facultatif)* Donner le nombre et la nature des stéréoisomères correspondant à chacune des formules :

$$\mathbf{a.} \qquad \mathbf{c.} \qquad \mathbf{NH}_2$$

$$\mathbf{b.} \qquad \mathbf{d.} \qquad \mathbf{d.}$$

Partie 4 : Diastéréoisomères

- 1. *(facultatif)* Nommer les hydrocarbures suivant en tenant compte de l'éventuelle isomérie Z-E:
 - a. H₃C-CH=CH₂
 - **b.** H₃C-CH=CH-CH₃
 - **c.** CH₃-(CH₃)C=CH-CH₃
 - d. H₃C-CH₂-CH₂-CH₃
 - e. H₃C-CH₂-CH=CH-CH₃
- 2. Donner la formule semi-développée de l'acide mégatomoïque, phéromone d'attraction sexuelle du cancrelat, sachant que son nom en nomenclature officielle est acide (3E,5Z)-tétradéca-3,5-diènoïque., et que « tétradéca » signifie 14.

Partie 5 : Enantiomères

1. *(facultatif)* Parmi les molécules suivantes, reconnaître celles qui contiennent un carbone asymétrique

$$\mathbf{a}$$
, \mathbf{b} , \mathbf{c}

2. Un alcool de formule brute C₄H₁₀O est optiquement actif. Quelle est sa formule développée plane ? Représenter ses deux énantiomères, préciser leur configuration absolue R/S, et citer leur nom complet.

Partie 6 : Stéréo-isomères

Parmi les composés suivants, quels sont ceux qui présentent des stéréoisomères ? Préciser la nature et le nombre de ceux-ci, et les représenter.

- a. HC≡C-CHCl-CHO
- **b.** H₃C-CH=CH-CHOH-CH₃
- c. H₃C-(CH₃)C=CH-CO-CH₃
- **d.** H₃C-CH₂-CH(NH₂)-CH₃