Examen de Physique Atomique

2023-2024

Durée 2h

Seul document autorisé : une feuille recto-verso

Calculatrice interdite

Ordinateur interdit

Les réponses peuvent être rédigées en français ou en anglais.

Remarque:

- Le barème est donné à titre indicatif pour vous aiguiller sur la difficulté des questions.
- Toute réponse devra être justifiée. Lorsque cela est explicitement demandé, toute réponse non-justifiée sera comptée fausse. Les parties A (Cours), B.I et B.II (Exercice et Problème) sont indépendantes. La partie B.II devra être rédigée sur une copie séparée.

Formulaire:

- Harmoniques sphériques et les fonctions radiales de l'atome d'hydrogène.

$$\begin{split} R_0^1 &= \frac{2}{\sqrt{a_0^3}} e^{-r/a_0} & \qquad \qquad Y_{0,0} = \frac{1}{\sqrt{4\pi}} \\ R_0^2 &= \frac{1}{\sqrt{2a_0^3}} (1 - \frac{r}{2a_0}) e^{-r/2a_0} & \qquad Y_{1,\pm 1} = \mp \sqrt{\frac{3}{8\pi}} \sin(\theta) e^{\pm i\phi} \\ R_1^2 &= \frac{1}{\sqrt{3(2a_0)^3}} \frac{r}{a_0} e^{-r/2a_0} & \qquad a_0 \approx 0.53 \times 10^{-10} \text{ m} \end{split}$$

On rappelle et on donne :

$$\hat{\mathbf{P}}^2 = -\hbar^2 \left(\frac{1}{r} \frac{\partial^2}{\partial r^2} r + \frac{1}{r^2} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right) \right) \tag{1}$$

$$\hat{\mathbf{L}}^2 = -\hbar^2 \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right) \tag{2}$$

$$\hat{L}_z = -i\hbar \frac{\partial}{\partial \phi} \tag{3}$$

(4)

A: Questions de cours (9.5 points)

- (A.1) (1.5 pts) Soit $\hat{\mathbf{J}}_1$ et $\hat{\mathbf{J}}_2$, deux moments cinétiques caractérisés par les nombres quantiques j_1 , m_{j_1} , j_2 , m_{j_2} . Ces nombres quantiques caractérisent les valeurs propres de quels opérateurs? Rappelez les relations entre opérateurs, valeurs propres, vecteurs propres.
- (A.2) (1 pt) Rappelez les valeurs propres et vecteurs propres de l'observable $\mathbf{\hat{J}} = \mathbf{\hat{J}_1} + \mathbf{\hat{J}_2}.$
- (A.3) (1 pt) A quelle base d'observables correspond l'état $|n, l, s, j, m_j, i, m_i\rangle$? Nommez les quantités physiques correspondant aux observables.
- (A.4) (1.5 pts) En théorie des perturbations indépendantes du temps et non dégénéré, rappelez les expressions des déplacements d'énergie à l'ordre 1 et 2.
- (A.5) (2 pts) Déterminez si les états ci-après décrivant un atome possédant un seul électron sur la couche externe de moment cinétique orbital l et de spin s existent ou non. Justifiez vos réponses.
 - (a) $|n=2, l=1, m=1/2\rangle$.
 - **(b)** $|n=2, l=1, s=3/2, j=1/2, m_j=1/2\rangle$
 - (c) $|n=5, l=2, s=1/2, j=3/2, i=5/2, F=5/2, m_F=5/2\rangle$
 - (d) $|n=3, l=2, s=1/2, j=3/2, i=3, F=7/2, m_F=0\rangle$
- (A.6) (1.5 pts) On souhaite utiliser l'interaction dipolaire-électrique pour induire des transitions entre états électroniques d'un atome. Parmi la liste suivante, quelles transitions sont possibles? Justifiez chaque réponse.
 - (a) $|n = 3, l = 1, s = 1/2, j = 1/2, m_j = 1/2 \rangle \longleftrightarrow |n = 3, l = 2, s = 1/2, j = 3/2, m_j = 1/2 \rangle$
 - **(b)** $|n=2,l=0,m=0\rangle\longleftrightarrow|n=3,l=0,m=0\rangle$
 - (c) $|n=3, l=1, s=1/2, j=1/2, i=3/2, f=1, m_f=-1\rangle \longleftrightarrow |n=3, l=2, s=1/2, j=3/2, i=3/2, f=2, m_f=1\rangle$
- (A.7) (1 pt) Tracez la forme des parties réelles et imaginaires de la susceptibilité d'un système à deux niveaux en présence de dissipation.

B1 : Exercice : Precession de Larmor (11.5 pts)

Dans cet exercice, on s'intéresse à la dynamique d'un moment magnétique de spin placé dans un champ magnétique ${\bf B}$ aligné selon l'axe x. Le moment magnétique est défini par $\hat{\mu}=\mu_0{\bf \hat{s}}$. A l'instant t=0, la projection du spin de la particule dans la direction z vaut 1/2 ($s_z=1/2$). Le but de cet exercice est de trouver la probabilité de mesurer la particule dans l'état $s_y=\pm 1/2$ à l'instant t>0.

- (B.I.1) (1 pt) Rappelez la forme de l'hamitonien d'interaction dipolaire magnétique \hat{H}_I .
- (B.I.2) (1.5 pts) Quelle est la base propre $(|a\rangle,|b\rangle)$ de cet hamiltonien? Exprimez la matrice de \hat{H}_I dans cette base.

Dans cette base, un état quelconque $|\Psi(t)\rangle$ prendra la forme : $|\Psi(t)\rangle = a(t)|a\rangle + b(t)|b\rangle$.

(B.I.3) (2 pts) Donnez l'équation d'évolution de a(t) et b(t).

On donne:

$$\hat{s}_x = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 et $\hat{s}_y = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

- **(B.I.4)** (2 pts) Calculer \hat{s}_z et en déduire les valeurs de a(0) et b(0).
- (B.I.5) (3 pts) Déterminez la probabilité d'être dans l'état $|s_y=+1/2\rangle$ à l'instant t puis celle d'être dans l'état $|s_y=-1/2\rangle$.
- **(B.I.6)** (2 pts) Quelle serait la dynamique du système si à l'instant t=0 on appliquait un champ \mathbf{B}' dans la direction z tel que $|B'|\gg |B|$.?

B2 : Problème : Spectre de l'Helium et taux d'autoionisation (19 pts)

Dans ce problème, nous allons étudier la dynamique des états excités de l'Helium. Le noyau de l'Helium se compose de 2 protons (Z=2) et 2 neutrons. Il est entouré de deux électrons.

On note $|n_1,l_1,m_1\rangle\otimes |n_2,l_2,m_2\rangle$ l'état correspondant au premier électron dans l'état $|n_1,l_1,m_1\rangle$ et au second électron dans l'état $|n_2,l_2,m_2\rangle$. L'état $|E,l,m\rangle=|k,l,m\rangle$ correspond à un état du continuum d'énergie cinétique E (ou de manière équivalente d'impulsion $\hbar k$), de moment cinétique l et de projection du moment m. On rappelle que les niveaux d'énergie de l'hydrogène sont donnés par $E_n=-E_I/n^2$ où $E_I=13.6eV$ est l'énergie d'ionisation d'un électron piégé par le potentiel coulombien d'un seul proton.

- **(B.II.1)** (1 pt) En négligeant l'énergie d'interaction entre électrons, donnez l'énergie de l'état $|2,0,0\rangle \otimes |2,0,0\rangle$? De même pour l'état $|1,0,0\rangle \otimes |E,l,m\rangle$?
- **(B.II.2)** (1 pt) Utilisez la question précédente pour justifier qualitativement qu'un atome d'Helium dans l'état $|2,0,0\rangle \otimes |2,0,0\rangle$ puisse s'auto-ioniser. Vous expliquerez ce que signifie s'auto-ioniser.

L'énergie de répulsion Coulombienne entre les deux électrons de positions respective $\hat{\mathbf{r}}_1$ et $\hat{\mathbf{r}}_2$ peut se mettre sous la forme $\hat{W}=\frac{e^2}{|\hat{\mathbf{r}}_1-\hat{\mathbf{r}}_2|}$ avec $e^2=q^2/(4\pi\epsilon_0)=2.3\times 10^{-28}$ J.m.

(B.II.3) (1 pt) Justifiez brièvement pourquoi l'hamiltonien \hat{W} couple les états $|2,0,0\rangle \otimes |2,0,0\rangle$ et $|1,0,0\rangle \otimes |E,l,m\rangle$.

On rappelle l'expression suivante pour la règle d'or de Fermi :

$$w = \frac{2\pi}{\hbar} \rho(E_i) |W_{fi}|^2 \delta(E_f - E_i)$$
(5)

(B.II.4) (1 pt) Expliquez-en les différents termes et expliquez comment elle permet de calculer le taux d'auto-ionisation.

On suppose que l'espace est une sphère de rayon L et on écrit la fonction d'onde de l'électron éjecté sour la forme $\Psi_{k,0,0}(\mathbf{r}) = \frac{1}{\sqrt{2L\pi}} \frac{\sin(kr)}{r}$.

- **(B.II.5)** (1 pt) Donnez des arguments pour justifier que cette forme de fonction d'onde est physiquement raisonnable.
- **(B.II.6)** (2 pts) Montrez que cette fonction d'onde est normalisée pour $L \gg 1/k$.

Calcul de la densité d'état $\rho(E)$.

- **(B.II.7)** (2 pts) Montrez que $\Psi_{k,0,0}(\mathbf{r})$ est un état propre de $\hat{\mathbf{P}}^2$, $\hat{\mathbf{L}}^2$, et \hat{L}_z . Quelles sont les valeurs propres associées?
- **(B.II.8)** (0.5 pts) On note E, l'énergie d'une particule dans l'état $\Psi_{k,0,0}(\mathbf{r})$. Exprimez E en fonction de k.
- **(B.II.9)** (2 pts) En supposant que l'espace est une sphère de rayon L et que la fonction d'onde $\Psi_{k,0,0}(\mathbf{r})$ s'annule en r=L, montrez que :

$$\rho(E) = \frac{L}{\pi\hbar} \sqrt{\frac{m_e}{2E}} \tag{6}$$

On remarquera que la quantité $\rho(E)|W_{fi}|^2$ qui apparaît dans la règle d'or de Fermi ne dépend pas de L. La méthode utilisée est donc générale et pourra naturellement s'étendre au cas d'un espace non borné.

Calcul du couplage W_{fi}

(B.II.10) (1 pts) Exprimez W_{fi} en fonction de $\Psi_{2,0,0}(\mathbf{r}_1)$, $\Psi_{2,0,0}(\mathbf{r}_2)$, $\Psi_{k,l,m}(\mathbf{r}_2)$, $\Psi_{1,0,0}(\mathbf{r}_1)$ et \hat{W} .

On donne la relation :

$$\frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} = 4\pi \sum_{lm} \frac{1}{2l+1} \frac{r_{<}^l}{r_{>}^{l+1}} Y_{lm}^*(\theta_2, \phi_2) Y_{lm}(\theta_1, \phi_1)$$
(7)

où $\mathbf{r}_1=(r_1,\theta_1,\phi_1)$, $\mathbf{r}_2=(r_2,\theta_2,\phi_2)$, $r_<=\min(\mathbf{r}_1,\mathbf{r}_2)$, $r_>=\max(\mathbf{r}_1,\mathbf{r}_2)$ et Y_{lm} est l'harmonique sphérique de moment l et de projection m.

- **(B.II.11)** (3 pts) Dans l'équation (7), justifiez que seul le terme l=0 aura une contribution non nulle. En déduire que l'électron éjecté aura forcément un moment cinétique nul.
- (B.II.12) (1 pt) Exprimer W_{fi} sous la forme d'une intégrale explicite. On ne cherchera pas à calculer cette intégrale.

Pour
$$k=2.6 \times 10^{10} \ {\rm m}^{-1}$$
 (E= 26 eV), on donne $W_{fi}=\frac{3}{\sqrt{L}} \times 10^{-23} \ {\rm J}.$

- (B.II.13) (1 pt) Justifiez pourquoi on a choisi d'évaluer W_{fi} pour cette valeur du vecteur d'onde.
- (B.II.14) (1.5 pt) Evaluez l'ordre de grandeur du taux d'auto-ionisation w de l'état 2S-2S de l'Helium. ($m_e=9.1\times 10^{-31}$ kg). Peut-on trouver un atome d'Helium dans l'état 2S-2S dans la nature?