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1. Introduction

Given a rectangular origami, i.e. sheet of folding paper of adequate length, we can
construct the simplest knot by performing three times of folds. The shape of the knot
is made to be a regular pentagon if we fasten the knot tightly without distorting the
origami as shown in Fig. 1. The method is so simple that it should be known since
the age of early human civilization. However, only from the middle of the 20th century
mathematical investigations of the knot fold construction started to appear (e.g. see,
(Brunton, 1961; Sakaguchi, 1982; Wells, 1991)).

(a) (b) (c)

Fig. 1. A regular pentagon obtained by the simplest knot of three folds

In this paper we conduct further a formal analysis of the knot fold for the realization of
the computer-assisted construction and verification. The knot fold is decomposed into a
sequence of more basic folds, each creating an isosceles triangle as shown in Fig. 2. Three
overlapping and congruent isosceles triangles make a pentagonal knot. By superposing
the isosceles triangles carefully, we can construct a regular 2n(n � 2)+1-gonal knot in
general. If we relax the rigidity of the constructed shape, but yet without breaking the
origami, we can make more kinds of regular n-gons, some with a hole in the center.
We show those properties, focussing on the constructions of regular pentagonal and
heptagonal knots.
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The regular pentagon knot EHGKF

is constructed from the isosceles tri-

angles 4GFE, 4FHG and 4HKF.

Fig. 2. Regular pentagonal knot and overlapping isosceles triangles

Knot fold is interesting because of its familiarity to everyone, of its common use in
everyday life and of its simple principle. In everyday life we make knots by various
materials such as strings, ropes, cloths and papers, and we can imagine various forms of
knots depending on them. To avoid possible misunderstandings arising from the variety
of the used substances and to focus on essential properties of knots, mathematical aspects
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of knots have been studied deeply since the middle of the 18th century. In this paper
we are interested in the concrete shapes created by knotting the paper tape. Hence, we
are less concerned with the topological and combinatorial aspects of knots, but are more
with the methods of the construction. Furthermore, since a paper tape of a rectangular
shape can be constructed from a square sheet of paper (i.e. origami) by repeated folds,
we will consider a rectangular origami from the outset. Subsequently, we simply call it a
tape or an origami.

Knot fold is based on physical constraints, i.e. the rigidity and foldability of the paper,
unlike Huzita’s basic folds that are based on the observable incidence relations over
inductively defined points and lines, and on their superpositions (Huzita, 1989). From
the origami point of view, the knot fold can be seen as a variant of multi-fold, where
we perform folds along multiple fold lines simultaneously (Alperin and Lang, 2009). A
general multi-fold is di�cult to perform precisely by hand, whereas we will see the knot
fold by hand retains a certain degree of precision as far as the constructed shape is
concerned.

From algebraic point of view, the knot fold lends itself to a constraint solving problem.
If it is formalized algebraically, it results in more precision and rigor, and furthermore
a new mathematical view of the subject. Both views are clearly recognized by the use
of Eos (e-origami system) under development (Ida et al., 2011, 2006). The knot fold
is first specified in the language of Eos, a language of a fragment of many-sorted first-
order predicate logic. The specification is transformed into algebraic expressions, which
are solved algebraically and numerically for the construction (i.e. for visualization in
graphics), and then input to the geometrical prover of Eos that incorporates the methods
of Gröbner bases computation.

The rest of the paper is organized as follows. In Sect. 2, we give the notations that we
use and present Huzita’s basic fold operations that lay the foundation of our study of this
subject. In Sect. 3 we discuss the basic geometry underlying the knot fold by treating
a pentagonal knot. In Sect. 4, we analyze the knot fold of a regular pentagon, and in
Sect. 5 we discuss about its proofs. In Sect. 6, we show the construction and verification
of a regular heptagonal knot by Eos. In Sect. 7, we summarize our results and point out
directions of further research.

2. Preliminaries

In this section we explain the notations that we use in this paper and the basic origami
principle.

2.1. Notations and programming language

We deal with plane Euclidean geometry. We deal with only points, segments and lines
explicitly during the construction of origamis, and vectors for the verification in addition.
Points are denoted by single capital letters (possibly subscripted) of Latin alphabet, e.g.
A, B, C, D, X, Y, etc. They are italic in variable and emphasis contexts. Lines are denoted
by m, n, l and s. The line passing through points X and Y is denoted by XY or simply
XY . We use the same notation to denote the (closed) segment between points X and
Y . Although which of the two notations XY refers to should be clear from the context,
we may precede the words ‘segment’ or ‘line’ to it. The vector from point X to point Y
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is denoted by
��!
XY . The distance between two points X and Y is denoted by |XY |. The

reflection of point X across line m is denote by X

m.
A mathematical model of origami is called anabstract origami. It is a triple (O,v,�),

where O is a set of polygons called faces, v and � are binary relations on O, each denoting
adjacent and superposition relations. A fold of the origami changes the triple and creates
a new origami. An abstract origami is concretized when points on the faces are given
concrete values, i.e. their x- and y-coordinates. The concretized origami is simply called
origami. It is also called configuration when we focus on the triple (O,v,�) with the
points on the faces being assigned concrete values. An origami is denoted by O. We
assume a distinguished origami called an initial origami, which is a square sheet of paper
with four corner points A, B, C and D, enumerated counterclockwise. Later, we relax
the condition that the face of the initial origami is a square, and simply assume that the
face is a convex rectangle.

We use the Cartesian coordinate system. A point at coordinate (x, y) can be written
as Point(x, y) using the constructor Point. When that point is given a name, say E, it
is also written as E(x, y). Two points P and Q are equal i↵ their coordinates are equal.
For example, the origami obtained from the initial origami ABCD by folding along BD
consists of the two congruent triangles, but after the fold, the polygon ABCD is no longer
a convex rectangle since the points A and C are equal.

We also use the notion of being to the right or left based on the notion of handedness.
It is given precise meaning when we fix the three-dimensional frame of reference to be
either right-handed or left-handed. In this paper and the implementation of Eos, we take
the z-axis to be perpendicular to the Euclidean (xy-) plane of our discourse. For x-, y-
and z-axes of the reference frame, we adopt the right-handedness. Thus, we can say that
a half-plane (of Euclidean plane) divided by line extending the segment XY is to the
right (resp. left) of line XY if it is to the right (resp. left) of corresponding (location)
vector

��!
XY . A point is to the right (resp. left) of line XY if it is on the right (resp. left)

half-plane of the line XY . A face is to the right (resp. left) of line XY if none of the
vertices of the face is to the left (resp. right) of the line XY .

Abusing the set notation, we use X 2 m to mean that point X is incident to line m,
and {X1, . . . , Xk} ⇢ m to mean that all the points X1, . . . , Xk are incident to line
m. A sequence of variables x1, x2, . . . may be denoted by x. Likewise, a sequence of
geometrical objects is denoted by o.

We use a small programming language to describe the construction and verification of
the polygonal knot fold. It is based on the language of Mathematica 9 (Wolfram Research,
Inc., 2012) with the following di↵erences. We use round brackets for grouping arguments
of functions in order to be compatible with mathematical convention. Thus, function call
is written as

f(a1, . . . , an, key1 ! an+1, . . . , keym ! am�n), where m � n � 0.

Since most of the functions used in Eos have many arguments whose default values are
assigned beforehand, we use two kinds of arguments, i.e. position-dependent required ar-
guments and position-independent optional arguments. The former are usual arguments
and need no further explanation. The latter are used in the form of “keyword ! ar-
gument”, where the keyword specifies the name of the argument, and are used to reset
the default value associated with the name. The functionality of the optional arguments
comes from the language of Mathematica. Our language is a language of many-sorted
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predicate logic with functions drawn from the rich set of Mathematica functions. The
equality (infix) predicate symbol of our language is =, and is restricted to the sorts Point,
Line and Number. The prefix predicate symbols for them are PointEqual, LineEqual and
Equal, respectively.

2.2. Huzita’s basic fold operations

We consider the 7 operations proposed by Huzita as the set of basic fold operations
(Huzita, 1989). They are implemented as the basic functions in Eos. The set of operations
is similar in its role to the five Euclid’s postulates in Euclidean Elements.

Huzita observed that the degree of freedom of the paper fold by fold lines can be limited
by specifying combination of certain points and lines that are to be superposed. Then,
he presented the following operations (O1) ⇠ (O6), which serve as the basic operations
in geometrical constructions of origamis.
(O1) Given two distinct points P and Q, fold O along the unique line that passes through

P and Q.
(O2) Given two distinct points P and Q, fold O along the unique line to superpose P

and Q.
(O3) Given two distinct lines m and n, fold O along a line to superpose m and n.
(O4) Given a line m and a point P, fold O along the unique line passing through P to

superpose m onto itself.
(O5) Given a line m, a point P not on m and a point Q, fold O along a line passing

through Q to superpose P and m.
(O6) Given two lines m and n, a point P not on m and a point Q not on n, where m

and n are distinct or P and Q are distinct, fold O along a line to superpose P and
m, and Q and n.

The notion of superposition may be di�cult to grasp when a line m is moved to
superpose on a non-moved point P . We need to move the half line of m to superpose
m and P , unless the fold line and the line m are parallel. For the examples, readers are
referred to the paper by Ida et al. (2011).

We define the predicate O5(P,m, Q, x) to state the relationship among the points P

and Q, and the lines m and x, which are involved in Huzita’s basic fold (O5). It states
that the fold line x passing through point Q superposes point P and line m. Note that
O5 is a relation, and is not defined as a function O5(P,m, Q) that returns a fold line x,
since x may not be unique. There may be 0, 1 and 2 possible fold lines depending on P ,
m, and Q. For the other basic folds we could define associated relations (or functions for
(O1), (O2) and (O4)) in a similar way, but they are not necessary in this paper. Further
discussions on the adequacy of operations (O1) ⇠ (O6) as the set of basic fold operations
are shown in (Ghourabi et al., 2013b), for example.

The above statements of Huzita’s basic fold operations are about the fold lines, and
do not address to the issues of the directions of the fold, i.e. mountain or valley fold,
or of the choices of the faces to be moved. When we perform a fold in Eos, we need to
specify them unless we rely on the their default values of Eos, i.e. valley fold and the
choice of all the faces to the left of the fold line (interpreted as a vector).
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3. Knot fold

We depicted a knotting operation in Fig. 1. In the figure we made one simple knot.
When the height of the tape is infinitesimal and both ends of the tape are connected, the
tape can be abstracted as a closed curve, i.e. an object of study in the theory of knots.
The knot with 3 crossings is the most basic. It is denoted 31 in the Alexander-Briggs
notation (Alexander and Briggs, 1926). When the height is finite, each crossing exhibits
a certain polygonal shape. The collection of the crossings, some of which overlap each
other, is called a polygonal knot. The folds by which we construct the polygonal knot
from the tape are called knot folds. The pentagonal knot shown in Fig. 2 corresponds to
31.

We are now ready to construct a pentagonal knot. We will first follow the geometrical
proof of a regular pentagonal knot of Sakaguchi (1982), but we focus on the formalization
of computer-assisted construction and verification of the pentagonal knot.

One of the most fundamental properties of the crossing of the knot fold is expressed
in the following lemma.

Lemma 1 (Isosceles crossing). For all initial origami ABCD, point E 2 AB and point
F 2 CD, for all point G 2 CD such that O5(G, EA, E, EF), MGFE is isosceles with
|FG| = |EG|.

The lemma is written in a somewhat contrived style for reasons explained shortly.
The meaning should be clear when it is presented together with the illustrative fig-
ure (cf. Fig. 3b). In brief, we try to perform a fold (O5), i.e. to fold the initial origami
along fold line EF (passing through point E) to superpose point G and line EA. Point F
is the intersection of the fold line and line CD. The polygon connecting points G, F and
E is an isosceles triangle. We could argue that this fold is simply the fold (O1) along line
EF. For the sake of the symmetry to be observed in Lemma 2, we use the fold (O5) here.
With the tapes shown in Figs. 3a and 3b, the proof is straightforward by elementary
geometrical reasoning, and hence is omitted.

A B

CD
E
F

(a) Initial origami configuration

F

E B

CG

D

A

(b) Crossing of isosceles triangle MGFE

Fig. 3. Isosceles crossing

After the fold by which we constructed the isosceles triangle MGFE, we perform an-
other fold to construct another isosceles triangle MFHG in such a way that both isosceles
triangles overlap, sharing the segment FG as shown in Fig. 4. Lemma 2 expresses the
construction involved and the resulting geometrical property.

Lemma 2 (Isosceles trapezoid). For all origami ABCD, point E 2 AB, point F 2 CD
and point G 2 CD such that O5(G, EA, E, EF), for all point H 2 EB and point I such
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The folds along lines EF and HG construct trapezoid FEHG.

Point I is the intersection of lines DEFF and CGHG. Note that

the point labeled as D is the reflection of initial point D across

line EF, and that the point labeled as C is the reflection of

initial point C across line GH. Triangles 4GFE and 4FHG

are isosceles and congruent.

Fig. 4. Tape after two folds

that O5(F, EB, G, GH) ^ I 2 DEFF ^ I 2 CGHG, we have |EF| = |GH|, and
furthermore |IG| = |IF|.

Note that the expression DEFF is parsed as (DEF) F, which denotes the line passing
through point F and the reflection of point D across line EF, as explained in Subsect. 2.1.

Before we go into details of the constructions and proofs, it is worthwhile to note, at
this point, that the lemmas we treat by the Eos prover have the following structure:
For all o1, . . . , oi such that P(o1, . . . , oi), for all oi+1, . . . , ok such that Q(o1, . . . , ok), some
geometrical properties hold among the objects o1, . . . , ok, where

(i) “For all o1, . . . , oi such that P(o1, . . . , oi)” describes the configuration before the
construction.

(ii) “for all oi+1, . . . , ok such that Q(o1, . . . , ok)” describes the step of the construction
(iii) “some geometrical properties hold among the objects o1, . . . , ok” is what we claim

by the construction.
Clause (iii) is called the goal, and clauses (i) and (ii) together are called the premise of
the proposition. With Eos we construct a geometrical object that we are interested in
by some objects o

0
1, . . . , o

0
k that satisfy P(o01, . . . , o0k). After the successful construction,

we try to prove a proposition of the above structure. The clause (ii) is true for some
objects including o

0
1, . . . , o

0
k. Therefore, the proposition is not vacuous.

Now let us return to Lemma 2. An intuitive proof of the property that the polygon
FEHG is an isosceles trapezoid would be by two applications of Lemma 1. However,
this is not completely satisfactory. If point I were not introduced, Lemma 2 would cover
one more configuration besides the one shown in Fig. 4. Figures 5a and 5b show the
other configuration. We would need to show the goal |EF| = |GH| holds for this case,
too. We see that this is impossible by observing Fig. 5a. To eliminate this undesirable
configuration, we introduce point I, which is not constructible for the undesirable case. In
this case, lines DEFF and CGHG are parallel. Point I will be needed later for Theorem 3
as well.
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A B

CD
E

GF
H

(a) Before the folds

H

D

AE

B

C

(b) After the folds

Fig. 5. Undesirable case : tapes before and after the folds along EF and GH

We will postpone the description of our proof until Section 5 since the proof scheme
is the same in other constructions. We move on to the construction of a pentagonal
knot. On the tape shown in Fig. 4, we perform a fold (O5) along a fold line that passes
though F, to superpose H and CG. We have two fold lines, say m1 and m2 to make this
possible. The fold along m1 creates the shape as shown in Fig. 6. Point K is created at
the intersection of m1 and line CG (in Fig. 4). The other case of the fold (along m2)
constructs the shape shown in Fig. 7b, where point K is not constructible.

H

GF

E

K

B

C

D

A
I

Operation (O5) is applied to fold along the line passing through F and superposing H and CG.

Point K is the intersection of line CG and the fold line. This construction shows the case where

point K is constructible.

Fig. 6. A loose pentagonal knot EHGKF
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(a) The other fold line

IB

C

F

D

A
E H

(b) Origami after the fold

Fig. 7. The other case of fold by (O5)

We now see how to fold the desired knot. The following shows the Eos program to
construct the pentagon EHGKF.

Program P1 [construction of a pentagonal knot]

1. BeginOrigami(“Pentagonal knot”,{150,10});
2. NewPoint({E ! {45, 0},F ! {43, 10}});
3. HO(9m,m:Line9n,n:Line9g,g:Point9h,h:Point9i,i:Point(O5(g,EA,E, m) ^ m = EF ^

O5(F,EB, g, n) ^ n = g h ^ g 2 CD ^ h 2 AB ^ i 2 DmF ^ i 2 Cn
g),

MarkPointAt ! {G,H,I}, MarkPointOn ! {{CG, K}}, Handle ! {A,B});
4. HO(H,CG,F,Handle ! B,Direction ! Mountain, InsertFace ! Bottom,Case !

1);

Each line of the program is a function call, i.e. the calls of BeginOrigami, NewPoint,
and two HO (which stands for Huzita Ori). Obeying the program, the construction
proceeds as follows:

1. At Step 1 of the program, we start a new session of origami with the session name
(i.e. “Pentagonal knot”) and with the origami size (i.e 150⇥ 10).

2. At Step 2, we create new points E and F at the locations (45, 0) and (43, 10). The
locations can be arbitrary subjected to the constraints that they are on line AB
and line CD, respectively, and that they are located to enable us to construct an
intended knot at the end.

3. At Step 3, we apply the geometrical construction described in Lemma 2. By solving
the constraint, Eos returns two fold lines and three points. We perform two (O5)
folds, and mark the three points as G, H and I, which correspond to the values of
variables g, h and i, respectively.

4. Finally at Step 4, we perform a fold (O5) along the fold line passing through F to
superpose H and CG (cf. Fig. 6). The intersection of CG and the fold line is marked
as K, using keyword parameter MarkPointOn. The operation (O5) is applied on
points F, H, C and G of the previous step. To make a knot, we have to perform a
mountain fold and insert the moving face of the tape in between the existing non-
moving faces of the tape, i.e., in this case, immediately above the bottom face. The
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direction of the fold, the handle of the movement and the insertion of the faces are
specified as the keyword arguments in the program. By folding an origami (O,v,�),
a new origami (O’,v0

,�0) is constructed. The valley/mountain fold computes the
relations v0 and �0 by the graph-theoretical method (Ida and Takahashi, 2010).
When the insertion of a face is involved, we need to modify the relation �0.

Below, we have further note to the specifics of the Eos program syntax:
• The program is a version obtained from “copy as LaTeX” command of Mathemat-

ica 9 and modified for type-setting in Latex, and the actual running program does
not look exactly the same. In programming practice, we usually use a restricted set
of fonts and alphabet for ease of inputting texts and interpretation by the evaluator.
For instance we use double quoted alpha-numeric character sequences to represent
points and segments. They are printed without the double-quotes.

• On line 3, we use an existential formula of prenex normal form 9x1:�1···xk:�k F ,
where F is a quantifier-free formula. Symbols �1, . . . ,�k are the sorts of variables
x1, . . . , xk, respectively. The variables of sort Line denote fold lines to be used in
this HO call. The variables of sort Point are usually the points of the intersection
among existing segments and the new fold lines, as the result of the folds by this
call. The formula specifies the geometrical relations among the variables.

• The meaning of the keyword arguments is as follows:
- “Handle ! P” determines the side to be moved (left or right side of the fold

line) by specifying one of the faces to be moved. Point P designates that face,
when it is on the to-be-moved face.

- “Case ! n” is the important parameter of this construction. It says that
the system choose n-th fold line. When this parameter specification is not
present and there are more than one possible fold lines, Eos will display
possible fold lines and ask the user to choose one among them. “MarkPointOn
! {{s1, P1}, . . . , {sk, Pk}}” specifies names P1, . . . , Pk of the intersections of
the segments s1, . . . , sk and the fold line, respectively (when there is only one
fold line).

- “MarkPointAt! {P1, . . . , Pk}” specifies names for corresponding existential k

variables introduced in the existential formula. By this way, the points bound
to the existential variables become available in the following steps of the con-
struction.

- “Direction!Mountain” specifies that the fold is a mountain fold. The default
value is Valley. The specified value may be a list of Mountain/Vallley values,
since a single call of HO may result in multiple folds, and for each fold the
system needs Direction information.

- “InsertFace ! list-of-faces” is to insert the moving faces above (below in the
case of the valley fold) the face in the list. The argument may be a list of faces
for the same reason of Direction. Symbol 0 in the list means “no e↵ect”.

The pentagon EHGKF is not regular in general as we take E and F arbitrarily on each
horizontal edge of the origami. However, we have the following theorem.

Theorem 3 (Regular pentagon knot). Referring to Fig. 6, if points I and K coincide,
i.e. are equal, the polygon EHGKF is a regular pentagon.
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The proof of the theorem by Eos will be discussed in Section 5.
To satisfy the condition K = I, we have to pull the both ends AD and BC of the

origami outwards in Fig. 6, so that the knot becomes tight. This fastening operation is
none of Huzita’s basic fold operations. A question arises naturally whether we can make
the knot using the Huzita’s set of basic operations. This is one of the topics of the next
section.

4. Analysis of the construction

4.1. Classical construction

Let us look at the initial origami with points E and F on it in Fig. 3a again. We may
fix the point E on the edge AB. The location of the point F on the edge CD relative to the
location of the point E completely determines the subsequent shapes if we obey the same
method of the folds discussed in the previous section. Suppose that we slide the point F
along the edge CD towards D of the initial origami. This small move propagates in the
subsequent three steps of the folds and brings the points K and I closer. The fastening of
the knot amounts to those four operations i.e., sliding F and subsequent three folds. It
remains to the hands of readers and origamists whether this fastening may be regarded
as a single origami step or not.

We next turn to the algebraic aspects of the knot fold of this pentagon construction.
Since EF becomes one of the edges of the constructed pentagon, the slope of the line EF
is � tan(2⇡/5) = �

p
5 + 2

p
5 when the pentagon is regular. The line with this slope is

constructible by Huzita’s basic fold operations, starting from a square origami in Fig. 8a.
The origami shown in Fig. 8` is the result of the construction of a regular pentagon from
the square origami 1 . It requires 6 steps of Huzita’s basic folds and 6 steps of unfolds
((O2), (O2), (U), (O2), (U), (O5), (U), (U), (O5), (U), (O1), (U)) in this order, where (U)
stands for unfold). The results of fold and unfold steps are shown in Fig. 8. For clarity,
we only mark the points M, L, Q, P and O. The dotted lines are the creases made during
the fold/unfold steps. The shape of regular pentagon MLQPO drawn in the red solid
lines in Fig. 8` is added ‘manually’, although it can be constructed by subsequent folds.
Namely, the edges LQ, QP, PO and OM of the pentagon can be constructed by five (O1)
folds. We identify the points O and M in Fig. 8` with the points F and E (respectively)
of the knot fold construction in Figs. 3, 4 and 6. The first 9 steps will generate the points
O and M (see Figs. 8a ⇠ 8i), and therefore these can be the preliminary steps to the
knot folds that we discussed in the previous section.

However, this method obviously su↵ers from the following drawbacks. It not only
requires preparatory steps but also makes the height of the tape shorter and lacks the
simplicity of the original knot fold.

4.2. Constraint solving fold

A more elegant construction with Eos is to utilize its constraint solving capability.
To do so, we first unfold the knot entirely and examine the locations of the points that
have been constructed. When the points K and I coincide, we obtain the tape with the
fold lines and the points as shown in Fig. 9.

1 It is unclear who discovered the fold method of the construction. Since the construction of a pentagon
is possible by straightedge-and-compass, it may well be known since the Euclidean day. The method we
used is described in the book (Geretschläger, 2002).
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(a) Initial square origami (b) Step 1: (O2) (c) Step 2: (O2)

(d) Step 3: (U) (e) Step 4: (O2) (f) Step 5: (U)

M

(g) Step 6: (O5)

LM

(h) Result of undoing all
the folds (steps 7 and 8)

M

L

(i) Step 9: (O5)

O

LM

(j) Step 10: (U)

O
L

M

(k) Step 11: (O1)

P

Q
O

LM

(`) Step 12: (U)

Fig. 8. Construction of regular pentagon MLQPO by Huzita’s basic fold operations

From Fig. 9 we can infer the following. Given an arbitrary but fixed point E, we can
find out the locations of the crucial points on the origami relative to point E. Let f , g,
h, and k are the variables of sort Point that correspond to F, G, H and K in Fig. 9. They
have a geometrical relation that can be expressed in a form of constraint. By solving the
constraint for those variables, we can find the locations of points F, G, H and K. Let m,
n and l be the fold lines used in Steps 3 and 4 of Program P1. Using Lemma 2, we only
need the following conditions to find those fold lines:
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E

FD

A H

G K

B

C

m

n

l

From the unknotted regular pentagon, we can infer the

relations on lines m, n, l and points F, G, H and K.

Fig. 9. Regular pentagonal knot EHGKF unknotted

1. h 2 AB ^ {f, g, k} ⇢ CD ^ f 2 m ^ h 2 n (incidence relations)
2. O5(g,EA,E, m) ^ O5(f,EB, g, n) ^ O5

⇣
h,Cn

g, f, l

⌘
(folds)

3. k

n 2 Dm
f ^ |k g| = |kn

f | (properties of i(= k

n) and Lemma 2)
4. |k g| = |h E| (equality of edge length)

Note that some points on the origami are moved by the fold, and that the points given
above are located on the initial origami. This is in contrast to the situations in Pro-
gram P1, where in each call of HO, we need to think of the configuration immediately
before and after the calls.

The conditions excluding the clause 4 underspecify the construction of the regular
pentagonal knot. In that case we need to give a specific point F. This is what we had in
the construction of the loose pentagonal knot.

In Eos language, the construction is stated in the following three function calls.
Program P2 [construction of a regular pentagonal knot]

BeginOrigami(“Regular pentagonal knot”,{150,10});
NewPoint({E ! {60, 0}});
HO( 9m,m:Line9n,n:Line9l,l:Line9f,f :Point9g,g:Point9h,h:Point9k,k:Point

(h 2 AB ^ {f, g, k} ⇢ CD ^ f 2 m ^ h 2 n ^
O5(g,EA,E, m) ^ O5(f,EB, g, n) ^ O5(h,Cn

g, f, l) ^
k

n 2 Dm
f ^ SquaredDistance(k, g) = SquaredDistance(kn

, f) ^
k � g = h� E),

Handle ! {A,B,B},
MarkPointAt ! {F, G, H, K},
InsertFace ! {0, 0, Bottom},
Direction ! {Valley, Valley, Mountain},
Case! 7);

We have 8 possibilities of the folds. Only the 7th case makes the regular pentagon.
Note that the�(minus) operator is extended in Eos language. Point(x1, y1) - Point(x2, y2)

is evaluated to be Point(x1 � x2, y1 � y2).

4.3. Fold by algebraic constraint solving

We know by now that the slope of line EF is critical in determining the locations of
the points F, G, H, and K. So, we include the algebraic relations that determine the slope
in the constraint. Replacing the HO call of the third line of Program P2 by the following
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will do the task. We construct a perpendicular FX to line AB, whose foot X is the on
AB. Let us consider MEFX. Let |FX|, |XE| and |EF| be t, t⇥ x, and t⇥ y, respectively.
Recalling that 1/x = tan(2⇡/5) =

p
5 + 2

p
5, we see that x and y satisfy the equations

{5x

4 � 10x

2 + 1 = 0, x

2 + 1 = y

2}.
HO(9m,m:Line9n,n:Line9l,l:Line9x,x:Num9y,y:Num9f,f :Point9g,g:Point9h,h:Point9k,k:Point

({E, f} ⇢ m ^ {g, h} ⇢ n ^ {f, k

n} ⇢ l ^
f � E = Point((�x)t, t) ^
E� h = Point((�y)t, 0) ^ h� g = Point((�x)t,�t) ^ g � k = Point((�y)t, 0) ^

5x

4 � 10x

2 + 1 = 0 ^ x

2 + 1 = y

2),
Handle ! {A,B,B},
MarkPointAt ! {F, G, H, K},
InsertFace ! {0, 0, Bottom},
Direction! {Valley, Valley, Mountain}, Case! 8);

As noted in Program P2, the cases in selecting the construction of interest are inter-
nally decided by the algorithm of the enumeration of the solutions. Only by interactive
selection, we can determine the right construction. In this example, Case 8 constructs
the regular pentagonal knot.

5. Computer assisted correctness proof

In this section we explain the proof method of Eos, and its application to the verifi-
cations of the constructions including Lemmas 1, 2 and 3 of the previous sections. The
method of earlier versions of Eos with concrete examples was discussed in (Ida et al.,
2011) and (Ghourabi et al., 2013a). The propositions that we want to prove are of the
following form:

8x8y(P(x, y) =) Q(x, y)). (1)
To construct a desired object, we choose some specific values for x, say a0, and prove

9yP(a0, y). (2)

This is done by transforming the proposition (2) to the following algebraic form

9y0(e1(a0, y
0) = 0 ^ · · · ^ ej(a0, y

0) = 0), (3)

and solve for y

0. Let b

0 be the solutions of y

0. The desired object is a collection from the
set {b0}.

To prove the proposition (1), we take arbitrary but fixed a for x, and to prove

8y(P(a, y) =) Q(a, y)). (4)

We prove (4) by contradiction. Assume

9y(P(a, y) ^ ¬Q(a, y)). (5)

We use the same algebraic transformation as the one from (2) to (3), on ¬Q(a, y) in (5)
and obtain

9y0(ej+1(a, y

0) = 0 ^ · · · ^ ek(a, y

0) = 0). (6)
We then compute the Gröbner basis of

{e1(a, y

0), . . . , ej(a, y

0), ej+1(a, y

0), . . . , ek(a, y

0)}, (7)
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in order to decide the solvability of

9y0(e1(a, y

0) = 0 ^ · · · ^ ej(a, y

0) = 0 ^ ej+1(a, y

0) = 0 ^ · · · ^ ek(a, y

0) = 0). (8)

If the reduced Gröbner basis of (7) is {1} then the proposition (8) is false (unsolvable).
Hence, the proposition (1) is proved. If the proposition (8) is true (solvable), we need to
check whether none of the solutions will deliver points and lines in R2-plane. If this is the
case, the proposition (1) is proved. Otherwise it is false. Eos checks whether the reduced
Gröbner basis is {1} or not. When the reduced Gröbner basis is {1}, Eos answers that
the proposition (1) has been proved.

Now we apply the proof scheme to the proof of Lemma 1. The construction is implicit
in the structure of the statement of the lemma. The property that we want to verify
is |FG| = |EG|. Since squaring both sides of the above equation yields the equality in
polynomial form, we specify the goal by the following call:

Goal(SquaredDistance(F,G) = SquaredDistance(E,G)).

Finally, to prove the lemma, we call function Prove:

Prove(“Isosceles crossing”, Mapping !
{A ! {w1, 0},B ! {w2, 0},C ! {w2, 1},D ! {w1, 1},E ! {0, 0},F ! {u, 1}})

(9)

The first parameter of the function call of Prove is the label naming the proposition to
be proved, and the second parameter is a list of the initial point mapping. Without loss
of generality, we let the height of the initial origami to be 1. The variables w1, w2 and
u in the mapping are arbitrary variables, so-called independent variables. This mapping
is used in fixing a in (4). Lemma 2 can be proved in the same way.

The call of function Prove triggers the logical and algebraic transformations of the for-
mulas accumulated during the construction and goal specification, and the computation
of Gröbner basis. The Gröbner basis computation is carried out using GroebnerBasis
function built into Mathematica 9. We specify the monomial order to be DegreeRe-
verseLexicographic, and the coe�cient domain to be RationalFunctions if independent
variables are involved, otherwise C. Function Prove completes with the message (on the
Windows 7 machine with Intel Core i5 CPU M560 2.67 GHz with 4 GB memory) for
proving Lemma 2:
Groebner basis computation started at 2014/02/02 18:38:18 JST.

Proof by Groebner basis method is successful.

CPU time used for Groebner basis computation is 0.031200 seconds.

together with the proof certificate called ProofDoc (Ghourabi et al., 2011).
Next we consider the pentagonal knot construction by the constraint solving fold

discussed in SubSect. 4.2. The goal that goes with Program P2 for the construction of
the regular pentagon is as follows:

Goal(8↵,↵:Complexes

(↵ ToZ(
�!
EH) =ToZ (

�!
HG) )

↵ ToZ(
�!
HG) = ToZ(

��!
GK) ^ ↵ ToZ(

��!
GK) = ToZ(

�!
KF) ^

↵ ToZ(
�!
KF) = ToZ(

�!
FE) ^ ↵

5 = 1)];
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The domain of complex numbers, C-plane, is used in order to show the equalities of
the inner angles for each vertex and of the length of the five edges, together. To make a
one-to-one correspondence between the points on the R2-plane and those of the C-plane,
we define the function ToZ as follows.

ToZ(X) = x + ıy,where X = Point(x, y)

The domain of function ToZ is extended naturally to vectors in the R2-plane by

ToZ(
��!
PQ) = ToZ(Q)� ToZ(P ).

Then, ↵ToZ(�!v ), where ↵ = r(cos ✓ + ı sin ✓), r � 0 gives the element in the C-plane that
corresponds to the vector

�!
v

0 = r

0

@cos ✓ � sin ✓

sin ✓ cos ✓

1

A�!
v

The vector
�!
v

0 is the rotated �!v by angle ✓ (with the origin of the coordinate system of
the R2-plane, as the center) and whose length is r|�!v |. Thus, it is clear that the above
goal statement completely specifies the required properties of the regular pentagon.

The following call
Prove(“Knot pentagon theorem”,

Mapping ! {A ! {w1, 0},B ! {w2, 0},C ! {w2, 1},D ! {w1, 1},
E ! {0, 0}}),

leads to the success of the proof. In the call, we take E(0,0) and w1 and w2 to be arbitrary
real-valued variables for the initial point mapping, This shows that we have constructed
a regular pentagonal knot. To be precise, we have proved the following Theorem 4. Let
P(m, n, l, f, g, h, k, ↵) and Q(m, n, l, f, g, h, k, ↵) be the predicates defined as follows:
P(m, n, l, f, g, h, k, ↵) ⌘

h 2 AB ^ {f, g, k} ⇢ CD ^ f 2 m ^ h 2 n ^
O5(g,EA,E, m) ^ O5(f,EB, g, n) ^ O5(h,Cn

g, f, l) ^
k

n 2 Dm
f ^ SquaredDistance(k, g) = SquaredDistance(kn

, f) ^ k � g = h� E

Q(m, n, l, f, g, h, k, ↵) ⌘
↵ ToZ(

�!
E h) = ToZ(

�!
h g))

↵ ToZ(
�!
h g) = ToZ(

��!
g k

n) ^ ↵ ToZ(
��!
g k

n) = ToZ(
��!
k

n
f) ^

↵ ToZ(
��!
k

n
f) = ToZ(

�!
f E) ^ ↵

5 = 1;

Theorem 4. For all origami ABCD and all point E on AB, for all m, n, l, f, g, h, k, ↵

P(m, n, l, f, g, h, k, ↵) =) Q(m, n, l, f, g, h, k, ↵).

The same construction and proof scheme is used in the proof of Theorem 3. The
premise P is computed by Eos from the record of the construction from the beginning
to the end of the construction. What we have to do is to set up a proper goal. For the
proof of the regular pentagonal knot we call:

Goal(8↵,↵:Complexes

(PointEqual(I,K) ) ↵ ToZ(
�!
EH) = ToZ(

�!
HG))

16



↵ ToZ(
�!
HG) = ToZ(

��!
GK) ^ ↵ ToZ(

��!
GK)= ToZ(

�!
KF) ^

↵ ToZ(
�!
KF) = ToZ(

�!
FE) ^ ↵

5 = 1));
and then call function Prove (with possibly a theorem name “Regular Pentagonal Knot
Theorem”) as in (9).

6. Regular heptagonal knot

The construction and the verification of a regular heptagonal knot can be done simi-
larly to the case of the pentagonal knot. First, we create arbitrary but fixed new points E
and F on the initial origami. We can start the construction of a heptagonal knot by the
application of Isosceles Trapezoid Lemma (Lemma 2). Then, we pick the point B to pull
the faces on which B is on, and perform a mountain fold (O5), then pick A and perform
a mountain fold (O5), and finally pick A and perform a valley fold (O5). The parameters
of the folds (O5) are chosen to construct the congruent isosceles trapezoids. We need to
pay attention to the keyword arguments Direction (Mountain or Valley) and InsertFace
(above Bottom or below Top), to make the knot rigid.

Figure 10 shows the intermediary steps of the fold of heptagonal knot. We finally
obtain the heptagon ELHGJKF shown in Fig. 11.

A B
CD

E
F G

H F

E B

CG
H

D
A

H

GF

E

D
AB

C

H

GF

E

K

B
C

D
A

H

GF

E

J

D

A

K

B

C

Fig. 10. Intermediary steps of heptagonal knot construction

Similarly to the case of the regular pentagonal knot, to make the polygon ELHGJKF
a regular heptagon, we need to add further constraints of the equalities of the edges. We
redo the construction after adding the constraints. With hands, we pull the edges AD
and BC outwards, as we did with the regular pentagonal knot. This will move point F
and perturb the whole shape. The final one is shown in Fig. 12.

As for the proof for the construction shown in Fig. 10, we give to the prover, before
specifying the goal, the following assumptions:

SquaredDistance(E,F) = SquaredDistance(G,H) = SquaredDistance(F,K)
= SquaredDistance(E,L) = SquaredDistance(J,G)); (10)
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Fig. 11. Heptagon-like knot ELHGJKF

L

JK

B

C

H

GF

E

D
A

Fig. 12. Regular heptagonal knot

SquaredDistance(E,F) = SquaredDistance(K, J) = SquaredDistance(L,H) (11)

The assumption (10) comes from Isosceles Trapezoid Lemma and the assumption (11)
is the one ensured by the fastening of the tape. By both assumptions we intend to assume
the equalities among the length of the edges involved. The assumption (10) should be
unnecessary theoretically, since this is the consequence of Isosceles Trapezoid Lemma.
However, in practice, without the assumption (10) the Gröbner basis computation during
the proof by our stock hardware does not terminate within a reasonable amount of time.
The goal to be proved is similar to the one for the proof of the regular pentagonal knot.
We use the same proof scheme as the one for the proof of Theorem 4. As in the case of
the regular pentagon, we do not have to check whether the vertices are concyclic, as our
algebraic treatment ensures this property. The goal to be established is the statement
that each connecting pair of the edges of the heptagon, considered as vectors, are only
di↵erent by the rotation of angle 2⇡/7.

In (Robu et al., 2006), we presented the automated construction and verification of a
regular heptagon using the Huzita’s basic fold operations using the coordinating system
of Theorema (Buchberger et al., 2000) and Eos. What is new, in this regard, in this paper
is that we use a knot fold in a new version of Eos, which integrates the construction by
logical specification and theorem proving by computer algebra engines.

18



7. Conclusion

We have analyzed the knot fold of polygons using the computer-assisted origami sys-
tem. We showed that from mathematical and computer science point of view, it is a new
kind of fold method. Our analysis relies heavily on algebraic methods, which has the
advantage of checking all involved cases of geometrical construction and verification au-
tomatically. We mainly discussed the pentagonal knot since it is the most basic knot. As
the number of edges of the polygons becomes larger, the time to take for the verification
of the regularity becomes longer.

From the computational point of view, the interaction of symbolic computation and
numeric computation becomes common in our study. Especially, the construction requires
approximate numeric computation, whereas the verification is in symbolic and exact
numeric computation mode. A method of Gröbner bases computation of polynomials
with approximate numeric (floating point) coe�cients such as developed by Sasaki (2012)
will be of great help to our research.

We see several directions of the research based on our results and methodologies. We
are aware that Brunton (1961) gave several interesting examples without proofs. With
the use of Eos it will become a routine work to generate polygonal knots for these
examples. Although theoretically not significant, the polygonal knots of even numbered
edges (cf. Fig. 13) are interesting to observe. It is generated by the method of the algebraic
constraint solving discussed in SubSect. 4.3. Maekawa (2011) gave visionary introductory
accounts on knot folds. We believe that to establish origamists’ ideas firmly on the ground
of computer science and mathematics would be an important step to direct.

(a) Plane view (b) 3D view

Fig. 13. Knot of dodekagon-like shape
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