Cardiac electrophysiology

Romain Perrier MCU physiologie INSERM UMR-S1180 Signalisation et physiopathologie cardiovasculaire HM1 – 3rd floor romain.perrier@universite-paris-saclay.fr

Genesis of membrane potential

Fick's laws of diffusion

Jd : diffusion flux

D : diffusion coefficient

For an **uncharged** molecule, diffusion occures from the most concentrated compartment to the least concentrated

Equilibrium : $C_1 = C_2$

Reversal potential

 $[K^+]$ _{int} = $[K^+]$ _{ext}

• No electric potential difference (0 mV)

 $[K^+]$ _{int} > $[K^+]$ _{ext}

K + ions move from A to B regarding **concentration gradient** with a movement of positive charges

creation of an **electric gradient** (electric potential of medium A: negative / milieu B) which opposes the persistence of K⁺ flux

Stopping of K + flux: perfect equality of two opposing forces, the concentration gradient (K⁺ from A to B) and the electric gradient (K⁺ from B to A)

Reversal (equilibrium) potential of K + ions

Reversal potential

Reversal potential for an ion : membrane potential at which there is no net ion flux

Nernst equation :

 $E_{ion} =$ RT $\frac{1}{zF}$ ln c_e c_i R: Ideal gas constant: 8.314 J.K⁻¹.mol⁻¹ T: Temperature in Kelvin z: Valence F: Faraday constant: 96 485 C.mol-1 E_{Na} = + 60 mV $E_K = -100$ mV E_{Ca} = + 100 mV E_{C} = - 50 mV

Na/K ATPase pump

Maintenance of the electrochemical gradient: essential for the electrical activity of excitable cells

Membrane potential

Membrane potential: potential difference between intracellular and extracellular compartment

Goldman-Hodgkin-Katz voltage equation (for monovalent ions)

$$
E_m = \frac{RT}{F} \ln \frac{P_{Na}[Na^+]_{out} + PK[K^+]_{out} + PCl[Cl^-]_{in}}{P_{Na}[Na^+]_{in} + PK[K^+]_{in} + PCl[Na^-]_{out}}
$$

Membrane potential

$$
E_m = \frac{G_K.EK + GNa.ENa + GCl.ECl + GCa.ECa}{G_K + GNa + GCl + GCa}
$$

Ohm's law : $U = R.I$ Conductance G = 1/R

Membrane potential recording

Cardiac electrophysiology

Blood Flow Through the Heart

Normal human heart: 60-100 cycles /min

Cardiac Conduction System

Electrocardiogram (ECG)

P = Atrial depolarisation

PQ = propagation from SA node to AV node

QRS = ventricular depolarisation Q = interventricular septum depolarisation R = main mass ventricular depolarisation S = last phase of V depolarisation (base) Atrial repolarisation

ST = plateau of the AP – contraction of the V

T = ventricular repolarisation

Cardiac Action Potentials

Sinoatrial Node (SA Node): Description

(Mezzano et al. Cardiovasc Res, 2016)

Staining Blue: DAPI GFP: MF20 Cy3: Endogenous Tomato Cy5: Tomato

20 µm *D Mika (Châtenay-Malabry), F Rochais (Marseille)*

Pacemaker cells within the tissue

Confocal Imaging

Cell types in the rabbit sinus node

Verheijck et al. Circulation 1998

Ventricular action potential

- Stick shape with ramifications
- Width \sim 25 μ m, length \sim 100 μ m, thickness <20 μ m
- Striated
- Single central nucleus (sometimes 2)
- **Excitables**
- **Contractiles**
- **Conductives**

Cf Pf Veksler: Bases of cardiac physiology

Excitation-contraction coupling

Laetitia Pereira 05/12/2024

The Patch-Clamp technique allows to electrically isolate a fragment of membrane or an entire cell in order to apply a current (current clamp) or a potential (voltage clamp) to it and record the response.

Developped by Neher and Sakmann in 1978, and improved in 1981.

The resistance between the pipette and the membrane is very high (GigaOhm)

Erwin Neher Bert Sakmann

Nobel Prize in Medecine 1991

Patch-Clamp

Patch-Clamp: whole-cell configuration

V_{imp}: imposed potential

 V_m : membrane potential

R_s: series resistance

 R_m : membrane resistance (ion channels)

 C_m : membrane capacitance (lipid bilayer) $V_m = R_m x I$

Voltage-clamp: imposed potential to the membrane \rightarrow current (I = N.P_o.i) recording

N:number of channel, P_o: open probability of the channel, i: single channel current

Current-clamp: Imposed current \rightarrow variation of membrane potential recording

Voltage-gated channels and ventricular action potential

Ventricular cardiomyocytes Action Potential

Inward rectifier K⁺ channel is responsible of membrane resting potential

```
Heterotetramer: Kir2.1, Kir2.2
```
Responsible of I_{K1} current

 I_{K1} current maintains the membrane potential at -80mV

Always open

Blocked by cesium or barium

Voltage-gated sodium channels

One pore forming subunit α: 4 x 6 transmembrane domains, S4 voltage sensor

In ventricules α subunit is mainly Na_v1.5

Responsible of the upstroke of action potential

3 states: close, open, inactivated

Opening at -70/-60 mV

 C_1 = Initial closed state C_{N} = Closed state before the O state \equiv Open state $=$ Inactivated state

Can be blocked with high dose of tetrodotoxin

Voltage-gated potassium channels

 4α subunits: 6 transmembrane domains, S4 voltage sensor

Main subunits: K_vx.x

The voltage-gated potassium channels are remarkable for their diversity. They include 40 different channels that are classified into 12 distinct groups based on their amino acid sequence homology (K_v1-K_v12)

Involved in cell repolarization

Transient outward potassium current (I_{to}) involved in the early phase of repolarization

In human homotetramere of $K_c4.3$ and 1 regulatory subunit KChIP

In rodent heterotetramere of $K_v4.2/K_v4.3$

3 states: close, open, inactivated

Fast inactivation

Blocked by 4-aminopyridine

I to (pA/pF)

 I_{Ks} (slow) is a delayed potassium current: slow activation

Main subunit K_v7.1 (K_vLQT1), encoded by *KCNQ1* gene, associated with KCNE1 regulatory subunit

Involved in the plateau phase of action potential

Blocked by indapamine

- I_{KR} (slow) is a current wich activates rapidly and for more negative potential than I_{Ks}
- Main subunit K_y11.1 (hERG), encoded by *KCNH2* gene, probably associated with KCNE2 regulatory subunit
- Involved in early phase of repolarization
- Blocked by a large number of drugs \rightarrow risk of deaths caused by long QT syndrome-induced torsades de pointes

Voltage-gated Calcium channels: I_{Cal}

One pore forming subunit α: 4 x 6 transmembrane domains, S4 voltage sensor

In ventricules α subunit is mainly Ca_v1.2 for L-type calcium channel

3 states: closed, opened, inactivated. Opening at -40 mV

Responsible of the main entry of $Ca²⁺$ in the cardiomyocyte

Key player of excitation contraction coupling

 C_1 = Initial closed state C_{N} = Closed state before the O state \equiv Open state \equiv Inactivated state

Voltage-gated Calcium channels: I_{Ca}

Blocked by dihydropyridine, verapamil

Sodium/calcium exchanger: NCX

Main isoforme in cardiomycytes : NCX1 encoded by SLC8A1 gene

In normal mode responsible of calcium extrusion : $1 Ca²⁺$ out / 3 Na⁺ in

Electrogenic: it induces depolarisation

Na+/Ca2+ exchanger: NCX

Na⁺/Ca²⁺ exchanger

Bers DM . Nature 2002

Summary

Grant et al., 2009

Copyright © 2006 Nature Publishing Group **Nature Reviews | Drug Discovery**

Gender differences in ventricular repolarization

Jonnson et al., 2010

Purple: larger current reported in males Orange: larger current reported in females □> Progesterone causes up/down regulation Black: no intrinsic differences reported

Festosterone causes up/down regulation Estrogen causes down regulation

Gender differences in ventricular repolarization

et al., 2022

Transmural gradient of cardiac repolarization and gender differences

Circadian ventricular electrical activity

electrical activity

Black et al., Heart Rhythm 2019

Circadian ventricular electrical activity

Jeyaraj et al., Nature 2012

Electrical Coupling of Myocytes: Gap Junctions

Electrical Coupling of Myocytes: colocalization of Cx43 and Na_v1.5 in perinexus

Hoagland *et al.*, 2019

β-adrenergic stimulation and excitation-contraction coupling

Electrophysiological remodelling during cardiac hypertrophy

Electrophysiological remodelling during cardiac hypertrophy

Rats with myocardal infarction

Increased L-type calcium current \rightarrow increased action potential duration

Perrier et al, Circulation, 2004

Electrophysiological remodelling during cardiac hypertrophy

Rats with myocardal infarction

Decreased potassium current $(I_{\text{to}}) \rightarrow$ increased action potential duration

Perrier et al, Circulation, 2004

Electrophysiological remodelling during heart failure

Lateralization of Cx43 abdominal aortic constriction

Takahashi *et al.*, 2012

Coupled-Clock System in the SA Node Cell

