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ABSTRACT: The synthesis of carboxylic acids from low-value
materials such as alkenes using CO2 as a C1-building block remains
a real challenge for synthetic chemists from both reactivity and
selectivity perspectives. Electrochemical carboxylations have been
examined but they remain limited, still suffering from a crucial lack
of selectivity. Herein we report a catalytic protocol based on an
electrogenerated Sm(II) catalyst as a powerful CO2 reductant, able
to perform exclusively anti-Markovnikov hydrocarboxylation of
alkenes. This electrochemical approach overcomes several current
limitations and allows direct β-hydrocarboxylation of styrene
derivatives, in a regioselective manner.

■ INTRODUCTION
Carboxylation with carbon dioxide as an abundant and
inexpensive C1-building block has gained a tremendous
boost in organic synthesis,1 providing an extremely attractive
way to access valuable carboxylic acids which are important
motifs in pharmaceuticals.2 Among these reactions, the
carboxylation of unsaturated hydrocarbons using CO2 is a
particularly attractive route. Ongoing efforts to develop robust
chemical protocols for this direct hydrocarboxylation reaction
were, however, hampered by the high kinetic and thermody-
namic stability of CO2, requiring consequently the use of
strong reducing agents in most cases and leading to additional
constraints in terms of functional group tolerance.3 In this
context, tangible improvements have been made by transition-
metal catalysis and photocatalysis, with the control of the
regioselectivity of the addition intimately linked to the
structure of the considered olefin.4 Aliphatic alkenes are
indeed transformed into alkanoic acids, whereas the high
stability of η3-benzylic metal intermediates delivered mainly
branched carboxylic acids from styrene derivatives. Therefore,
organometallic catalysis faced a real obstacle in trying to shift
the CO2 fixation to the β-position for the latter. Recent reports
have demonstrated that a specific design of organometallic
nucleophiles is a primary requisite for the modulation of site
selectivity and extension of substrates in hydrocarboxylation
with CO2.5 Earlier attempts to selectively generate linear
carboxylic acids from styrenes and phenylacetylenes derivatives
were limited to the use of organoboranes,6 organozinc and
Grignard reagents.7 The nickel-catalyzed hydrocarboxylation of
unsaturated bonds has nevertheless been controlled by the
group of Martin by using appropriate ligands for the metal

center and water as a formal hydride source.8 Photochemical
carboxylation was also recently proved successful as activation
mode for the synthesis of linear carboxylic acids.9

The electrochemical carboxylation of hydrocarbons was
considered as an alternative very early on, but its development
remained relatively limited due to the lack of selectivity.10,11

For styrene transformation, site-selective hydrocarboxylations
are hardly achieved, and a mixture of α- and β-hydro-
carboxylation or dicarboxylation is mostly observed.12 Major
advances in selective electrochemical carboxylation reactions of
styrenes using carbon dioxide have, however, been reported
very recently (Scheme 1). Nam and co-workers indeed
developed a direct electrochemical β-selective hydrocarbox-
ylation of styrenes using CO2 and water, in which the site
selectivity was controlled between β-hydrocarboxylation and
dicarboxylation.13 Malkov and Buckley also established an
electrochemical protocol with triethanolamine as proton
source delivering carboxylic acids from diversely substituted
aryl-olefins with a high β-regioselectivity.14

Building on our recent developments for catalytic reactions
mediated by electrogenerated low valent samarium species15

and particularly on the electrochemical carboxylation of aryl
halides16 and benzyl halides,17 we report here an alternative
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electrocatalytic approach for the regioselective β-hydrocarbox-
ylation of low value styrene derivatives.

■ RESULTS AND DISCUSSION
We began our investigation toward the hydrocarboxylation of
styrene 1a as a benchmark substrate using SmCl3 as a
precatalyst, a samarium rod as the cathode, and a stainless-steel
grid as the anode at 5 mA/cm2 current density (Table 1). The

electrolysis was conducted in an undivided electrochemical cell
according to the procedure developed for the carboxylation of
aryl and benzyl halides.16,17 The optimization study was
conducted in acetonitrile using CO2(g) (1 atm). Water was
initially chosen as a proton source after the reported
accomplishments using the SmI2-H2O system for the reduction
of challenging functional groups.18 Even though a large
quantity of the starting material was recovered, the
monocarboxylic acid 2a was isolated as a unique product
with 21% yield using 20 equiv of H2O (Table 1, entry 1).

Water was then replaced by various alcohols and t-BuOH
promoted the targeted transformation, providing the best
result with up to 32% yield for 2a (Table 1, entries 2−4). The
effect of the amount of t-BuOH turned out to be crucial, since
3 equiv led to a lower yield of the desired product (Table 1,
entry 5), but 10 equiv of t-BuOH was enough to produce
exclusively the carboxylic acid 2a with 37% yield (Table 1,
entry 6). Finally increasing the quantity of TMSCl from 6
equiv to 8 equiv allowed to isolate the carboxylic acid with a
maximal yield of 47% (entry 7). Eventually, we found that
using dry ice as CO2 source was beneficial since the yield is
significantly improved to 65% without modifications in the
operating conditions (entry 8). At this stage, it was verified that
the increase in the efficiency of the reaction was not due to a
possible addition of water to the reaction medium in the
presence of dry ice (entry 9). The drop in temperature linked
to the addition of dry ice is not responsible for the better yield
of the reaction, as revealed by an electrolysis carried out at −40
°C in the presence of CO2(g) (entry 10). The catalytic loading
was also evaluated, and it was found that 10 mol % is necessary
to obtain the best results (compare in Table 1, entries 7 and
11). The electrochemical nature of the reduction was proven
by a blank experiment with no current applied, all other things
being equal, which did not lead to any conversion (entry 12).
It was observed that the stainless-steel electrode is not
sacrificially oxidized; instead, chloride oxidation is likely at
the anode.

Encouraged by these results, we set out to investigate the
preparative scope of the Sm(II)-catalyzed regioselective β-
hydrocarboxylation of styrene derivatives (Scheme 2). Initially,
different styrenes bearing various substituents on the aromatic
moiety were evaluated, and all (1b−1f) proved to be
compatible with the electrochemical conditions, affording the
corresponding carboxylic acids with a complete regioselectiv-
ity. Nevertheless, the chlorinated derivative 1d suffered a
dramatic decrease in the isolated yield of the targeted product
(22%), probably due to undesired dehalogenation reaction. To
our delight, a (hetero)aromatic reagent such as 2-vinyl-
benzofuran 1g was also tolerated and gave 3-(1-benzofuran-
2-yl) propionic acid 2g with 52% isolated yield. These
electrochemical conditions also accept substituents on the
vinyl group of styrene, providing exclusively β-hydrocarboxy-
lated products. In the case of α-substituted styrenes 1h and 1i,
the corresponding monocarboxylated products were produced
in good yields.

As shown in Scheme 2, the hydrocarboxylation of β-
substituted styrenes bearing a methyl substituent (1j−1m,
trans-configuration) or cyclic ones (1o and 1p) delivered also
the corresponding carboxylic acids in moderate to excellent
yields (36−95%). A stilbene derivative (1n) underwent the
transformation smoothly and provided the desired carboxylic
acid, although in a moderate yield, probably due to steric
hindrance. Moreover, the more sterically demanding α,β-
disubstituted styrene 1q was also reactive under these
conditions. It was however found that the presence of a
hydroxymethyl or a cyano group on the substrate (1r and 1s)
fully inhibited the reaction and returned significant amounts of
starting materials. This observation can be rationalized with the
high tendency of samarium to strongly coordinate to such
substituents, which may lead to catalyst quenching. In the case
of substrate 1t bearing a nitro group, substantial conversion to
degradation products was detected in the crude. These side
reactions were attributed to the propensity of Sm species to

Scheme 1. Electrochemical β-Hydrocarboxylation of
Styrenes with CO2

Table 1. Optimization of the Reaction Conditions

Entry
SmCl3
mol % ROH (equiv)

TMSCl
equiv

2a
(%)a

1 10 H2O (20) 6 21
2 10 MeOH (20) 6 9
3 10 EtOH (20) 6 13
4 10 t-BuOH (20) 6 32
5 10 t-BuOH (3) 6 21
6 10 t-BuOH (10) 6 37
7 10 t-BuOH (10) 8 47

8b 10 t-BuOH (10) 8 65
9 10 t-BuOH (10) + H2O (10) 8 45

10c 10 t-BuOH (10) 8 −
11 5 t-BuOH (10) 8 30

12d 10 t-BuOH (10) 8 −
aIsolated yields. bCO2(g) was replaced by dry ice (1 atm). cReaction
performed at −40 °C. dNo current applied, 24 h.
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reduce nitro functions.15a Interestingly, vinyl bromides 1u and
1v were also prone to dehalogenation, furnishing exclusively 2a
as final product with comparable yields to the one obtained
from 1a.

We then investigated the mechanism of this electrocatalytic
hydrocarboxylation. Our studies were first focused on assigning
the role of each component present in the electrochemical cell.
Without the catalyst or t-BuOH, the transformation of styrenes
showed inertia with respect to direct electrocarboxylation; it
led indeed to considerable degradation but without any
formation of carboxylic acid. In the absence of TMSCl, only
8% of 2a were produced. Replacing the samarium cathode with
a glassy carbon one in the presence of SmCl3 also resulted in
complete degradation of the substrate. This is in line with our
previous studies,15b in which screening of cathode materials for
reduction of Sm(III) salts was found to be possible only with
Sm as the cathode. These blank experiments indicate that, in
our case, the samarium activation of CO2 is mandatory to
perform the electrocarboxylation of such unsaturated products.

Deuterium labeling experiments were then conducted to
elucidate the protonation step. We first explored the
hydrocarboxylation of 1a followed by DCl quench but 2a
was isolated without any deuterium fixation. Surprisingly, the
addition of t-BuOD, supposed to be the proton donor, also
delivered the deuterium-free product. Lastly, the reaction was
performed in CD3CN, and interestingly 2a′ was isolated with
more than 99% deuterium incorporation on the benzylic
position (Scheme 3). At this point, we hypothesized that this

specific behavior of acetonitrile was triggered by its
coordination at the Sm center, which makes the protons
much more acidic and thus explains the observed proton-
donating character. Noteworthy, this behavior was also
reported with transition-metal based catalysts.19 We accord-
ingly propose that after CH3CN deprotonation, the simple
coordination of Sm(III) via the nitrogen atom (Sm-NCCH3) is
transformed into a strong Sm-CH2CN bond. At this stage, t-
BuOH, known as noncoordinating alcohol20 and activated by
TMSCl, can therefore be deprotonated by the generated
carbanion, thus leading to the dissociation of the Sm(III)
species.

To further clarify the mechanism, attempts to quench a
radical intermediate were made with indene 1p as the starting
material. In this case, the addition of a specific amount of
2,2,6,6-tetramethylpiperidin-1-yl)oxyl TEMPO (2 equiv) led
to complete inhibition of the hydrocarboxylation. Extending

Scheme 2. Substrate Scope of Styrene Derivatives

Scheme 3. Deuterium Labeling Experiments
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the reaction time to 8 h of electrocatalysis made it possible to
restore the reactivity, and finally, the expected product 2p was
isolated with the same yield as without TEMPO (see SI). As
already described in our previous work,16 this result shows that
the radical scavenger did not deactivate the catalyst. We rather
propose that it was initially neutralized by the CO2

•− radical
anion formed to lead to an unstable, not isolable intermediate,
to explain the reactivity found after complete consumption of
TEMPO.

To gain insight into the electrochemical behavior of the
species present in the solution, a series of cyclic voltammetry
experiments were carried out. These studies were initiated by
determining the behavior of each reactant in the electro-
chemical medium. The reduction potentials of various styrene
derivatives have been described, with potential values lower
than −2.4 V vs Ag/Ag+.13 These values have been nevertheless
determined in our electrochemical conditions (see SI),
confirming that all substrates are more difficult to reduce
than the Sm(III) species. The cyclic voltammogram of SmCl2
electrogenerated from SmCl3 in CH3CN containing nBu4NPF6
as supporting electrolyte is presented in Figure 1. It shows a

quasi-reversible system with a redox potential around −1.5 V/
SCE (red curve (1) in Figure 1). Addition of CO2 caused the
loss of the oxidation wave of SmCl2, while the reduction wave
persisted with a slight cathodic shift to −1.6 V/SCE (black
curve (2) in Figure 1). This result indicates that a chemical
reaction took place between CO2 and Sm(II), releasing
another Sm(III) complex. Moreover, when adding a solution
(1 mL) containing styrene 1a (3 × 10−3 M), t-BuOH (10
equiv) and TMSCl (8 equiv) in CH3CN, a massive reduction
wave emerged (dashed black curve (3) in Figure 1). This
electrochemical behavior shows the existence of a catalytic
current, proving that the hydrocarboxylation was catalyzed by
SmCl2.21

Consequently, we propose the following mechanism for the
hydrocarboxylation of alkenes (Scheme 4). First, the electro-
generated Sm(II) species reduces selectively the CO2 and

generates the corresponding radical anion A as a samarium
carboxylate.22 This latter undergoes an anti-Markovnikov
addition onto the unsaturated substrate to produce the
benzylic radical B which after transmetalation with TMSCl is
rapidly reduced by a second equivalent of Sm(II) to the
carbanion C. In the mixture, the t-BuOH, activated by TMSCl,
is essential for the reaction. Therefore, we suggest a
mechanism displaying two successive proton donations: The
first one involves the solvent CH3CN that after its activation
by the catalyst transfers one proton to form the product D after
hydrolysis. The CH2CN− anion extracts the nearest activated
proton, from the t-BuOH-TMSCl adduct, to restore its original
structure and dissociate the Sm(III) to be regenerated on the
cathode. This mechanistic proposal is based in particular on
the deuterium labeling experiments that were carried out.
However, possible H/D exchanges between t-BuOH and
acetonitrile could not be excluded under the reaction
conditions.

■ CONCLUSION
In summary, we have developed the regioselective hydro-
carboxylation of styrene derivatives via CO2 activation,
catalyzed by a reductive SmCl2 complex in acetonitrile. This
reaction showed remarkable anti-Markovnikov selectivity to
give the aliphatic carboxylic acids in good to excellent yields.
Several experimental investigations allowed identifying the role
of each species present in this reaction. Foremost, after various
blank tests, it was proven that SmCl2 catalyzes this reaction
assisted by acetonitrile and t-BuOH. Electrochemical measure-
ments confirmed the existence of a catalytic process.

■ EXPERIMENTAL SECTION
General Procedure for the Catalytic Carboxylation of

Styrene Derivatives. An undivided cell charged with tetrabuty-
lammonium hexafluorophosphate nBu4NPF6 (1 mmol, 387 mg) in
acetonitrile (40 mL), equipped with a samarium rod as the cathode
and a stainless-steel as the anode, was used. The electrogeneration of
Sm2+ from SmCl3 (0.1 mmol, 26 mg) was started by setting the
chronopotentiometry mode for 15000 s with i = 5 mA/cm2. The dry
ice was carefully added to the mixture in small pieces followed by the
alkene (1.0 mmol, 104 mg in the case of styrene), t-BuOH (10 mmol,
741 mg) and trimethylsilyl chloride (8 mmol, 869 mg). During the
electrolysis, small pieces of dry ice were added each 15 min. After 4 h
of electrolysis, the reaction was quenched with diethyl ether Et2O (10
mL), and the solvent was evaporated. To the obtained solid, a

Figure 1. Electrochemical behavior of SmCl3 with styrene 1a. Cyclic
voltammetry performed using a GC electrode (20 mm2) and a Pt wire
as counter electrode with a scanning potential between −0.5 and −2
V vs SCE in CH3CN with nBu4NPF6 [0.1 M]. Scan rate: 100 mV/s.
Red curve (1): 0.02 M SmCl3 in 0.1 M nBu4NPF6 in CH3CN; black
curve (2): after introduction of CO2; dashed curve (3): addition of 1
mL of t-BuOH/TMSCl/1a (10/8/1).

Scheme 4. Proposed Mechanism for the Catalytic β-
Hydrocarboxylation of Alkenes
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solution of HCl (2 M) was added, and the aqueous solution was
extracted with Et2O (2 × 30 mL). The combined organic phase was
washed with water and brine and dried over anhydrous MgSO4. The
solvent evaporation under vacuo furnished the product that was
purified by column chromatography on silica gel (90/10 then 50/50
PE/EtOAc).

3-Phenylpropanoic Acid (2a). 97.5 mg (0.65 mmol, 65%). 1H
NMR (360 MHz, CDCl3) δ 11.31 (br, 1H), 7.42−7.32 (m, 5H), 3.08
(t, J = 7.5 Hz, 2H), 2.80 (t, J = 7.6 Hz, 2H). 13C NMR (75 MHz,
CDCl3) δ 177.8, 140.1, 128.5, 128.2, 126.3, 35.3, 30.5. The 1H NMR
and 13C NMR spectra are in agreement with those reported in the
literature.9c

3-Phenylpropanoic Acid (2a). 90.0 mg (0.60 mmol, 60%) was also
prepared starting from 1u (183.0 mg, 1 mmol) or 97.5 mg (0.65
mmol, 65%) from 1v (183.0 mg, 1 mmol).

3-(p-Tolyl)propanoic Acid (2b). 100 mg (0.61 mmol, 61%). 1H
NMR (360 MHz, CDCl3) δ 7.19 (m, 4H), 3.00 (t, J = 7.8 Hz, 2H),
2.74 (t, J = 7.8 Hz, 2H), 2.41 (s, 3H). 13C NMR (91 MHz, CDCl3) δ
179.6, 137.1, 135.9, 129.3, 128.2, 35.8, 30.2, 21.0. The 1H NMR and
13C NMR spectra are in agreement with those reported in the
literature.9c

3-(4-Fluorophenyl)propanoic Acid (2c). 70.5 mg (0.42 mmol,
42%). 1H NMR (360 MHz, CDCl3) δ 7.22−7.11 (m, 2H), 7.04−6.91
(m, 2H), 2.93 (t, J = 7.7 Hz, 2H), 2.67 (t, J = 7.7 Hz, 2H). 13C NMR
(91 MHz, CDCl3) δ 179.2, 161.4 (d, J = 257.6 Hz), 135.7 (d, J = 3.6
Hz), 129.6 (d, J = 7.9 Hz), 115.3 (d, J = 21.2 Hz), 35.6, 29.6. The 1H
NMR and 13C NMR spectra are in agreement with those reported in
the literature.9c

3-(4-Chlorophenyl)propanoic Acid (2d). 40.5 mg (0.22 mmol,
22%). 1H NMR (360 MHz, CDCl3) δ 7.42−7.15 (m, 4H), 3.02 (t, J =
7.8 Hz, 2H), 2.70 (t, J = 7.8 Hz, 2H). 13C NMR (91 MHz, CDCl3) δ
178.6, 140.1, 128.5, 128.2, 126.3, 35.5, 30.5. The 1H NMR and 13C
NMR spectra are in agreement with those reported in the literature.9c

3-(o-Tolyl)propanoic Acid (2e). 156 mg (0.95 mmol, 95%). 1H
NMR (300 MHz, CDCl3) δ 11.56 (br, 1H), 7.24 (m, 4H), 3.05 (t, J =
7.0 Hz, 2H), 2.80−2.67 (t, J = 7.0 Hz, 2H), 2.42 (s, 3H). 13C NMR
(75 MHz, CDCl3) δ 179.8, 138.3, 136.0, 130.4, 128.5, 126.6, 126.2,
34.4, 28.0, 19.3. The 1H NMR and 13C NMR spectra are in agreement
with those reported in the literature.23

3-(2-Methoxyphenyl)propanoic Acid (2f). 81 mg (0.45 mmol,
45%). 1H NMR (300 MHz, CDCl3) δ 7.30−7.14 (m, 2H), 6.90 (dd, J
= 14.3, 7.6 Hz, 2H), 3.85 (s, 3H), 2.98 (t, J = 7.7 Hz, 2H), 2.69 (t, J =
7.7 Hz, 2H). 13C NMR (75 MHz, CDCl3) δ 179.8, 157.4, 129.9,
128.4, 127.7, 120.4, 110.2, 55.1, 34.0, 25.8. The 1H NMR and 13C
NMR spectra are in agreement with those reported in the literature.23

3-(Benzofuran-2-yl)propanoic Acid (2g). 99 mg (0.52 mmol,
52%). 1H NMR (360 MHz, CDCl3) δ 7.52−7.45 (m, 1H), 7.41 (d, J
= 7.7 Hz, 1H), 7.20 (td, J = 14.1, 7.1 Hz, 2H), 6.45 (s, 1H), 3.13 (t, J
= 7.5 Hz, 2H), 2.84 (t, J = 7.5 Hz, 2H). 13C NMR (91 MHz, CDCl3)
δ 177.2, 156.8, 154.6, 128.5, 123.4, 122.6, 120.5, 110.8, 102.6, 31.8,
23.7. The 1H NMR and 13C NMR spectra are in agreement with
those reported in the literature.9c

3-Phenylbutanoic Acid (2h). 94.5 mg (0.60 mmol, 60%). 1H NMR
(360 MHz, CDCl3) δ 7.49−7.13 (m, 5H), 3.41−3.24 (m, 1H), 2.76−
2.59 (m, 2H), 1.37 (d, J = 7.0 Hz, 3H). 13C NMR (91 MHz, CDCl3)
δ 178.7, 145.4, 128.5, 126.7, 126.5, 42.6, 36.1, 21.8. The 1H NMR and
13C NMR spectra are in agreement with those reported in the
literature.9c

3,3-Diphenylpropanoic Acid (2i). 113 mg (0.50 mmol, 50%). 1H
NMR (360 MHz, CDCl3) δ 7.55−7.08 (m, 10H), 4.58 (t, J = 7.9 Hz,
1H), 3.14 (d, J = 7.9 Hz, 2H). 13C NMR (75 MHz, CDCl3) δ 178.0,
143.1, 128.6, 127.5, 126.6, 46.6, 40.4. The 1H NMR and 13C NMR
spectra are in agreement with those reported in the literature.9c

2-Methyl-3-phenylpropanoic Acid (2j). 156 mg (0.95 mmol,
95%). 1H NMR (360 MHz, CDCl3) δ 10.70 (br, 1H), 7.50−7.14 (m,
5H), 3.14 (dd, J = 13.3, 6.2 Hz, 1H), 2.82 (dq, J = 13.2, 6.8 Hz, 1H),
2.73 (dd, J = 13.3, 8.0 Hz, 1H), 1.23 (d, J = 6.9 Hz, 3H). 13C NMR
(91 MHz, CDCl3) δ 182.8, 139.1, 129.0, 128.5, 126.5, 41.3, 39.3, 16.5.
1H NMR and 13C NMR spectra are in agreement with those reported
in the literature.9c

3-(3,4-Dimethoxyphenyl)-2-methylpropanoic Acid (2k). 80 mg
(0.36 mmol, 36%). 1H NMR (360 MHz, CDCl3) δ 6.76 (m, 3H),
3.85 (s, 6H), 3.01 (dd, J = 13.4, 6.5 Hz, 1H), 2.73 (dq, J = 13.5, 6.9
Hz, 1H), 2.63 (dd, J = 13.4, 7.8 Hz, 1H), 1.18 (d, J = 6.9 Hz, 3H). 13C
NMR (91 MHz, CDCl3) δ 182.3, 148.7, 147.5, 131.5, 121.0, 112.1,
111.1, 55.8, 55.7, 41.4, 38.9, 16.4. 1H NMR and 13C NMR spectra are
in agreement with those reported in the literature.24

3-(Benzo[d][1,3]dioxol-5-yl)-2-methylpropanoic Acid (2l). 93 mg
(0.45 mmol, 45%). 1H NMR (360 MHz, CDCl3) δ 6.69 (m, 3H),
5.94 (s, 2H), 3.00 (dd, J = 13.4, 6.5 Hz, 1H), 2.71 (m, 1H), 2.62 (dd,
J = 13.4, 7.8 Hz, 2H), 1.19 (d, J = 6.9 Hz, 3H). 13C NMR (91 MHz,
CDCl3) δ 182.4, 147.6, 146.1, 132.7, 121.9, 109.3, 108.1, 100.8, 41.4,
39.0, 16.4. 1H NMR and 13C NMR spectra are in agreement with
those reported in the literature.25

3-(4-Methoxyphenyl)-2-methylpropanoic Acid (2m). 105 mg
(0.54 mmol, 54%). 1H NMR (360 MHz, CDCl3) δ 7.14 (d, J = 8.6
Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 3.83 (s, 3H), 3.05 (dd, J = 13.3, 6.3
Hz, 1H), 2.85−2.71 (m, 1H), 2.67 (dd, J = 13.3, 7.8 Hz, 1H), 1.21 (d,
J = 6.8 Hz, 3H). 13C NMR (91 MHz, CDCl3) δ 182.4, 158.2, 131.1,
129.9, 113.9, 55.2, 41.4, 38.4, 16.4. 1H NMR and 13C NMR spectra
are in agreement with those reported in the literature.26

2,3-Diphenylpropanoic Acid (2n). 158 mg (0.7 mmol, 70%). 1H
NMR (300 MHz, CDCl3) δ 10.16 (br, 1H), 7.65−6.97 (m, 10H),
3.94 (t, J = 7.7 Hz, 1H), 3.49 (dd, J = 13.8, 8.3 Hz, 1H), 3.11 (dd, J =
13.8, 7.1 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 179.6, 138.7, 137.9,
128.9, 128.7, 128.4, 128.1, 127.6, 126.5, 53.5, 39.3. 1H NMR and 13C
NMR spectra are in agreement with those reported in the literature.27

1,2,3,4-Tetrahydronaphthalene-2-carboxylic Acid (2o). 126 mg
(0.73 mmol, 73%). 1H NMR (300 MHz, CDCl3) δ 11.42 (br 1H),
7.38−7.03 (m, 4H), 3.13 (d, J = 7.3 Hz, 2H), 3.01−2.81 (m, 3H),
2.34 (m, 1H), 1.98 (m, 1H). 13C NMR (63 MHz, CDCl3) δ 181.4,
135.6, 134.6, 129.1, 128.9, 126.0, 125.9, 39.7, 31.3, 28.4, 25.6. 1H
NMR and 13C NMR spectra are in agreement with those reported in
the literature.9c

2,3-Dihydro-1H-indene-2-carboxylic Acid (2p). 100 mg (0.62
mmol, 62%). 1H NMR (360 MHz, CDCl3) δ 7.35−7.13 (m, 4H),
3.49−3.23 (m, 5H). 13C NMR (63 MHz, CDCl3) δ 182.0, 141.3,
126.7, 124.4, 43.4, 36.0. 1H NMR and 13C NMR spectra are in
agreement with those reported in the literature.9c

2,3-Diphenylbutanoic Acid (2q). 166 mg (0.44 mmol, 44%). 1H
NMR (360 MHz, CDCl3) δ 7.76−6.87 (m, 10H), 3.72 (d, J = 11.2
Hz, H), 3.54−3.33 (m, 1H), 1.03 (d, J = 7.0 Hz, 3H). 13C NMR (91
MHz, CDCl3) δ 178.2, 144.5, 137.0, 130.4, 128.4, 127.7, 127.3, 126.4,
59.1, 42.9, 19.9. HRMS (m/z) [M + Na]+ calculated 263.1048, found
263.0995.
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