

FACULTÉ DE PHARMACIE

D2HP – OTU 05 Pharmaceutical engineering : practical works

Eloisa BERBEL MANAIA

Institut Galien Paris-Saclay Team. Improvement of the transport of biologically active drugs Bâtiment Henri Moissan,HM1, 3rd floor, Office 2820 eloisa.berbel-manaia@universite-paris-saclay.fr

PLANNING

Timetable D2HP-2024/2025

EBM : Eloisa Berbel Manaja

JPM : Jean Philippe Michel

Note: Groups will be formed during the first class.

Evaluation:

- report of Practical classes
- participation at the tutorial and PW

GROUPES

-**Respect your groupe Practical classes**

- **Practical classes are mandatory**

1. Introduction

- **2. Matrix tablets: overview**
- **3. Inert matrix tablets**
- **4. Swellable matrix tablets**
- **5. Erodible matrix tablets**
- **6. Other excipients / some reminders on tablets**
- **7. Controls**
- **8. Conclusion**

CONVENTIONNAL DDS*

*** DDS = Drug Delivery Systems**

Oral route (ex: solutions, tablets, capsules)

- Easy to use
- Good compliance
- Exposure to digestive fluids
- Low absorption of some API (Mw, low water solubility))

Parenteral (ex: solution for IV injection)

- Rapid action
- No absorption step
- Lower compliance
- Rapid clearance

Absorption and distribution depend essentially on the API physico-chemical properties.

NOVEL DDS

- Inserts, implants
- Adhesive systems

6

MODIFIED RELEASE DDS

In Eur. Ph. « modified release » because of modification of…

- **- release rate**
- **- release site**
- **- release moment**

MODIFIED RELEASE DDS

D'après Cummings et al.⁴

Therapy for Alzheimer's disease

MODIFIED RELEASE DDS

Advantages

- Compliance
- Lower amount of API delivered per unit of time
- Reduction in the incidence and severity of both local and systemic side effects
- Reduced blood level oscillation (night)
- Economy

…

Limitations

- Accumulation (in case of slow elimination)
- Overdosage (default, bad use)
- Problem in case of intolerance or « poisoning »
- Size of the dosage form
- Complex formulation development

…

TWO DESIGNS

OTHER CR TABLETS

More original systems

Ex: - **Osmotic-controlled Release Oral delivery Systems**

- **Prolonged gastric residence time**

- **1. Introduction**
- **2. Matrix tablets: overview**
- **3. Inert matrix tablets**
- **4. Swellable matrix tablets**
- **5. Erodible matrix tablets**
- **6. Other excipients / some reminders on tablets**
- **7. Controls**
- **8. Conclusion**

MATRIX TABLETS

Release controlled by diffusion mechanism into polymer network

CRITICAL POINT: DIFFUSION PROCESSES

For all the diffusing species, the diffusion rate follows the Fick law:

$$
\frac{dQ}{dt} = -S \cdot D \cdot \frac{dc}{dx}
$$

S = Diffusion surface

D = Diffusion coefficient

dc/dx = Concentration gradient

Into matrices, modulation of the diffusion coefficient D

RELEASE KINETICS ORDERS

Zero-order Release rate is constant (except at the end)

1 5

First-order

Release rate decreases with time

MATRIX TABLETS

Release controlled by diffusion mechanism into polymer network

INERT MATRIX TABLETS

1 7 Thickness of diffusion layer (h) (i.e. rate of agitation or stirring). The saturation solubility of a drug is a key factor in the Noyes- Whitney equation. The driving force for dissolution is the concentration gradient across the boundary layer.

h

HETEROGENEOUS INERT MATRIX

In heterogeneous inert matrices, dissolved API diffuse through the pore

The API diffusion coeffcient depends on matrix porosity (ϵ) and tortuosity (τ)

$$
D_{eff.} = \frac{\varepsilon}{\tau} D_{API} \text{ into diss.} \text{med.}
$$

HETEROGENEOUS INERT MATRIX

Higuchi simplified model for heterogeneous inert matrices: ex: Ethylcellulose

if Q is the released amount per surface (S) at time (t),

$$
P^{\text{Then}}Q/S = [D_{PA}.C_S.(\varepsilon/\tau).(2.A - \varepsilon.C_S).t]^{1/2}
$$

with

D_{PA} = diffusion coefficient of the API into the dissolution medium

A = Initial concentration of the API into the matrix

 C_S = API solubility into the dissolution medium

- ϵ = matrix porosity
- τ = matrix tortuosity

INERT MATRIX - POROSITY

INERT MATRIX - POROSITY

- **Pycnometry** (gaz or liquid)

Compacity $(\%) = (D_{compact\ after\ ejection} / D_{pycnometry}) \times 100$

Porosity $(\%) = \epsilon = 100$ - compacity

INERT MATRICX - POROSITY

Effect of compression force on starch tablets

figure B.15b: photographie MEB d'un comprimé d'amidon CS de porosité relaxée 17 % (à gauche avec un zoom sur un grain d'amidon (à droite)

Thèse E. Serris, Ecole des Mines 2002

INERT MATRICES - POROSITY

INERT MATRICES - TORTUOSITY

Experimental quantification

Ex: microtomography X

Theoretical quantification

$$
\frac{1}{\tau} = 1 - \frac{2}{3} \left(1 + \varepsilon \right) \left(1 - \varepsilon \right)^{2/3}
$$

In general between 1 and 3

MATRIX TABLETS

Release controlled by diffusion mechanism into polymer network

MATRIX WITH SWELLING

Creation of a gel layer (hydrated polymer with high-molecular weight) at tablet surface.

API release depends on gel layer properties.

Strong effect of hydrated polymer viscosity on the stability and thickness of this layer or on API diffusion.

Ex: *Hydroxypropylmethylcellulose (HPMC), hydroxypropylcellulose (HPC),…*

Special case: HOMOGENEOUS MATRIX

Special case: HOMOGENEOUS MATRIX

Higuchi simplified model for homogeneous matrix

if Q is the released amount per surface (S) at time (t),

Then

$$
Q / S = [D_{PA}.C_{S} (2.A - C_{S}).t]^{1/2}
$$

With

D_{PA} = diffusion coefficient of the API into hydrated polymer

A = Initial concentration of the API into the matrix

 C_S = API solubility into the dissolution medium

Hypothesis: - one-direction release - Sink conditions - Instantaneous dissolution of the API

- Instantaneous fully hydration of the polymer

MATRIX WITH SWELLING

MATRIX WITH SWELLING

Principal consequences of swelling:

- increase of the diffusion path length for API = decrease of the release rate

- increase of polymer chain mobility (and then also for API) = increase of the release rate

Modelisation is complex because of simultaneous phenomena.

Simple model: Peppas-Korsmeyer model

 $M_t/M_{\infty} = kt^n$

with $n = 0.5$ essentially diffusion* $($ * cf. previous slides)

0,5< n<1 diffusion + polymer relaxation + erosion

More complex models exist:

$$
\frac{M_t}{M_{\infty}} = 4 \left[\frac{Dt}{\ell^2} \right]^{1/2} \left[\frac{1}{\pi^{1/2}} + 2 \sum_{n=1}^x (-1)^n \text{ierfc} \left(\frac{n\ell}{2\sqrt{Dt}} \right) \right]
$$

MATRIX TABLETS

Release controlled by diffusion mechanism into polymer network

MATRIX WITH DEGRADATION

- Erosion = polymer chain lysis Ex.: Poly(lactic-co-glycolic) acids

- Dissolution = polymer chain solubilization Exemple: Polymethacrylates

Matrix degradation depends on balance between two rates: **water penetration vs. polymer dissolution/degradation rates.**

Surface degradation Volume degradation

Erosion kinetics control the API release

Ex: *Polylactic-co-glycolic acids (PLGA), polymethacrylates, HPMC and HPC with low viscosity,…* **³**

MATRIX WITH DEGRADATION

• **HETEROGENEOUS EROSION = Surface erosion**

- Hydrophobic polymers
- Physical integrity of the matrix is maintained
- Zero-order kinetics are possible (erosion >> diffusion)

• **HOMOGENEOUS EROSION = Volume erosion**

- More hydrophilic polymer
- Physical integrity of the matrix is lost
- Erosion + diffusion
- Kinetics less related to the time

PARAMETERS RELATED TO API

Solubility

Only solubilized fraction can diffuse Dissolution rate increases with solubility Si solubilité < 0,01 mg/ml, libération souvent incomplète Influence du pKa

Dosage

If more than 500 mg, hard to formulate matrix

Molecular weight

If > 500 Da, diffusion coefficient into polymer network could be low

Granulometry

Influence intrinsic dissolution of the API

PARAMETERS RELATED TO POLYMER

Viscosity

Granulometry

Crystallinity

Glass transition temperature

Polymer proportion

Interactions with API

- Cationic polymers (NaCMC, chitosan) + Anionic API
- Carbopol-based matrices + Basic API

- **1. Introduction**
- **2. Matrix tablets: overview**
- **3. Inert matrix tablets**
- **4. Swellable matrix tablets**
- **5. Erodible matrix tablets**
- **6. Other excipients / some reminders on tablets**
- **7. Controls**
- **8. Conclusion**

Function : to act as a bulking agent or filling material

Ideal diluent: Chemically and physiologically inert Easy tabletted Inexpensive Non-hygroscopic Soluble or not, taste, acid or alcalin,...

Examples: Starch, Lactose, Sucrose, Glucose, Mannitol, Sorbitol, Calcium Phosphate, Calcium Carbonate, Cellulose…

True density : The mass of a particle divided by its volume, excluding open and closed pores

Bulk density: The bulk density of a material. It is the ratio of the mass to the volume (including the inter-particle void volume) of an untapped powder sample

Tapped density : The tapped density of powders or granulates is an increased bulk density attained after mechanically tapping a cylinder containing the sample.

LACTOSE

True density

1.540 for α -lactose monohydrate; 1.589 for anhydrous β -lactose.

> **3 9**

*Bulk density***:** 0.619 g/cm3 . *Tapped density***:** 0.935 g/cm3

 α - lactose

 β - lactose

Different kind of lactoses: anhydrous α -lactose, monohydrate α -lactose, anhydrous β -lactose (in general 70/30 β/α mixtures),...

Examples of commercial monohydrate lactoses

MICROCRYSTALLINE CELLULOSE

*Angle of repose***:** 34.4° for Emcocel 90M

Bulk density:

0.337 g/cm3 0.32 g/cm3 for Avicel PH-101 0.29 g/cm3 for Emcocel 90M

Tapped density:

0.478 g/cm³ 0.45 g/cm3 for Avicel PH-101 0.35 g/cm3 for Emcocel 90M

*True density***:** 1.512-1.668 g/cm3

CALCIUM PHOSPHATE (DIHYDRATE) CaHPO₄ (+2H₂0)

x 100 x 300

True density: 2.89 g/cm3 for A-TAB 2.39 g/cm3 for DI-TAB

Bulk density: 0.78 g/cm3 for A-TAB

Tapped density: 0.82 g/cm3 for A-TAB

FLOWABILITY

Powder Flowability of Pharmaceutical Excipients

Mean Time to Avalanche (sec)

FLOWABILITY

Powder Flowability of Pharmaceutical Excipients

COMPACTABILITY

4

Crushing strength vs. applied force for compacts of various materials.

COMPACTABILITY

Schematical illustration of processes that take place during compression.

BINDERS

Functions: - Bind particles into entangled networks

- Produce tablets with sufficient hardness

Types of binders:

Powder (direct compression, dry granulation) Solution (wet granulation)

Examples:

Solution : Gelatin, Cellulose and derivatives, PVP, starch, sucrose, PEG

Dry: Cellulose, Methyl cellulose, PVP, PEG

LUBRICANTS

Anti-friction: reduction of the frictions between powder grains or between powder and die wall.

Anti-adherent: prevention of powder sticking on die or punches.

ex: Magnesium stearate, sodium laurylsulfate, stearic acid, talc..

+ nice appearance, shiny, dust free…

TABLET COMPRESSION

Fa: force applied by the upper punch

Correspond to energy lost by friction during tablet ejection

Fb: force felt by the lower punch

TABLET COMPRESSION and LUBRICANTS

- 1. Force applied by the upper punch (full blue line)
- 2. Force felt by the lower punch (dotted blue line)
- 3. Upper punch displacement (full red line)
- 4. Lower punch displacement (dotted purple line)
- 5. Radial force (green line)

LUBRICANTS

MAGNESIUM STEARATE

 $[CH_3(CH_2)_{16}COO]_2Mg$

GLIDANTS

Function: Improve flow sufficiently for uniform die filling

ex: Colloidal silicon dioxide, talc, magnesium or calcium silicate…

5 1

DISINTEGRATING AGENTS

Function: disrupt the tablet structure and lead to fragmentation facilitating API dissolution.

Mode of action:

Favor water uptake

Disintegrating agent particles swell in presence of water

Examples: Starch, Reticulated Cellulose, PVP, Sodium starch glycolate, Sodium carboxymethylcellulose,…

PROPORTION OF THE EXCIPIENTS

In general in tablets (not specific to matrix)

CATEGORIES vs. GLOBAL PROPERTIES

Beyond classes, it is important to consider all the properties of the different excipients !

Some examples:

Mixture of diluents

Calcium Phosphate + Microcrystalline cellulose

Lubricants and release kinetics

Magnesium stearate vs. Sodium laurylsulfate

Solubility of diluents

Calcium Phosphate vs Lactose

- **1. Introduction**
- **2. Matrix tablets: overview**
- **3. Inert matrix tablets**
- **4. Swellable matrix tablets**
- **5. Erodible matrix tablets**
- **6. Other excipients / some reminders on tablets**
- **7. Controls**
- **8. Conclusion**

CONTROLS

Potentially dangerous forms because they contain large doses (equivalent to several administration of conventionnal release dosage form)

It is essential to validate the availability of the API

Drug dissolution testing, measuring the extent and rate of solution formation from a dosage form, is critical for its bioavailability and therapeutic effectiveness

Paddle apparatus/ Basket apparatus / continuous flow-through cell Sink conditions

+ usual controls for tablets

- Uniformity (mass, dose)
- Mechanical properties
- Friability

Weigh 20 tablets and calculate the average mass. When weighed singly, the deviation of individual masses from the average mass should exceed the limits given below

Table 2.9.5.-1

* When the average mass is not more than 40 mg, the test for uniformity of content of single-dose preparations (2.9.6) is performed instead of the test for uniformity of mass.

Max 2 out this range 0 out the double of this range

TABLET HARDNESS

Crushing Strength Test

This measures the degree of force needed to fracture a tablet.

Measurement accuracy: 1 Newton

Number of units tested: 10

TENSILE STRENGTH

Tensile strength (MPa) (only if diametral fracture)

 πDe *F* 2 σ =

F: force needed to fracture tablet (N) D: tablet diameter (mm) e: tablet thickness (mm)

Allows to overcome the dimensions of tablets

Recommended values: 1 to 2 MPa

FRIABILITY

Required amount of tablets is dedusted, weighed and subjected to a uniform tumbling motion for a specified time. They are then dedusted and reweighed.

> Mean tablet mass > 650 mg : 10 tablets < 650 mg: closest to 6.5 g

100 rotations = 4 minutes

PRACTICAL WORKS

Practical work objective:

To develop matrix tablets able to release 50% of a defined API into 4 hours.

CONCLUSION

