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Environmental effects of development programs are the subject of an ongoing debate. We contribute to this
debate by studying effects of a randomly allocated, nationwide development program in The Gambia on
deforestation, focusing on parts of the country with meaningful baseline forest cover. Our main finding is
that the program caused significant increases in annual forest loss. Conservative benchmark estimates imply
that 5.6% of all forest loss occurring within 1km of treatment villages during the eight post-program years

resulted from the program. Accounting for spillovers, we estimate that the program explains about one quarter
of the forest loss around all villages. Looking at possible channels, we find moderate treatment effects of the
development program on household wealth and livestock holdings. Further, villages with limited access to
markets drive the effect of the program on deforestation.

1. Introduction

Deforestation has reached record levels over the last three decades
(Hansen et al., 2013). The depletion of common forest is particularly
severe in poor areas (Barrett et al., 2011) and the effect of increases
in income per capita on forest cover is strongest in poor countries
Cuaresma et al. (2017). Because of the effects on climate change, this
deforestation has negative effects well beyond the country in which
deforestation occurs. Recognizing this, a number of recent development
initiatives attempt to reduce deforestation in developing countries,
with the ultimate goal of mitigating climate change. Well known is in
particular the UNFCCC’s financial mechanism to reduce emissions from
deforestation and forest degradation, REDD+ (Miles and Kapos, 2008).
At the same time, development projects that do not specifically target
deforestation also have the potential to affect deforestation in a number
of ways, which are typically unintended side effects of programs that
aim at increasing incomes, or at improving production techniques and
living conditions more generally.

In the present study, we contribute to the understanding of the
(unintended) effects of development projects on deforestation, by pro-
viding causal evidence from a nationwide randomized program in The
Gambia, West Africa. Our spatial focus is on deforestation in dryland

biomes, which span a large fraction of poor regions of the world and
are particularly vulnerable to the negative effects of climate change
(Bastin et al., 2017; Dietz et al., 2004). Despite this, they have received
much less attention in studies of deforestation than rainforests in Latin
America and Asia (Busch and Ferretti-Gallon, 2017; Probst et al., 2020;
Assuncao et al., 2020).

Using detailed satellite data, we analyze the impact of a nationwide
Community-Driven Development (CDD) program on forest loss in rural
villages that were randomly chosen as beneficiaries. Those villages
received financial support to implement projects of their choice and
mostly decided to use those funds for agricultural inputs, machinery, or
investments in local infrastructure. The program is of significant mag-
nitude, with average per-household funding of approximately US$140
(roughly equivalent to half the GDP per capita in The Gambia). The
random allocation of the program allows for a straightforward identi-
fication of the causal effect of the development intervention on forest
loss. Given that non-compliance to the treatment assignment was neg-
ligible, the estimates can be interpreted as average treatment effects
of the program and the experimental design allows us to identify
spillover effects from treated to neighboring villages. At the same
time, we should note that the experimental nature of our analysis
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is limited by the fact that the ultimately implemented projects are
quite heterogeneous and that they are endogenously chosen by the
village. Therefore, the estimated program impact is the effect of being
treated with the opportunity to implement a relatively wide range of
development projects (with a budget determined by the size of the
population of the community) rather than the effect of being treated
with a particular type of project.

Our central finding is that the CDD program leads to forest loss in
treatment villages. Our most conservative benchmark estimates indi-
cate that forest loss occurring within 1km of the treatment villages
increased by 9.2%. An alternative way to illustrate the magnitude and
ecological significance of our estimates, is that the estimates imply that
5.6% of all forest loss occurring around the treatment villages in the
post-program period resulted from the program. If spillover effects from
treated villages into other villages are also accounted for, the estimated
effect is even larger, suggesting that the CDD program is responsible
for over one quarter of the overall forest loss occurring around program
villages and neighboring villages after 2011. The estimated magnitudes
of the effect of the project on deforestation are large and constitute
a warning about possible unintended environmental consequences of
development projects.

Based on the literature, two main mechanisms can be identified that
potentially connect development projects, such as those implemented
by CDD-funded villages, to deforestation.

First, projects may succeed in increasing incomes and that, in turn,
may affect the environment. Initial work focused primarily on the
so-called environmental Kuznets curve (Grossman and Krueger, 1995;
Stern, 2004). This hypothesis suggests a non-monotonic relationship
in which income growth initially increases environmental degradation
until a turning point is reached, at which the trend reverses. Under
this hypothesis, income growth in poor regions implies environmental
degradation.? A different view on possible effects of increases in income
is taken by the poverty-environment hypothesis, which suggests that envi-
ronmental degradation is poverty-induced, and therefore that increases
in income in poor regions will lead to environmental improvement
(Baland and Platteau, 1996). The empirical evidence is mixed and pro-
vides no clear support for these two contrasting hypotheses (Busch and
Ferretti-Gallon, 2017). A problem with most extant literature is that
household income and forest usage are likely to be jointly determined,
implying that estimated effects based on observational data are likely
biased.

A second potential mechanism is through changes in local pro-
duction techniques. In this case, there are also two opposing views.
On the one hand, the Borlaug hypothesis (Angelsen and Kaimowitz,
2001; Borlaug, 2007) suggests that increasing agricultural productiv-
ity, through modern production technologies, decreases the demand
for cropland and thus deforestation. On the other hand, increased
agricultural productivity could also have the opposite effect. New
technologies may increase expected profits, create economies of scale,
promote farming, and thus increase the demand for cropland (Morton
et al., 2006). Extant empirical evidence on the relationship between
agricultural productivity and deforestation is again inconclusive (Foster
and Rosenzweig, 2003; Abman and Carney, 2020; Assuncdo et al.,
2016).

To shed light on possible mechanisms, we first investigate the effect
of the program on economic welfare in the medium run (3-5 years
after the program). The results from post-program surveys suggest
that treatment villages experienced modest improvements in economic
welfare. Further, we test for heterogeneous effects and use additional
post-program survey and census data and find some evidence that
program-induced deforestation within the immediate surroundings of

2 However, alternative explanations for the environmental Kuznets curve
exist that do not relate the inverse-U shape to income growth, e.g., Andreoni
and Levinson (2001).
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the village was largest in treatment villages farther from roads. Taken
together, these findings are consistent with the existence of an envi-
ronmental Kuznets curve. To investigate possible mechanisms further,
we also classify implemented projects as either agricultural and non-
agricultural, and find some evidence that implementing agricultural
projects is associated with more forest loss in a 5km radius around
treatment villages. These results speak against the Borlaug hypothesis.
Yet, because of endogenous project selection, unlike our other results,
the results connecting project type and forest loss are not identified
through experimental variation and should be interpreted with cau-
tion. Finally, we do not find evidence of a significant medium-term
treatment effect of the CDD program on other variables identified in
the literature as determinants of deforestation, such as consumption
of resource-intensive goods, local institutions, and population growth
(Baland et al., 2010; Klasen et al., 2010; Burgess et al., 2012).

Our paper contributes to the literature on unintended effects of
development programs on the environment. Several authors have pre-
viously exploited quasi-experimental setups to investigate unintended
effects.® Alix-Garcia et al. (2013) study the effect of the well-known
Progresa/Oportunidades conditional cash transfer program on forest
cover. Exploiting the discontinuity in program implementation based
on a marginality index, they show that the program increased de-
forestation. Ferraro and Simorangkir (2020) study a conditional cash
transfer program in Indonesia, exploiting the phasing-in of the pro-
gram to estimate its effect on the environment. Their findings suggest
that the program significantly reduced deforestation. Garg and Shenoy
(2021) consider a program that provided tax benefits for industrial
development in an Indian state and explicitly excluded environmen-
tally damaging industries. Using a spatial difference-in-discontinuities
design, these authors show that programs that significantly increase
economic activity can be implemented without an impact on defor-
estation. Abman and Carney (2020) show that a large fertilizer and
seed subsidy program in Malawi lead to a decrease in deforestation,
using instrumental variables as identification strategy. Hanna and Oliva
(2015) exploit an experimental setup in which assets were randomly
distributed to very poor households in West Bengal, India, leading to
a statistically and economically significant increase in economic well-
being. The authors explore additional effects on fuel consumption. On
the one hand, they find that fuel consumption increased, yet they also
find a decrease in the use of wood as fuel. Thus, although the effect on
forests was not explicitly studied, these findings suggest a channel—
changes in fuel consumption patterns—through which increases in
incomes may lead to a reduction in deforestation. In sum, while there
is a recent empirical literature that exploits experimental and quasi-
experimental designs to study the unintended effects of development
programs on the environment, the emerging picture is far from clear.
While some of the papers suggest negative effects (e.g., Alix-Garcia
et al., 2013), others find positive effects (e.g., Ferraro and Simorangkir,
2020; Abman and Carney, 2020) or show—possibly because of an
explicit consideration of the environment and the implementation of
pro-environmental measures—that programs can promote economic ac-
tivity without harming the environment (e.g., Garg and Shenoy, 2021).
Against this background, Alpizar and Ferraro (2020) call for more
experimental studies linking anti-poverty programs to environmental
outcomes. Our present study is intended to shed further empirical
light on this open question, exploiting an experimental design and
focusing directly on the unintended effects of a development program
on deforestation.

3 There are also a number of experimental studies in the economic develop-
ment literature that consider intended effects of programs on the environment
(such as Jayachandran et al., 2017; Wilebore et al., 2019; Duflo et al., 2018).
There are also quasi-experimental studies on intended effects, as Alix-Garcia
et al. (2015) that use matching combined with fixed effects panel regressions
to show the environmental and welfare effects of a Payments for Ecosystem
Services Program in Mexico.
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The following section introduces our data. Section 3 discusses our
empirical strategy and explains how the experimental design allows us
to identify direct effects as well as spillover effects of the program.
Main results and further results regarding possible mechanisms based
on supplementary data are discussed in Section 4. Section 5 concludes.

2. Background and data
2.1. The Gambia Community-Driven Development (CDD) program

The context of our study is a randomly allocated CDD program
in small, rural villages of The Gambia. CDD programs are a major
modality of the bottom-up approaches that involve local communities
in project design and implementation, which international donors,
multilateral organizations, and national governments have increasingly
favored in the last two decades (Wong, 2012; Mansuri and Rao, 2012).
Donors have particularly targeted participatory CDD programs in their
strategy for climate change mitigation and adaptation (Arnold et al.,
2014).

The Gambia CDD program was rolled out between 2008 and 2010,
and was mainly financed by the World Bank, and co-financed by the
Government of Japan (World Bank, 2006b). It targeted a population
estimated at 435,000 people or about 50 percent of the Gambian rural
population (World Bank, 2006b). The program was implemented in
eligible villages belonging to 88 wards located in the six rural Local
Government Areas (LGAs) of The Gambia.* Only communities with a
population between 100 and 10,000 inhabitants (according to the 2003
National Census) were eligible for the project. As a way of improving
the targeting of the project, village-level indicators of poverty were
calculated using data from the Gambia Census 2003, and the two thirds
of villages ranked the poorest in each ward were selected as eligible
for the project. Within the group of eligible villages, around half of
the villages (495) were randomly assigned to treatment—i.e., received
funding for projects of their choice.” The remaining eligible villages
(435) did not receive funds for village-level projects.® The random
assignment was blocked at the ward level, i.e., around half of the
eligible villages within each ward were selected to receive the funds.
This low-level spatial blocking gives us the opportunity to restrict the
deforestation analysis to areas with meaningful forest cover, while
retaining the randomized blocked structure (as explained below).

The implementation of the program was to a large extent managed
by local authorities. This is central to the CDD approach, because the
program’s stated objective was to plan, implement and maintain local
social and economic investment priorities jointly with Local Govern-
ment Authorities (World Bank, 2006b) and because one of the project’s
central components was to strengthen local government capacities.
In particular, the Gambian Department of State for Local Govern-
ment and Lands managed the project’s implementation in cooperation
with specifically hired field staff and jointly with representatives from
recipient villages (World Bank, 2006b).

On the village-side, project choice was demand driven. Villages in
the treatment group were—subject to some restrictions—free to choose
any type of project to invest the CDD funds in.” In order to select the
final village-level project, each village had to follow a long decision-
making process involving several local and external actors (see World

4 Wards are a smaller geographical division that tend to be homogeneous
in geographical terms but heterogeneous in socio-cultural terms. Typical rural
wards comprise 11 villages (10th percentile) to 36 villages (90th percentile)
and 6 to 18 villages that were eligible for the CDD program.

5 The randomization was performed as part of the program implementation
by the World Bank program staff.

® Appendix Figure A.1 illustrates the sample selection process.

7 In this aspect, the Gambian CDD program differs from the typical CDD
modality, in which communities must decide whether to apply for a project
and compete for resources.
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Bank, 2006a). As a first step, a village-level development committee
was established to organize a series of village meetings and consulta-
tions with community-based organizations and other representatives of
the community. These meetings and consultations were used to define
village-level development priorities and a list of sub-projects for which
the CDD funds were to be used. Sub-projects were presented to all the
villagers for the final selection of sub-projects to be financed by the
CDD program. Also after project selection, community members were
involved in the implementation and maintenance of the investments
The budget allocated to treatment villages was a base of US$10,000,
plus an extra budget determined based on population and poverty
levels. The average disbursement for the 495 treatment villages was
around US$11,500 (current values). With about 60 households in an
average village, this translates into per-household allocations that are
roughly equivalent to one-half of an annual per capita income in The
Gambia. Rural villages in The Gambia, as in our sample, have on
average only 40 households and thus even higher per-household allo-
cations. The villagers were expected to contribute at least 10% of the
project costs in cash and/or in-kind. The most commonly implemented
village-level projects were: farm implements and inputs, village-level
infrastructure, water pumps, and milling machines. Appendix Table
C.13 provides more information about the village-level projects im-
plemented in the Gambian CDD program. Though donors imposed
some environmental safeguard policies regarding project choice,® forest
preservation was not among the explicitly stated objectives of the
Gambian CDD program (World Bank, 2006b).

2.2. Data

Our forest-related outcome measures are based on the Global Forest
Change Database 1.6 (GFCD henceforth), which contains worldwide
information about forest cover in 2000 and forest change between
2001 and 2018 (Hansen et al., 2013). The data are based on images
from Landsat satellites. Images captured during tree growing season for
each region are used to generate high-resolution pixel-level data at a
1 arc-second resolution, which corresponds to a pixel size of less than
30m x 30m.

In our main specification, we aggregate pixels in buffers of 1km
radii around each village centroid to obtain village-level forest and
deforestation measures. An advantage of using buffers is that they
provide village-level proxies of deforestation for an area of fixed size. As
an extension to these results, we also use larger radii as well as villages’
Thiessen polygons as the unit of aggregation. Fig. 1a shows the 1km
buffers around all villages in The Gambia (black dots indicate villages
that were eligible for the CDD program).

The richness of the GFCD allows us to also capture forest at low
densities. This is of fundamental importance in semi-arid drylands, such
as most of The Gambia, where most forest cannot be considered dense
by the standard of forest-rich countries, yet carries high ecological
importance (Bastin et al., 2017). In Appendix C.1 we compare the GFCD
data with other available data and confirm that they provide a useful
measure for forest in the area under investigation. In particular, we
show that variation in GFCD-based tree cover estimates for our study
region is qualitatively comparable to variation in a manually coded
dataset by Bastin et al. (2017), that is designed for improved detection
of tree-cover in dryland biomes. According to the GFCD, during 2001-
2013, forest loss in The Gambia amounted to 11,000 ha., i.e. over 1%
of the country’s area (Hansen et al., 2013).

Despite our ability to measure forest at low density, we need to
consider implications of low forest cover for the empirical work. Me-
chanically, there is little deforestation potential in areas with very little

8 For instance, the acquisition of chainsaws was not allowed within the CDD
program.
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Fig. 1. Aggregation levels of forest cover and forest change used in the empirical analysis.

Notes: In Figure (a), dots represent settlements that were eligible for the CDD program. Figure (b) is based on calculations from the GFCD. The green areas indicate wards with

above-median baseline forest cover (2000) outside of the urban and semi-urban areas.

or no forest cover to begin with (and there is no forest gain in The Gam-
bia during the sample period; see Hansen et al., 2013, Supplementary
Materials). We thus restrict our analysis to rural areas with meaningful
initial forest cover. For this, we make use of the block-randomized
treatment assignment, which stratified treatment geographically using
wards (typically comprising 6-18 eligible villages). We exclude entire
wards, which allows us to conserve the experimental treatment-control
balance in our estimation sample. To focus on rural areas, we exclude
urban and peri-urban wards, specifically Banjul and the Kombo area
in the West Coast Region. To define areas with meaningful initial
forest cover, we use the ward-level tree cover density as the criterion
to select wards. In related work, forests are commonly defined as
areas with more than 10% tree cover (FAO, 2018), yet this cutoff
is too restrictive to be applied to the ward-level tree cover density
aggregate we use. Using a tree cover of 10% as the ward-level cutoff
would imply dropping 79% of all rural villages, including wards that
are partly covered in dense forests. Instead, we use a less restrictive
cutoff. Specifically, we exclude wards with initial forest cover below
the sample median, which is 7.6% tree cover. Because wards do not
all contain the same number of villages, the wards that remain in the
sample do not contain exactly 50%, but only 49.3% of all rural villages.
These villages are responsible for more than 80% of all rural forest
loss in the GFCD. Appendix Figure A.1 provides details on how the
sample is obtained. After applying these sample restrictions, we obtain
a sample of 790 villages, namely 211 treatment villages, 191 control
villages and another 388 ineligible villages that can only be affected
indirectly, through spillovers. The location of the high-forest wards is
indicated in Fig. 1b. All results discussed in the main text are based
on this sample, unless explicitly stated otherwise. In Appendix Tables
A.2 to A.4 we explore how the main results change when we apply
alternative cutoffs to restrict the sample to locations with meaningful
forest cover.

The characteristics of the GFCD data in the sample of CDD-eligible
villages that we use for our main empirical analysis are described in

Appendix C.2. There are no statistically significant differences in the
baseline forest cover between the treatment and the control group.

3. Empirical strategy

We estimate three different specifications (as well as a battery of
robustness checks shown in Appendix A) for the post-program treat-
ment effect (i.e., the effect in the period 2011-2018). Specification
1, which serves as our benchmark specification, is a difference-in-
differences specification relying on experimental variation in direct
exposure to treatment and is estimated on the subsample of CDD-
eligible villages. Specification 2 extends Specification 1 by additionally
exploiting experimental variation in indirect exposure to treatment
(i.e., through treatment of neighboring villages). This specification is
estimated on a significantly larger sample, which includes ineligible
villages. In total, this sample includes all 790 villages in the above-
median forest cover wards, i.e. almost half of all rural villages in The
Gambia.

To help us understand possible mechanisms, we perform an anal-
ysis of heterogeneity of the main treatment effect (Specification 3).
Further, we use supplementary data that we obtain from surveys that
were conducted after the program to study effects on household-level
outcomes. This auxiliary analysis is presented in Section 4.4. Since this
analysis is based on cross-sectional post-program data and we are able
to exploit experimental variation, the empirical strategy for this part is
straightforward and is not further discussed in this section.

Our panel-data analysis distinguishes between the pre-program pe-
riod (2001-2007), the implementation period (2008-2010), and the
post-program period (2011-2018). We do so, because we hypothesize
that effects of the program appear only after 2010 for several reasons.
To begin, our data do not record the exact disbursement dates, but
projects had to be appraised before payments were made. According
to administrative data, most project proposals were appraised between
late 2008 and mid 2010. Implementation likely began later than that.
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In the absence of more precise data on actual project starting dates, we
infer from these appraisal dates that the majority of projects were not
implemented before 2009 and likely started operating during or after
2010. This assessment is also consistent with aggregate disbursement
data (World Bank, 2012, p. 3). Moreover, even after the disbursements
are made, effects may take several years to materialize because de-
forestation takes time. The way deforestation is measured, likely adds
further lag. According to the definition of forest loss in the GFCD, a
pixel is considered as deforested only after the full removal of all forest
cover in a pixel, and since annual satellite images from the growing sea-
son are used for the GFCD, post-growing season tree removal would be
recorded in the following year. Therefore, even if deforestation started
to increase with the implementation of the program, the eventual forest
loss will only be recorded in the data during the following years.

Thus, we do not expect major treatment effects on deforestation
during the implementation period from 2008 to 2010. Yet, villages
were informed about the treatment earlier and the CDD program im-
plementation process included a series of pre-disbursements activities
(meetings, project selection, etc.), which also started in 2008. Conse-
quently, treatment villages do neither have a clear treatment status
nor control status during the implementation period, and therefore we
separate the implementation period from the pre-treatment period in
all our specifications to allow for an early effect.

Specification 1: Direct average treatment effect

The average treatment effect estimate of the CDD program is based
on the following difference-in-differences specification (Specification

1):

log(loss,,,) = By Lep) - treatment,, +a, + 38, + €y
PpE([2008,2010],[2011,2018]}

@

where loss,,,, measures hectares of forest loss in village v in ward w
during year . The indicator 1, indicates whether year ¢ falls into
period p and treatment, is a binary treatment indicator. Thus, the spec-
ification allows for the treatment effect to vary by period. As discussed
above, we expect at most a small effect during the implementation
period (2008-2010).

Our specification allows for village fixed effects, a,, which control
for any unobserved time-invariant differences, and ward-year fixed
effects, 6,,,, which account for the stratification of the randomization
and for time-variant unobserved shocks at the ward level (such as
bushfires, rainfall, prices, etc.). In this benchmark specification fixed
effects are selected via a post double-selection procedure based on
the LASSO (Ahrens et al., 2018; Belloni et al., 2014). More precisely,
we always control for program-period-ward fixed effects, as the strata
of the randomization (Bugni et al., 2019). The post-double-LASSO
procedure selects which additional ward-year and village fixed effects
to control for, in order to maximize statistical power. Our results are
qualitatively robust to using OLS instead (see Appendix Table A.1). For
the sake of simplicity, Specifications 2 and 3 and all robustness checks
are estimated using OLS with fixed effects.

Due to the logarithmized dependent variable, estimates for f, can
be interpreted as semi-elasticities. To deal with the skewness of the
distribution of forest loss while keeping observations with zero loss, we
explore several alternative approaches. First, in our main specification,
we compute the logarithm after adding a small constant of 0.075 ha.
(the area of a single pixel), which is a natural choice as it is the
smallest increment for forest loss measures derived from the GFCD. The
frequency of village-years with zero forest loss for the 1 km buffer, 5km
buffer, and the Thiessen polygons are 67%, 20%, and 60% respectively.
Second, in Appendix A we show that our results remain qualitatively
comparable when using the inverse hyperbolic sine (Appendix Table
A.5), or the untransformed area of forest loss (Appendix Table A.6) as
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dependent variables. For those variations, results are in fact stronger in
terms of statistical significance.

We interpret the estimates as average treatment effects, because
non-compliance to the treatment assignment was negligible.’

Specification 2: Spillover effects

In Specification 2, we exploit the fact that the experimental design
of the CDD program also allows us to identify spillover effects from
treated villages to neighboring villages. This is because, conditional
on the number of neighboring CDD-eligible villages, the number of
neighboring treatment villages is random and thus independent of
village characteristics. The type of spillovers we estimate here are not
necessarily interactions between villages or externalities across villages.
For example, estimated spillovers may also be due to plots de facto
belonging to one village but located within the buffer of another village.

Spillover effects are not restricted to CDD-eligible villages. Thus,
while the direct treatment effect can only be identified from the com-
parison of CDD-eligible treated and control villages, the spillover effects
are identified from variation among all villages that have CDD-eligible
neighbors. Consequently, our estimates for the spillover effects are
estimated on and identified from the sample of all settlements in wards
with above median forest cover.

Specification 2 is described by the following regression model:

log(oss,,,) = I (ﬂp - treatment,, + 6, - eligible,
pE([2008,20101.12011,2018])
d . ad d . nd
+ Z J/p : NTreat,u + rlp . NElig‘u>
de{2 km,2-5 km}

+ a, + 6, + Epurs (@3]

where N‘T’m .p counts the treatment villages within distance d around
village v, so that y captures the spillover effects. Additionally we control
for Nglig,u’ which counts all villages that were eligible for the CDD
program within distance d. We consider spillovers from neighboring
villages located within 2km and those located more than 2km and less
than 5km away.

When this specification is estimated on the sample of all village,
including settlements that were not eligible for the CDD program, the
coefficients capturing the direct treatment effect, f,, are still solely
identified from variation within the sample eligible of villages. Any dif-
ferences between eligible and non-eligible villages will be captured in
0,. The coefficients capturing the spillover effects, y;’ and n;’ , are iden-
tified from variation within eligible and ineligible villages. Thus, the
estimated effects are average treatment effects across eligible and inel-
igible villages. Appendix Table A.8 shows that estimating the spillover
specification on the subsample of eligible villages yields almost iden-
tical point estimates for all effects, suggesting that the effects are
comparable in eligible and ineligible villages. The estimates shown in
Appendix Table A.8, which are based on the subsample of eligible
villages, naturally have larger standard errors, as they are estimated
on a smaller sample.

Specification 3: Treatment effect heterogeneity

To investigate possible channels, Specification 3 extends the
difference-in-differences approach of Specification 1 to study if the

9 The program’s administrative disbursement data indicate high compli-
ance. The records lack disbursement information on only four rural villages
in the high forest sample that were assigned to treatment. This amounts to
less than 2% of the assigned villages (13 villages, or 3%, in the full rural
sample that includes low-forest wards). Only two rural control villages appear
in the program’s disbursement records, both located in high-forest wards. This
amounts to 1% of the villages in the high-forest sample or 0.5% of the full
sample.
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impact of the CDD program on deforestation differs by pre-treatment
village characteristics. To this end, we focus on the characteristics
identified as correlates of deforestation in previous studies, namely
transportation costs, population, poverty, and ethno-linguistic fraction-
alization (ELF) (Busch and Ferretti-Gallon, 2017; Burgess et al., 2012).
For each of the variables used in the analysis of heterogeneous effects
we estimate separate effects for villages with high values (i.e., above
the median value) and low values of the respective variable. Treatment
effect heterogeneity is tested using the following extension of the
difference-in-differences approach of Specification 1:

high

log(loss,,,;) = 1ep treatment, ( )

high, + ﬁj,OWlowU)
pe([2008,20101,[2011,2018]}

+a, + 8y + Epurs 3

where high, and low,, is a binary median-split indicators for the various
village-level characteristics (i.e., the indicator high [low] is equal to
one if the value is above [below] the median for that variable and zero
otherwise), so that ﬂ;"gh captures the treatment effects for villages with
a high value for the respective characteristics. Conversely, estimates for
ﬂ;ow captures the treatment effect estimate for villages with a low value.
a, and 6, are village and ward-year fixed effects. Panel C of Appendix
Table C.14 provides evidence that these sample split variables are
balanced between the treatment and the control group.

Inference

Standard errors for Specifications 1 and 3 are estimated allowing for
heteroscedasticity and autocorrelation of the regression model error at
the village level. In Appendix Table A.7 we show that this inference
method is the most conservative out of a large set of alternative
inference methods, including inference based on ward-level cluster-
robust standard errors, randomization inference, modeling the spatial
dependence using Conley inference, and bootstrap-based alternatives.
Standard errors for the spillover regressions (Specification 2) have to
account for the spatial correlation of the model error. This is because
spatially proximate villages may have common neighboring villages,
which induces spatial correlation in the number of treated neighbors
and thus in the model error. We implement Conley inference, using
10km as a cutoff (note that villages that are farther apart cannot
share a third village within their 5km perimeter). As additional robust-
ness checks, several tables show p-values based on suitable alternative
inference methods were appropriate: E.g., ward-level cluster-robust
standard errors in the case of Appendix Table A.1 and randomization
inference for columns 4-6 in Table 1, which also accounts for the
cross-village dependence structure of N¢ 10

Treat,v"

4. Results
4.1. Pre-treatment trends and balance

Before moving to the regression results, we discuss balance. Ap-
pendix Table C.14 presents evidence supporting cross-sectional pre-
treatment balance along a number of important dimensions: pre-period
forest density and loss, geographic characteristics, the village-level
characteristics used for Specification 3, as well as several village-level
characteristics based on the census 2003. The tests presented in this

10 The vector of treatment assignment enters the regression equation in three
ways: each village’s individual treatment status, treatment,, and the number
of treated villages within the 2km radius, N2X" . and 2-5 km ring, NZkm-5km,

reat,v Treat,v
The number of treated villages within certain radii is correlated for villages
that are close enough to each other. When conducting randomization inference
following HeR (2017), we can compute these count variables for each re-drawn
alternative treatment assignment and thereby automatically account for the

design-based spatial correlation between villages.

Journal of Development Economics 153 (2021) 102737

table confirm the successful randomization and that treatment and
control group are comparable. Yet, differences in levels would in any
case be accounted for in the difference-in-differences specification,
through the village fixed effects. Differences in trends, due to an
exceptionally unfortunate draw in the treatment assignment, would be
a more serious concern if they were present. Since we have seven years
of pre-treatment data, we can test for differential time trends between
the treatment and control group using a specification that is analogue to
Specification 1, i.e., that accounts for village fixed effects and ward-year
fixed effects. These results, presented in Appendix Table C.15, show
that there was no significant difference in pre-treatment deforestation
trends between treatment and control villages.

4.2. Treatment effects

The estimates of the magnitude of the effect of the development
program on forest loss are based on a difference-in-differences analysis
that exploits the experimental setup further. The estimation results
of Specification 1 and Specification 2 are presented in Table 1. The
estimate of the average treatment effect in the 1km buffers around
village centroids of CDD-eligible villages is large. The estimates in
column 1 indicate that deforestation in treatment villages is 9.2% (p-
value = 0.08) larger than in control villages during this period. We use
the fitted model to predict estimates for forest loss in the absence of
the program (Appendix B discusses the estimation of these predicted
values). The model fit implies that a total of 26.3 ha. forest loss within
the 1km buffers of treatment villages are due to the CDD program.
This area amounts to 5.6% of all forest loss occurring around the 211
treatment villages in the post-program period. We also use Specification
1 to estimate the average treatment effect based on 5km buffers and
Thiessen polygons. For 5km buffers we find that deforestation around
treatment villages is 16.4% (p-value = 0.01) larger than in control
villages. For Thiessen polygons the effect is estimated to be 5.2%
(p-value = 0.42).

The results of Specification 2, accounting for spillover effects, qual-
itatively corroborate these results regarding the direct treatment effect,
but provide additional insights on indirect effects. The results in column
4-6 of Table 1 imply that, in addition to a direct treatment effect of
a 11.4% increase in forest loss (p-value = 0.02), the treatment leads
to deforestation because of spillovers. The additional effect is a 7.3%
increase (p-value = 0.08) in deforestation for each treatment village
located within 2km from the centroid and also a 7.3% increase (p-
value <0.01) in deforestation for each treatment village located in the
wider 2-5 km ring.!! Again, we use the fitted model to predict estimates
for forest loss in the absence of the program, this time also accounting
for the indirect spillover effects. For the 1km buffers, these estimates
suggest that one quarter of the total forest loss in all 790 villages of
our sample after 2011, is due to the CDD program. For forest loss in
different areas around the village centroid, the estimates vary, but are
of a similar magnitude (see footer of Table 1, column 4-6).

4.3. Mechanisms: Treatment effect heterogeneity

To investigate possible mechanisms behind the findings so far,
we investigate heterogeneity of the treatment effect. Specification 3
extends the difference-in-differences approach of Specification 1 to
study if the impact of the CDD program on deforestation differs by
pre-treatment village characteristics. For each baseline variable that
we consider possibly relevant for deforestation, based on previous
work by Busch and Ferretti-Gallon (2017) and Burgess et al. (2012),
we estimate separate effects for villages with high and low values of
the respective variable. The results for the 1km buffers are shown in

11 A distance of 2km was chosen, as it constitutes the smallest distance at
which two villages’ 1km buffers are not overlapping.
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Table 1
Average annual treatment effect on deforestation.
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Direct effects (Eligible villages, Specification 1)

Spillover effects (All villages, Specification 2)

@ (2 3) “ 5 6)
log(loss' k™) log(loss®¥™) log(loss™) log(loss' k™) log(loss®*™) log(loss””)
post-program (2011-18) X treatment 0.092 0.164 0.052 0.114 0.211 0.085
(0.08)* (0.01)** (0.42) (0.02)** (0.00)*** (0.17)
[0.07]* [0.00]*** [0.24]
post-program (2011-18)  x NZkm 0.073 0.153 0.020
(0.08)* (0.01)** (0.65)
[0.21] [0.03]**
post-program (2011-18)  x Npkm-skm 0.073 0.125
(0.00)*** (0.00)***
[0.06]* [0.02]**
implementation (2008-10) X treatment —0.003 0.024 -0.009 -0.001 0.026
(0.95) (0.69) (0.88) (0.99) (0.69)
[0.99] [0.76]
implementation (2008-10) x N%r‘;‘:t 0.011 -0.014
(0.85) (0.84)
[0.87] [0.90]
implementation (2008-10) ~ x NZkm-skm 0.025 0.008
(0.35) (0.85)
[0.49] [0.91]
eligibility x period indicators 4 v
Observations 7236 7236 7236 14220 14220
Villages 402 402 402 790 790
Mean N%r‘;‘:[ 0.851 0.851
Mean N%{‘;‘:;-ikm 2.747 2.747
Total post-program loss in ...
... CDD villages (ha.) 467.0 11624.9 970.6
... all villages (ha.) 1660.3 44086.7 3707.7
Part that is due to CDD 26.3 830.9 63.2 453.8 19172.1 747.3
Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. For columns 1-3, p-values in parentheses are based on cluster-robust standard errors, allowing for clustering of the model error at

the village level. For Specification 2, in columns 4-6, p-values in parenthesis are based on standard error estimates allowing for spatial correlation and auto-correlation of the
model error. We implement Conley inference, taking 10km as spatial cutoff, while leaving the temporal autocorrelation unrestricted. We chose 10km because two villages that are
farther apart than 10km cannot have a common third village within their 5km perimeter, which implies that neither of the three variables relating to treatment can be spatially
correlated beyond this distance. p-values in square brackets are based on randomization inference as described in Footnote 10 and in Hel3 (2017). All regressions control for the
treatment indicator and ward-period indicators, to account for the fact that wards constitute the strata of the treatment randomization. Additional controls are village fixed effects
and ward-year fixed effects. For the estimation of Specification 1 in columns 1-3, a post double-LASSO approach (Ahrens et al., 2018; Belloni et al., 2014) is used to select which
ward-year fixed effects to control for. Specification 2 in columns 4-6 is estimated using OLS. Control means in the table footer are computed using the unlogarithmized forest loss
variables. The estimated total loss due to the CDD projects is, estimates the counterfactual outcome for treatment villages using the procedure described in Appendix B.

Table 2 (detailed estimation results for 5km buffers and polygons are
presented in Appendix Tables A.9 and A.10). The only heterogeneous
effect that is statistically significant is distance to roads, a proxy for
transportation costs (Alix-Garcia et al., 2013). Our measure of distance
to road considers the distance to the two main paved roads connecting
the country along the northern and southern riverbanks and a few
other major paved roads through The Gambia that mainly connect
cities in Senegal. The coefficient estimates in Table 2 imply that treat-
ment villages that have above median distance to roads, i.e., worse
transportation infrastructure, have a large and positive effect, a 21.2%
increase in forest loss. The treatment effect is small and insignificant
for villages closer to roads. This difference is robust to controlling for
baseline forest cover, population density and the interaction of these
two variables with treatment and period indicators (Appendix Table
A.11), suggesting that road access is not capturing the effect other
dimensions of remoteness. Instead, villages with better road access are
likely to have better access to markets as well, and may thus be able
to mitigate the pressure on land and forest resources resulting from
development programs.'?

Further, we study the correlation between the type of project cho-
sen by a village and deforestation. We observe that treatment vil-
lages invested their funds in a heterogeneous set of projects (see
Appendix Table C.13) and that this spending behavior is correlated
with forest loss. Several villages chose non-agricultural investments, but
most villages invested at least part of their budget in projects related

12 In line with this interpretation, we find suggestive evidence that villagers’
expectations for land prices increased in treatment villages with limited road
access compared to control villages with limited road access (Appendix C.4).

to agriculture. In Appendix Table A.12, we summarize findings on
how post-program forest loss developed differently depending on how
the villages allocated funds between agricultural an non-agricultural
projects. In particular, we find that villages that used larger shares
of their funds for agricultural projects experienced more forest loss
farther away from the village center. In contrast, villages that used
more of their funds for non-agricultural projects, experienced more
forest loss in the 1 km buffer. Clearly, project choice is endogenous and
villages with and without agricultural projects likely differ in relevant
characteristics. Thus, the observed difference in forest loss cannot be
interpreted as evidence for a causal link between project choice and
deforestation in different distances to the village, but it is consistent
with such hypotheses.

4.4. Mechanisms: Household-level channels

In order to shed light on further potential mechanisms as they are
hypothesized in the literature, we test whether the CDD has effects on
outcomes that possibly connect the program to deforestation. To this
end, we use data collected in Gambian villages after the end of the CDD
program, but unrelated to the program. In particular, we use the Gam-
bia Census 2013 to gain insights into how the CDD program affected
economic welfare, livestock ownership, consumption of forest-intensive
goods, and village population growth. These results are discussed in this
section. We also use data from the Integrated Household Survey 2015
(IHS 2015 henceforth), a comprehensive household-level survey. The
results based on these data are presented in greater detail in Appendix
C.3.
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Table 2
Heterogeneous effects by pre-treatment variables for 1km buffers (Specification 3)
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Village-level split: Distance to road Population Poverty ELF
@™ ) 3) @
log(loss'*™) log(loss'*™) log(loss'*™) log(loss'*™)
low x post-program (2011-18) X treatment —0.040 0.068 0.102 0.069
(0.61) (0.39) (0.18) (0.39)
high x post-program (2011-18) X treatment 0.222 0.115 0.083 0.118
(0.00)*** (0.13) (0.30) (0.15)
low x implementation (2008-10) x treatment —-0.015 -0.018 -0.076 0.031
(0.87) (0.83) (0.35) (0.69)
high x implementation (2008-10) X treatment 0.016 0.023 0.071 —-0.043
(0.83) (0.76) (0.36) (0.60)
split indicator x period v v 4 v
Observations 7236 7236 7236 7236
Villages 402 402 402 402
p-value phish = glow (post-program coefficients identical) 0.018 0.216 0.236 0.225
Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. p-values in parentheses are based on cluster-robust standard errors, allowing for clustering of the model error at the village level.

The reference period is 2001-2007. Units of observation are village-years between 2001 and 2018. The dependent variable is the logarithm of the area of forest loss per year
plus a very small constant (the area of a single 30m x 30m pixel) to deal with observations where the area of forest loss is zero. The results show the interaction of the
difference-in-differences interaction terms with binary indicators dividing the sample according to the median of each pre-treatment village-level variable. The coefficients can thus
be interpreted as treatment effect estimates for the sub-group defined by the sample split. Ward-year and village fixed effects are included in all specifications.

For the empirical analysis we again take advantage of the experi-
mental design of the CDD program, estimating the following specifica-
tion:

Y0 = P - treatment, + X, - 6 + &, + €545 )

where Y, is an outcome variable for household A, treatment, a
binary indicator for the treatment status of village v, X, a vector of
village-level controls, and «, are ward fixed effects. We control for
the poverty index and village population before the beginning of the
program (using data from the Gambia Census 2003) because the budget
assigned to each village is a function of these variables (as described
in Section 2.1). As we are using data collected up to five years after
the implementation of the CDD program, f should be considered an
estimate of the medium-term average treatment effect of the program.

For statistical inference we rely on cluster-robust standard errors,
clustered at the village level. Observations are weighted with the
inverse village size, so that results are representative at the village level
and larger and smaller villages have equal weights.'®

The Gambia Census 2013 provides information for all households
in the country, but only includes a small number of potential outcome
measures. We were able to match the Census 2013 data for most of the
820 villages in the sample used for the empirical analysis, except for
20 villages (11 treatment and 9 control villages) for which the match
was not possible given the lack of unique village-level identifiers. With
these data, we test a set of hypotheses stemming from previous studies.
Hypothesis 1 (H1): The CDD program increases general economic
welfare.

One of the goals of the CDD program was to increase general
economic welfare. If this goal was reached, the literature related to the
environmental Kuznets curve, described in the introduction, predicts
an increase in environmental degradation. From the Census 2013 we
build an asset z-score, which we take as a proxy for a household’s
wealth.!* The index is scaled to have mean zero and variance one in
the control group. The results in Table 3, Panel B indicate that the CDD
program had a positive and statistically significant effect on the asset

13 Results are similar when no weights are used. One exception is that in the
unweighted regression the point estimate for livestock is substantially smaller,
suggesting that a potential effect is driven by smaller villages.

14 The asset z-score combines indicator variables for ownership of vehicles,
electronic devices and other assets.

index in the full sample (p-value = 0.075). In the sub-sample of high
forest cover villages (Panel A) the estimate is even larger (p-value =
0.048). We take this result as an indication that the CDD program had
a modest positive impact on wealth. This result is consistent with the
results reported in Hel3 et al. (2021), where we find that the program
led to modest increases in economic welfare in a subset of treatment
villages for which more detailed data is available.'®

Hypothesis 2 (H2): The CDD program affects livestock ownership.

Alix-Garcia et al. (2013) point out one specific channel through
which increasing wealth can affect deforestation: the increase in live-
stock ownership. We build a livestock z-score, composed of variables
capturing ownership of different types of livestock covered by the
Census questionnaire (cattle, goats, sheep and poultry). The results in
column 2 of Table 3 show no strong effect of the program on livestock
ownership for the full sample. Yet the results for the high forest cover
sample suggests that the livestock PCA-index is slightly larger in the
treatment group (p-value = 0.097).'°
Hypothesis 3 (H3): The CDD program affects consumption of
resource-intensive goods.

Households in treatment villages may have increased deforesta-
tion due to changes in the consumption of forest resources and land-
intensive goods. To test this hypothesis we follow Baland et al. (2010)
and Foster and Rosenzweig (2003) considering the consumption of
firewood for fuel. Almost every household located in control villages
(98%) relies on firewood as the main source for fuel, so there is little
room for an increase in treatment villages. Column 3 shows indeed no
significant effects.

Hypothesis 4 (H4): The CDD program affects village population.

Busch and Ferretti-Gallon (2017) indicate that population size is
a correlate of deforestation and Klasen et al. (2010) show that im-
migration is a relevant factor to explain deforestation in Indonesia.
If the size of treatment villages changed due to the CDD program,
this could impact deforestation. We estimate the treatment effect on
three outcomes related to H4. Column 4 presents results for a variable
indicating for each household the share of members not born in the
village, as a proxy for immigration. The results indicate that the CDD

15 The result is also similar to the findings of Casey et al. (2012), who
analyze the effects of a very similar CDD program in Sierra Leone.

16 This result is weaker when binary indicators or the imputed monetary
value of livestock are used to compute the index instead of the z-score.
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Table 3
Household channels: Results using data from Census 2013.
(H1) (H2) (H3) (H4)
@ ©))] [©)] “@ (©)] (6)
Asset z-score Livestock z-score Firewood Share migrant #children Village size
Panel A: Villages with above median forest cover
treatment 0.139 0.075 —-0.002 0.014 0.391 3.769
(0.048)** (0.097)* (0.796) (0.233) (0.125) (0.756)
Observations 15585 15593 15598 15561 15595 389
Control mean d.v. 0.000 0.000 0.982 0.219 10.411 403.210
Panel B: All villages
treatment 0.086 0.033 —0.002 0.011 0.165 6.852
(0.075)* (0.305) (0.739) (0.135) (0.393) (0.450)
Observations 32355 32377 32386 32259 32383 800
Control mean d.v. 0.000 0.000 0.984 0.187 11.230 456.370

* p<0.1, ** p<0.05, *** p<0.0l. p-values in parentheses are based on cluster-robust standard errors, allowing for clustering of the model error at the village level. Dependent
variables are taken from Census 2013. In columns 1 through 5 the unit of observation is the household and each observation is weighted by the inverse village population to
make results representative at the village-level. The asset z-score combines indicators for owning a radio, a TV, a mobile, a bicycle and for having access to electricity and to
water. To compute the animal z-score, for each animal category, we first create a variable containing the decile the household is in (to reduce the severe skewness of that data)
and aggregate these into the z-score. Animal categories are cattle, goats, sheep, and poultry. In column 6 the unit of observation is the village and no weights are applied. All
specifications include ward fixed effects as well as the poverty index and village population in 2003.

program did not affect immigration. In column 5, results indicate
that the CDD program does not increase the number of children per
household. The last column of Table 3 is based on data at the village
level, and the results indicate that there is no significant difference
in the number of inhabitants between treatment and control villages.
Therefore, we do not find evidence that the CDD program induced
any change in the village population that could explain the increase
in deforestation.

We also use data from the IHS 2015, a comprehensive household-
level survey. About one third of the villages in the sample used above
are covered by the IHS2015. Results based on these data are discussed
in Appendix C.3 and suggest that there was at most a modest increase
in general economic welfare. For this analysis, we aggregate several
household-level variables into indices for each hypothesis. Estimates
for treatment effects on indices related to H1 and H2 are positive but
insignificant using these data, which were collected five years after the
program. This may indicate that the effects were larger in years closer
to the project (when the Census data were collected) and dissipated
over time. Alternatively, this may indicate that the analysis based on
IHS 2015-data does not have enough statistical power to detect small
effects. In addition to the four hypotheses described above, the data
from the IHS2015 allow us to test additional hypotheses that relate
specifically to the Gambia CDD program, in particular to agricultural
production and village institutions. We find no evidence for any these
channels playing a role here.

Overall, we find that the CDD program has a modest impact on
economic welfare, as measured by household wealth and livestock
holdings. This is consistent with increases in welfare as a link between
the program and deforestation. Yet, we do not find evidence that
the effect on deforestation is driven by other channels described in
previous literature, such as an increase in the consumption of resource-
intensive goods (beyond the apparent increase in livestock holding)
or an increase in village population. We also do not find evidence
pointing towards a channel specific to the community-driven aspects
of the program. In particular, using survey-based indices we find no
significant differences between treatment and control villages regarding
the villages’ institutions.

5. Conclusion

The effect of human development on the environment is the subject
of an ongoing debate. While the theoretical predictions are unclear, re-
cent evidence tends to support the idea that development interventions
can feature environmental degradation as an unintended side effect
(Alix-Garcia et al., 2013; Asher et al., 2020). In particular negative
effects on forest cover are a reason for concern in light of climate

change. In the context of our study, a development program in The
Gambia, we note that forest loss and desertification are identified as
key issues in the national climate change adaptation strategy (UNDP,
2015). The role of forests in our semi-arid context is also evidenced by
the existence of global collaborations such as the Great Green Wall of
the Sahara and the Sahel Initiative, a flagship initiative to combat climate
change and desertification (UNCCD, 2016). Yet, causal evidence on
drivers of deforestation is scarce, particularly for semi-arid biomes such
as The Gambia.

In this paper, we take advantage of the experimental design of a
nationwide community-driven development program in The Gambia
to provide causal evidence about the relationship between rural de-
velopment interventions and deforestation. We find that deforestation
in treatment villages is significantly larger than in control villages in
post-program period. Additionally, there is strong evidence for indirect
spillover effects from treatment villages on forest loss around neigh-
boring villages. Combining estimates for direct effects and indirect
spillover effects, our main results is that about one quarter of the total
forest loss around sample villages within an eight year period after the
implementation of the CDD program can be attributed to the program.

Our investigation of possible household-level channels considers
increases in income. We find that households in treatment villages
exhibit modest improvements in economic welfare in the medium run
(3-5 years after the program). To the extent to which increased welfare
is responsible for the increased deforestation, this is in contrast to the
poverty-environment hypothesis, which predicts that poverty reduction
at low levels of income implies environmental improvements (Foster
and Rosenzweig, 2003; Baland and Platteau, 1996). Instead, this is
consistent with the existence of an environmental Kuznets curve. It is
also in line with more recent non-experimental and quasi-experimental
evidence (Baland et al., 2010; Alix-Garcia et al., 2013; Cuaresma et al.,
2017). We further find that the treatment effect is larger in areas with
limited access to markets, as measured by poor road infrastructure. This
result, too, is consistent with the hypothesis that improved economic
conditions are driving the deforestation results. This is the case as
villages located in areas where markets are available will be less reliant
on forests for the supply of goods if, as a result of the project, there are
changes in consumption patterns (e.g., more use of wood for housing
or a more meat-intensive and thus land-intensive nutrition).

The second broad channel discussed in the introduction is structural
change in agriculture and production techniques. While we do not find
evidence for a significant treatment effect on a survey-based index
for modernized agricultural production, many projects in treatment
villages directly targeted agricultural productivity. Classifying imple-
mented projects into two categories, we find that forest loss varies
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between treatment villages that invested greater shares of their funds
in agricultural projects and treatment villages that invested more in
non-agricultural projects. While this difference does not provide an ex-
perimentally identified estimate for heterogeneous treatment effects, it
is consistent with the hypothesis that agricultural projects facilitate an
expansion of agriculturally used lands, which results in deforestation,
and with empirical evidence reported in Foster and Rosenzweig (2003).

We do not find evidence that the increase in forest loss in treatment
villages relates to the particular features of the development program
that we study, the CDD, which takes a participatory approach and aims
also at influencing decision-making processes and local institutions.
Therefore, we interpret the documented deforestation mainly as a
secondary effect of a program that intends to increase welfare and affect
economic activity.

As the area of study is located at the frontier of desertification in
the Sahel, our findings are relevant for informing development policy
and environmental policy in some of the areas of the world that are
most affected by the climate crisis. The findings are a reminder that
the design of development interventions needs to incorporate possible
environmental impacts in cost-benefit considerations. This is especially
important for development projects that relate to agricultural produc-
tion, given the importance of land use—in particular forestry—for
global climate change mitigation (IPCC, 2019).

Appendices and supplementary data

Appendices A-C and supplementary data to this article can be found
online at https://doi.org/10.1016/j.jdeveco.2021.102737.
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