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ABSTRACT: The oxidative amination of alkynes typically requires
transition metal catalysts and strong oxidants. Herein, we alternatively
utilize DABCO as a sulfur-activating catalyst to achieve the sulfurative
1,2-diamination of phenylacetylenes with elemental sulfur and o-
phenylenediamines. DMSO was found to be particularly suitable for
use as a terminal oxidant for this three-component process. A
mechanistic study has shown that this cascade reaction is triggered by the addition of active sulfur species to the triple bond of
phenylacetylenes.

The development of new synthetic approaches to N-
heterocycles from readily available starting materials is an

important research area of organic synthesis. Quinoxaline is a
valuable heterocyclic scaffold found in bioactive molecules1 or
functional materials (semiconductors,2 OLEDs,3 organic
luminescent materials,4 fluorescent dyes,5 ionic6 and molec-
ular7 recognition, and organic photovoltaics8). Efforts have
been devoted to exploring new synthetic methodologies for the
derivatization of existing quinoxalines9 and the direct
construction of quinoxaline cores. Conventionally, the latter
strategy has been based on the non-redox condensation of 1,2-
dicarbonyl compounds with o-phenylenediamines or the redox
condensation of substrates with oxidation states lower than
those of 1,2-dicarbonyl compounds.10

An attractive strategy is the direct vicinal functionalization of
terminal alkynes via oxidation of the C�C bond of alkynes to
afford 1,2-dicarbonyl compounds,11 followed by a reaction
with o-phenylenediamines to provide 3H-quinoxalines 3′
(Scheme 1). Due to low reactivity of the weakly activated
triple bond of phenylacetylenes with N-nucleophiles, transition
metal complexes in combination with N-oxide oxidants
{Ph3PAuNTf2/O2,

12 [AuCl(Ph3P)]/AgSbF6/6-methoxyquino-
line N-oxide,13 and MCM-41-Ph2P-AuNTf2/2,3-dichloropyr-
idine N-oxide}14 have been used to catalyze the oxidation15 of
C�C bonds.
However, in addition to the considerable cost of gold

catalysts and ligands, there are two serious issues that need to
be addressed: the removal of metallic residues from the
products, especially for pharmaceutical applications, and the
limitation of unwanted oxidation of o-phenylenediamines,
which are particularly sensitive to conventional oxidants,
including molecular oxygen.

To avoid the oxidation of diamines 1, the synthesis of
quinoxalines has been carried out in two separate steps:
oxidation of alkynes 2 to 1,2-dicarbonyl compounds and
condensation with 1. On the contrary, the use of halogen-
based oxidative systems such as molecular iodine in
stoichiometric16a or catalytic amounts (with TBHP as an
oxidant)16b as well as TsNBr2

17 allowed the direct oxidative
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Scheme 1. Oxidative Diamination of Alkynes 2 with
Diamines 1 as an Atom Economical Strategy for Producing
Quinoxalines 3
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coupling of 2 with 1 to provide 3′. Interestingly, Hwang et al.
found that in the presence of the CuCl catalyst, alkynes 2
underwent an oxygenative diamination with diamines 1 and
dioxygen upon aerobic blue LED irradiation to give quinoxalin-
2-ones 3″.18
Since Willgerodt’s seminal report19 on the use of sulfur in

organic synthesis, this substance has been proven to be a
versatile and powerful tool for promoting various cascade
transformations. It has provided direct access to valuable
molecules, with or without sulfur, with high atom, step, and
redox efficiency. Our group has previously reported an
uncatalyzed reaction of alkynes with alkylamines and elemental
sulfur, leading to thioamides 7 with complete atom
efficiency.20 It has also been demonstrated that when DMSO
was used as an additive, the reactivity of the sulfur was
significantly increased and the reaction could be performed at
lower temperatures.21 Moreover, in these cases, DMSO could
act as a mild and selective oxidizing/dehydrogenating agent.22

We imagined that using sulfur in place of oxygen could
provide a general alternative for transition metal-catalyzed
aerobic oxidative coupling involving phenylacetylenes 2 and o-
phenylenediamines 1. We argue that sulfur, when appropriately
activated by a base and DMSO, could add to a weakly reactive
triple bond and thus trigger a cascade of oxidative amination.
In this way, this element would be ideal as both a sulfurating
agent and a terminal oxidant for a variety of redox
transformations even in the absence of a transition metal
catalyst.
In this context, it is highly desirable but challenging to

develop a more efficient, environmentally benign, and atom
economical approach for the direct coupling of 1 with terminal
2 using sulfur as a unique sulfur building block and an
inexpensive and user-friendly external oxidant in the absence of
a transition metal catalyst.
To confirm our hypothesis, we set up a model reaction of 1a

with 2a with sulfur as the sulfur source and DMSO as the
oxidant (Table 1). To our delight, in the presence of a base in
a stoichiometric amount such as N-methylpiperidine, the
expected quinoxaline 3aa was obtained in a good yield upon
heating overnight at 80 °C (entry 1). Interestingly, the highly
pure product was readily isolated by precipitation from the
crude mixture with methanol. The quinoxaline-2-thione
structure was confirmed by X-ray crystallography. Other
tertiary amines with similar basicity were also efficient catalysts
(entries 2−4). On the contrary, weaker bases (pyridine and 3-
picoline) were inefficient (entries 5 and 6, respectively).
Piperidine was not suitable to act as a catalyst as N-
(phenylthioacetyl)piperidine was the main product, which
was obtained from the addition of sulfur and piperidine to
phenylacetylene (entry 7). When the reaction was performed
at a lower temperature (60 °C, entry 8), the reaction was
slowed considerably; the product could also be isolated by
filtration in a lower yield (entry 8).
At this stage, we focused our attention on decreasing the

amount of the base catalyst. When the amount of N-
methylpiperidine was reduced, the yields decreased gradually
(entries 9−11). Because DABCO, which is an easy-to-handle
and free-flowing solid, has previously been shown to be an
excellent catalyst for many sulfuration reactions involving
sulfur, it was chosen to replace N-methylpiperidine when only
catalytic amounts were used (entries 12 and 13) and displayed
excellent performance. Finally, by varying the amounts of

sulfur and DMSO (entries 13−17), we consolidated our
optimized conditions (entry 12).
With the optimized conditions in hand (entry 12, Table 1),

the scope of the oxidative sulfurative diamination of phenyl-
acetylenes was investigated, as outlined in Scheme 2.
Numerous phenylacetylenes bearing electron-donating and
electron-withdrawing substituents reacted with unsubstituted
o-phenylenediamine 1a to afford products in 51−96% yields on
the 1 mmol scale. These substituents could be located at the
ortho, meta, or para position of the phenyl ring of the acetylene
substrates.
The mild conditions allowed for high chemoselectivity. For

example, functional groups such as alkoxy (3ae−3ag, aromatic
ring sulfuration) and cyano (3ao, hydrosulfuration with H2S)
are well tolerated. Synthetically relevant functionalities,
including F, Cl, and Br (3ah−3ak), are also compatible.
The structure of 3al has been unambiguously confirmed by

X-ray chromatography. 3-Ethynylpyridine 2p, a heterocyclic
derivative of phenylacetylene, was found to be a competent
substrate, leading to quinoxaline 3ap in good yield. Similarly,
we extended the scope to 4,5-dimethyl-o-phenylenediamine
1b, which was found to react in the same manner to afford
quinoxalines 3bc−3bo.
When unsymmetrical o-phenylenediamines (1c−1e) bearing

an alkyl substituent such as a 4-methyl or 3-methyl group were
allowed to react with phenylacetylene 2a, the expected
quinoxalines 3ca and 3de were formed in good yields as

Table 1. Screening of the Reaction Conditions

entrya
S

(equiv)
DMSO
(equiv) base (equiv)

T
(°C)

yield
(%)b

1 1.5 3 N-methylpiperidine
(1)

80 85

2 1.5 3 NEt3 (1) 80 78
3 1.5 3 NPr3 (1) 80 80
4 1.5 3 DIPEA (1) 80 75
5 1.5 3 pyridine (1) 80 tracec

6 1.5 3 3-picoline (1) 80 tracec

7 1.5 3 piperidine (1) 80 35
8 1.5 3 N-methylpiperidine

(1)
60 30

9 1.5 3 N-methylpiperidine
(0.5)

80 75

10 1.5 3 N-methylpiperidine
(0.2)

80 44

11 1.5 3 N-methylpiperidine
(0.1)

80 15

12 1.5 3 DABCO (0.2) 80 87
13 1.5 3 DABCO (0.1) 80 51
14 1.5 6 DABCO (0.2) 80 32
15 1.5 2 DABCO (0.2) 80 56
16 1.0 3 DABCO (0.2) 80 65
17 2 3 DABCO (0.2) 80 86

aReaction conditions: o-phenylenediamine 1a (1 equiv, 1 mmol, 108
mg), phenylacetylene 2a (1.2 equiv, 1.2 mmol, 122 mg), sulfur (x
equiv, 32 mg mmol−1), base (z equiv) in DMSO (0.2 mL, 3 equiv, 3
mmol). bYield of 3aa isolated by column chromatography.
cDetermined by 1H NMR of the crude reaction mixture.

Organic Letters pubs.acs.org/OrgLett Letter

https://doi.org/10.1021/acs.orglett.3c02835
Org. Lett. 2023, 25, 7225−7229

7226

https://pubs.acs.org/doi/10.1021/acs.orglett.3c02835?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.3c02835?fig=tbl1&ref=pdf
pubs.acs.org/OrgLett?ref=pdf
https://doi.org/10.1021/acs.orglett.3c02835?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


approximately 2:1 mixtures of two possible regioisomers. On
the contrary, o-phenylenediamines bearing two methyl groups
at positions 3 and 4 (3,4-dimethyl-o-phenylenediamine 1e) or
an EWG at position 4 such as carboxylate esters (1f and 1g) or
benzoyl (1h) resulted in only one regioisomer (3eb, 3ek, 3fa,
3gl, and 3hk). Only the structure of 3ek was confirmed by X-
ray crystallography, showing a syn configuration between the
two methyl groups and the p-(trifluoromethyl)phenyl one.
However, aliphatic acetylenes (cyclohexylacetylene and 1-

octyne), 1-phenylpropyne, and diphenylacetylene failed to
react under the conditions developed, probably due to either
lower polarizability or higher steric hindrance of their triple
bond.
To understand the reaction mechanism, we conducted

several experiments (Scheme 3). First, in the absence of
DMSO as an oxidant, the reaction of 1a with 2a led to
benzimidazole 4 as previously observed for aliphatic amines
(eq 1, Scheme 3).20 This result highlights the importance of
DMSO as a specific oxidant for the formation of quinoxaline

3aa. While 1a was found to be stable, remaining unchanged in
the absence of 2a (eq 2, Scheme 3), alkyne 2a underwent
sulfurative dimerization to afford 1,3-dithiole 5 when heated
with sulfur and DABCO (eq 3, Scheme 3). This dimerization
of 2a occurred even without DMSO or in other solvents (N-
methylpyrrolidin-2-one and pyridine). An additional control
experiment to compare the reactivity between phenylacetylene
2a and its synthetic equivalent acetophenone 8 (see the
Supporting Information) reveals that in case of 2a, the key
initial step is an addition of a sulfur species to the triple bond,
while in the case of 8, the first step is C�N bond formation
via imine condensation of 8 with an amino group of 1a.
On the basis of these results, we propose a plausible

mechanism for alkyne 2a that starts with the addition of highly
nucleophilic polysulfide A, formed from ring opening of S8 by
DABCO, to the triple bond of 2a to give polysulfide B.
Fragmentation of B would lead to thioketene C. In the absence
of an N-nucleophile, C is dimerized into 1,3-dithiole 5. On the
contrary, C reacted with o-phenylenediamine 1a to form ene-
thiolate D, stabilized by the intramolecular H-bonding between
the thiolate and the free o-NH2 group. Such H-bonding is not
present if aniline is used in place of o-phenylenediamine 1a,
which is in agreement with the stability of thioamide 7a to the
oxidation into oxo thioamide 9 by DMSO as mentioned in eq
4a. The stabilization of ene-thiolate D by an intramolecular H-
bond would facilitate its further oxidation to thione thioamide
F by A via polysulfide E. Cyclization of F would yield 3aa. The
role of DMSO is to regenerate sulfur from H2S formed
throughout the process and to favor the oxidation of D to F by
enhancing the oxidizing reactivity of A instead of the
cyclization of D to 4 without any additional oxidation.
Finally, to complete this study, we present some interesting

results (Scheme 4). First, when o-bromophenylacetylene 10 as
an alkyne substrate was allowed to react with o-phenylenedi-

Scheme 2. Oxidative Sulfurative Diamination of Alkynes 2 Scheme 3. Control Experiment and Proposed Mechanism
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amine 1a using 2 equiv of triethylamine as a base, fused
tetraheterocyclic compound 6 was obtained in moderate yield
(eq 1, Scheme 4). Second, we found that some derivatives of
phenylacetylene such as its lower-oxidation state derivative
styrene 12a or cinnamic acid 12b displayed similar reactivity,
with an initial step of addition of a sulfur species to their
olefinic bonds (eq 1, Scheme 4). Both 12a and 12b reacted
with 1a under slightly modified conditions to afford 3aa. These
results open new avenues for the synthesis of quinoxalines as
well as their fused derivatives with a flexible choice of starting
materials.
In summary, we developed a strategy for the direct vicinal

functionalization of phenylacetylenes 2 with o-phenylenedi-
amines 1 using elemental sulfur. This metal-free reaction
exploits the unique activation of sulfur in DMSO in the
presence of DABCO as a basic catalyst to provide quinoxaline-
2-thiones 3. Importantly, an investigation of the scope of this
reaction indicates that this concept can be applied to diverse
phenylacetylenes and nucleophilic o-phenylenediamine cou-
pling partners, leading to the expected products in high yields
with easy purification by simple filtration in most cases. This
methodology could therefore be a powerful addition to the
toolbox of quinoxaline synthesis, as either final products or
intermediates for further functionalization.
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