

UE18 – Pharmacologie fondamentale

Pharmacologie du système histaminergique

Jean-Philippe Guilloux

Professeur de pharmacologie, Equipe Moods, CESP (HM1, 4ème étage) jean-philippe.guilloux@universite-paris-saclay.fr

Professeurs

MCF

alain.gardier@universite-paris-saclay.fr laud denis.david@universite-paris-saclay.fr sofi yann.pelloux@universite-paris-saclay.fr jean-philippe.guilloux@universite-paris-saclay.fr

laurent.tritschler@universite-paris-saclay.fr sofia.cussotto@universite-paris-saclay.fr

veronique.leblais@universite-paris-saclay.fr

boris.manoury@ universite-paris-saclay.fr laetitia.pereira@ universite-paris-saclay.fr

Plan du cours

- 1. Physiologie du système histaminergique
 - 1.1 Biosynthèse et métabolisme
 - 1.2 Réceptérologie
- 2. La pharmacologie du système histaminergique
 - 2.1 Molécules stimulant la neurotransmission histaminergique
 - 2.2 Molécules inhibant la neurotransmission histaminergique
- 3. Exemples de questions

Historique de l'histamine

- 1901 découverte de l'anaphylaxie = hypersensibilité de type 1 par Paul Portier et Charles Richet (*Prix Nobel 1913*)
- 1910- synthèse de l'histamine (monoamine) à partir de la L-histidine (un acide aminé). Henry Dale (*Prix Nobel 1936*) étudie contraction *de l'utérus* et vasodilatation (dose-dép.) de l'*endothelium vasculaire*.
- 1919-1926 histamine isolée de tissus animaux: cerveau, poumons Þ Rôle dans les phénomènes allergiques
- 1934-1950 Les 1ers antagonistes anti-histaminiques anti-allergiques. Mais inactifs sur certains effets de l'histamine (ex: stimulation de la sécrétion acide de l' estomac; relaxation de l' utérus) Þ hétérogénéité des R.
- 1972 James Black (*Prix Nobel 1988*) : « **découverte du R-H2** et d'un antagoniste = antihistaminique sélectif de **l'estomac, la cimétidine** »
- 1983 découverte du R-H3 autorécepteur (Jean-Michel Arrang, Jean-Charles Schwartz et al.), sans analogie de structure avec les autres récepteurs
- 1991 2000 clonage des gènes codant pour les R-H1, consortium de 7 laboratoires.

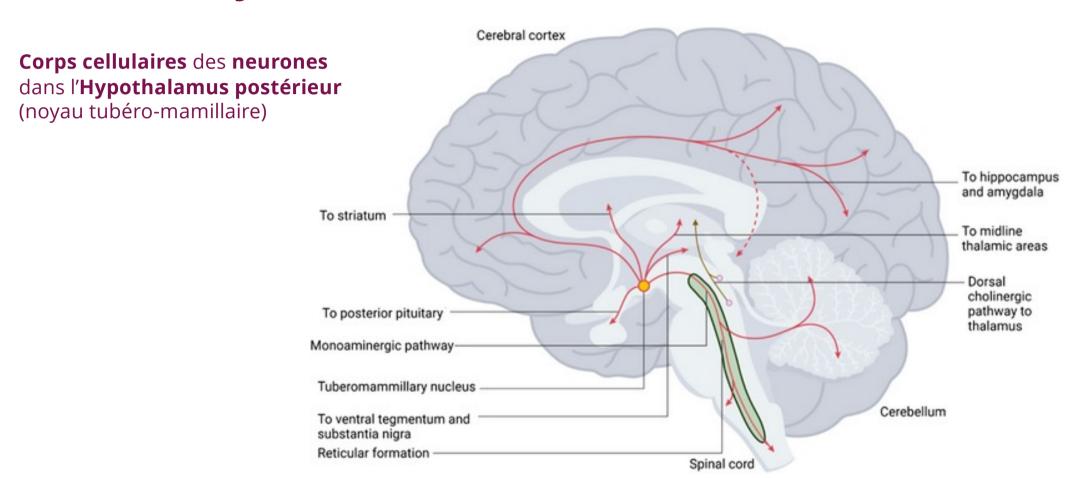
Historique de l'histamine

- De nombreux **médicaments** "anciens" possèdent une bonne affinité pour les récepteurs de l'histamine
 - >effets anti-histaminiques (anti-H1) (somnolence diurne):
 - Neuroleptiques Ex: chlorpromazépine (LARGACTIL®) et son effet sédatif
 - ➤ Antidépresseurs Ex: amitryptilline (LAROXYL®)

- A la périphérie: 3 types cellulaires principaux
- 1. dans les cellules sanguines: les polynucléaires basophiles
- 2. dans les tissus conjonctifs: poumons, bronches, paroi intestinale, péritoine, peau,dans les mastocytes* (« mast cells » qui la stockent*, mais ne la synthétisent pas), +allergène] dégranulation/exocytose! = médiateur de la réponse allergique immédiate
- 3. dans les cellules entéro-chromaffines de la paroi de l'estomac régulant la sécrétion acide!

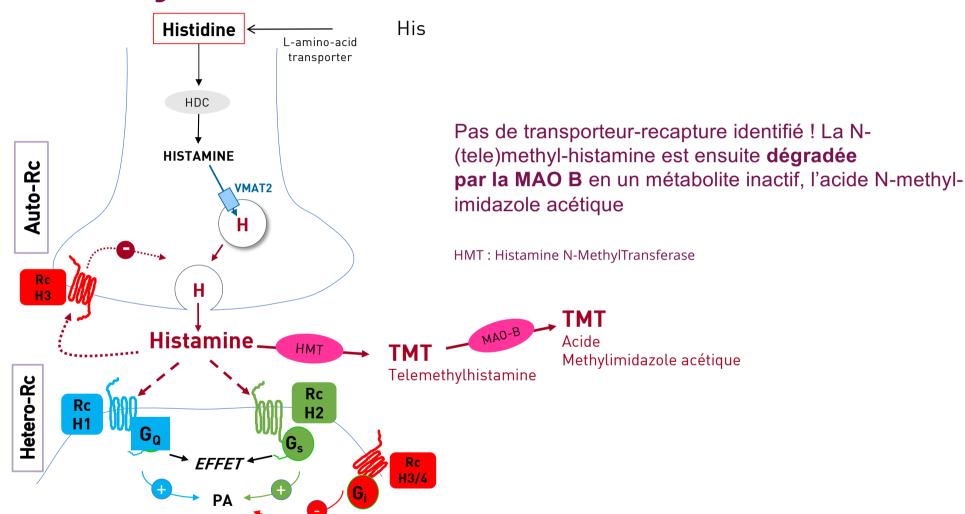
^{*} font partie des globules blancs! en contact avec un allergène, il présente à sa surface les IgE spécifiques de celui-ci ou au contact d'agents infectieux, il dégranule et libère ses médiateurs de façon très rapide, par un mécanisme d'exocytose. Il déclenche ainsi des réactions allergiques immédiates!

Dans le SNC


1. dans les corps cellulaires des neurones histaminergiques = dans l'hypothalamis postérieur, au niveau tubéro-mamillaire pour le contrôle de l'éveil

Rappel: hypothalamus = région du diencéphale intervenant dans la régulation des fonctions endocrines (sexuelles, prise alimentaire, stress, thermorégulation, rythme circadien).

Dans la microglie (=mastocytes du SNC)



Propriétés physio-pathologiques de l'histamine

Positives

- ➤ favorise l'éveil (rôle de l'hypothalamus)
- > contracte les gros vaisseaux; dilate les capillaires
- ➤ favorise la cognition/mémoire ?

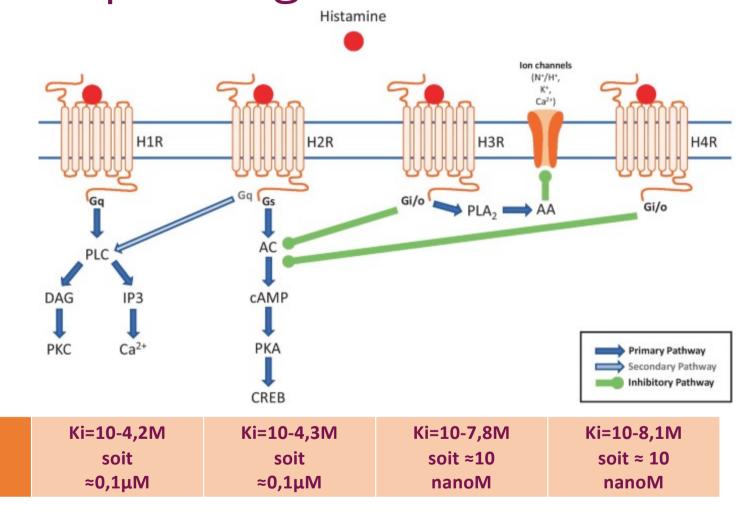
Négatives: Sa libération « périphérique » provoque:

- un spasme bronchique (asthme), et d'autres réactions allergiques: urticaire, prurit, eczémas, rhume des foins, œdème de Quincke, favorise la réaction anaphylactique
 - = médiateur de la réponse allergique immédiate (R-H1)!
- > mal des transports
- ➤ favorise l'hyper-secrétion acide gastrique (R-H2)

Principales causes de libération d'histamine Positives

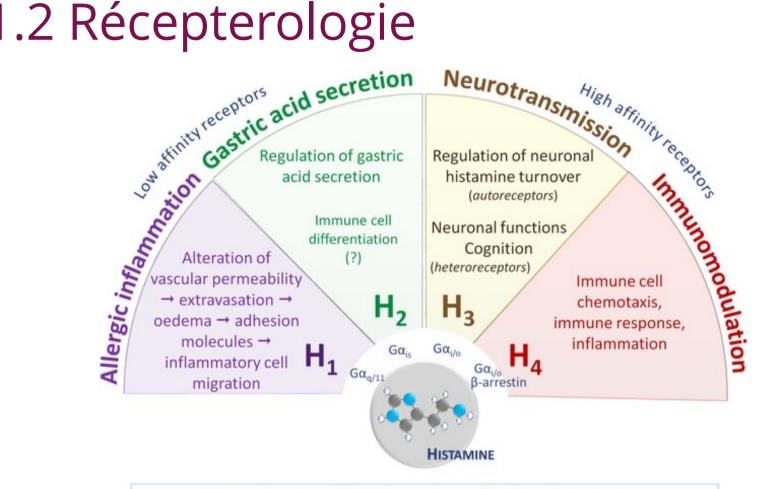
- > TRAUMATISME / INFLAMMATION
- > REACTIONS IMMUNOLOGIQUES
- > REACTIONS ANAPHYLLACTIQUES

SUBSTANCES HISTAMINO-LIBERATRICES


provoquant la dégranulation des mastocytes et polynucléaires basophiles

- Ex: venins
 - curares
- médicaments (aspirine, pénicilline, neuroleptiques, etc....) allergies!

1.2 Récepterologie



Affinité

1.2 Récepterologie

Mast cells - Basophils - Enterochromaffin-like cells - Neurons Leukocytes - Platelets - Epithelial cells - Chondrocytes Tumour cells - Other cells

1.2 Récepterologie - Récepteur H1

- à la périphérie:
 - > Impliqué dans les phénomènes allergiques
 - Contrôle l'activité des monocytes, macrophages et des lymphocytes T (avec les R-H2)
 - ➤ Histamine dilate les vaisseaux sanguins (**vasodilatation des capillaires**) via activation R-H1: ☑ perméabilité vasculaire

antagonistes R-H1 = vasoconstriction & anti-allergiques

- Dans le cerveau:
 - Histamine et R-H1 impliqués dans les états de veille!

antagonistes R-H1 = effet sédatif

1.2 Récepterologie – Récepteur H2

GPCR couplé à Gs principalement localisé à la périphérie:

- > Rc-H2 impliqué dans la sécrétion acide de l'estomac
- contrôle de l'activité des monocytes-macrophages et des lymphocytes
 T (avec les Rc-H1)

- antagonistes R-H2 = antisécrétoires =antiulcéreux

Ex: cimétidine TAGAMET® ranitidine AZANTAC®,

♥2.1 Molécules stimulant la neurotransmission histaminergique

- 1 Par stimulation de la synthèse
- 2 Par stimulation de la libération
- 4 Par inhibition de la dégradation
- 5 Par inhibition de la recapture

Par utilisation d'agonistes des récepteurs histaminergiques

+ 6 Par utilisation d'antagoniste d'auto Rc

DCI	Spécialité
Betahistine	BETASERC®, SERC®, LECTIL®

Molécule non sélective!! Un seul agoniste histaminergique commercialisé: un ligand des R-H1 et H3 (non sélectif)

- -Agoniste partiel **R-H1** (couplé à Gq) post-synaptique
- -Antagoniste R-H3 (couplé à Gi) ? autoRH3??
- -INDICATION: dans le traitement symptomatique des vertiges pour ses propriétés vasodilatatrices.

Médicaments « histamino-libérateurs »

- Risque de libération excessive d'histamine avec :
 - atropine
 - aspirine,
 - Pénicilline,
 - Morphine,
 - curares (en anesthésie),
 - Venins

...effets indésirables 📦 allergies !

DCI	Spécialité	
Cromoglicate (ou cromoglycate)	LOMUDAL® LOMUSOL® OPTICRON® NALCRON®	

- 🔁 stabilisation membranaire par inhibition d'entrée de Ca2+ dans la cellule. Inhibe la dégranulation des mastocytes: médicaments ANTIALLERGIQUES Quelques exemples:
- 1980 cromoglicate de Na+ (* acide cromoglycique)
- * (LOMUDAL®, OPTICRON®)
 - par voie locale: solution pour nébulisation
 - INDICATION: Traitement de l'asthme persistant léger (+ d'1 crise/semaine, - d'1 crise/jour)
 - dans l'asthme, libération de
 - » cytokines pro-inflammatoires (IL-4, IL-13, etc...)
 - » Leucotriènes, **histamine** (bronchoconstriction)
 - » Éléments induisant une fibrose (TNFα)

Mc Brien and Menzies-Gow (2017) The Biology of Eosinophils and Their Role in Asthma. Front Med (Lausanne) 4:93.

Par inhibition de la libération

DCI	Spécialité
Nédocromil	TILAVIST®
Kétotifèe	ZADITEN®

- nédocromil TILAVIST® collyre à 2%, etc....
 - > Inhibiteur de la dégranulation des mastocytes et de la libération de médiateurs de l'inflammation: ANTIALLERGIOUES
 - > INDICATION: Conjonctivites allergiques. Affections oculaires d'origine allergique, etc...
- kétotifène (ZADITEN®)
 - > par voie orale (comprimés, gélules ou solution buvable) absorbé par le tube digestif 🔁 effets généraux.
 - > INDICATION: Traitement symptomatique de la rhino-conjonctivite allergique
 - > Effets indésirables des inhibiteurs de libération d'histamine:
 - sédatif (somnolence diurne-RH1),
 - sécheresse buccale (anti-Ach),
 - vertiges (cf : agoniste R-H1 indiqué ttmt des vertiges)
 - troubles digestifs

Par utilisation d'antagonistes des récepteurs H1 : Anti-allergiques

- Allergie: Principale origine = Anaphylactique = réaction d'hypersensibilité immunologique [chez 10 à 15% de la population- enfants (garçons); adultes (filles)] avec stimulation des mastocytes et des polynucléaires basophiles: production d'immunoglobulines de type E (IgE) spécifiques de l'antigène (ou allergène)

- 4 grades:

1-atteinte cutanée

2-atteinte viscérale faible;

3-atteinte viscérale Forte (choc anaphylactique);

4-arrêt cardiaque

– 1er contact: sensibilisation à la présence de l'antigène 🔁 IgE spécifique se liant à son Rc 🔁 rien

– 2ème contact avec l'allergène 🖬 liaison [antigène-lgE-R] 🗗 tyrosine-kinases "src" activées 🗗 mastocytes libérent **l'histamine**, des cytokines prurit, érythème par vasodilatation, œdème, inflammation.....

Par utilisation d'antagonistes des récepteurs H1 : Anti-allergiques

Les Anti H1 = Anti-allergiques **indiqués** dans:

- 1. Réactions à des allergènes environnementaux:
 - acariens
 - pollen: rhinites allergique ou rhume des foins
 - allergènes alimentaires
 - gants en latex (hôpital, laboratoire)
- urticaire aiguë allergique (ou de contact)
 - 2. Sujets sensibilisés aux médicaments

(Ex: amoxicilline): urticaire généralisé

Remarque: anti-H1 = peu efficace dans l'asthme.

Par utilisation d'antagonistes des récepteurs H1 : Anti-allergiques

Médicaments Anti-H1 de 1ère génération :

- depuis 1940.
- faible sélectivité pour R-H1:
- effet muscarinique (atropinique = antagoniste mAchR) effets indésirables: sécheresse de la bouche, constipation, mydriase.
- Inconvénient (?): passe la BHE (sédation)

- 1944: mépyramine = Le 1er anti-H1 commercialisé.
- 1947: diphenhydramine (BENADRYL®, NAUTAMINE®), INDICATION: traitement du mal des transports Effet indésirable : somnolence, vigilance (car passe la BHE)

DCI	Spécialité
Diphenhydramine	NAUTAMINE®
Dexchlorphéniramine	POLARAMINE®

 chlorphéniramine (POLARAMINE®) INDICATIONS: traitement symptomatique des manifestations allergiques, urticaires, rhinites, conjonctivites.

DCI	Spécialité
Prométhazine	PHÉNERGAN®
Alimémazine	THÉRALÈNE®
Dexchlorphéniramine	POLARAMINE®
Doxylamine	DONORMYL®
Bromphéniramine	DIMEGAN®

2 INDICATIONS différentes:

- insomnies
- traitement symptomatique de manifestations allergiques

Effets Indésirables (EI):

- activité adrénolytique alpha-adrénergique (*risque d'hypotension*)
- effet atropinique (sécheresse de la bouche, constipation, mydriase)

des neuroleptiques "cachés": *cf chlorpromazine LARGACTIL® neuroleptique de 1ère génération (antagoniste R-D2)

DCI	Spécialité
Cétirizine	VIRLIX® ZYRTEC®
Lévocétirizine	XYZALL®
Loratadine	CLARITYNE®
Desloratadine	AERIUS®
Féxofénadine	TELFAST®

Antagoniste compétitif réversible: s'oppose aux effets de l'histamine

- sélectivité H1 améliorée
- moins sédatif
- moins atropinique

• INDICATIONS: traitement symptomatique des manifestations allergiques médiées par les IgE

Par utilisation d'antagonistes des récepteurs H1 : Bilan!

Les récepteurs H1 sont impliqués dans l'état de veille....donc:

- -1- antagonistes R-H1 de 1ère génération, passant la BHE
- effet **sédatif** marqué

Ex: prométhazine PHENERGAN®; alimémazine THERALENE®

- -2- antagonistes R-H1 de 2ème génération, franchissant peu la BHE
- moins sédatifs, moins atropiniques

Ex: cétirizine (ZYRTEC®); loratadine (CLARITYNE®)

Par utilisation d'antagonistes des récepteurs H1: Remarque

Les antagonistes H1 sont impliqués dans l'état de **veille....donc:**

- ✓ sont des antagonistes compétitifs réversibles (pA2) s'opposent aux effets de l'histamine endogène Ex: libérée suite à une réaction allergique
- ✓ ont une bonne sélectivité R-H1 vis-à-vis R-H2 lls n'auraient pas d'effets sur la sécrétion acide de l'estomac (qui est un effet des anti-H2)

* à surveiller car des récepteurs H1 dans le duodenum, colon, ileon!

Par utilisation d'antagonistes des récepteurs H1: Remarque

Les antagonistes H1:

- ✓ sont des antagonistes compétitifs réversibles (pA2) s'opposent aux effets de l'histamine endogène Ex: libérée suite à une réaction allergique
- ✓ ont une bonne sélectivité R-H1 vis-à-vis R-H2 ils n'auraient pas d'effets sur la sécrétion acide de l'estomac (qui est un effet des anti-H2)

* à surveiller car des récepteurs H1 dans le duodenum, colon, ileon!

Par utilisation d'antagonistes des récepteurs H1: Remarque

Les antagonistes H1:

- ✓ ont une faible sélectivité = les Anti-H1 de 1ère génération vis-à-vis d'autres récepteurs
- ✓ Présentent également affinité pour
 - > Rc Ad/Nad: effet adrénolytique α la risque d' hypotension
 - > Rc mAch: effet atropinique sécheresse buccale, constipation, mydriase
 - Rc DA: effet antagoniste Rc D2, effets indésirables préoccupants syndrome malin des neuroleptiques (hyperthermie) (suffixe "zine")

Par utilisation d'antagonistes des récepteurs H2 : les anti-ulcéreux

La sécrétion gastrique acide est assurée par la « pompe à protons » ou H+/K+ ATPase.

Cette pompe H+/K+ ATPase est située dans les cellules pariétales de la paroi de l'estomac.

Spécialité DCI Oméprazole MOPRAL®

Indications : traitement des ulcéres gastriques et duodénaux ! cf. cours de Véronique Leblais

La pompe H+/K+ ATPase est stimulée par la liaison de l'histamine aux récepteurs de type H2 (R-H2)

Par utilisation d'antagonistes des récepteurs H2 : les anti-ulcéreux

La sécrétion gastrique acide est assurée par la « pompe à protons » ou H+/K+ ATPase.

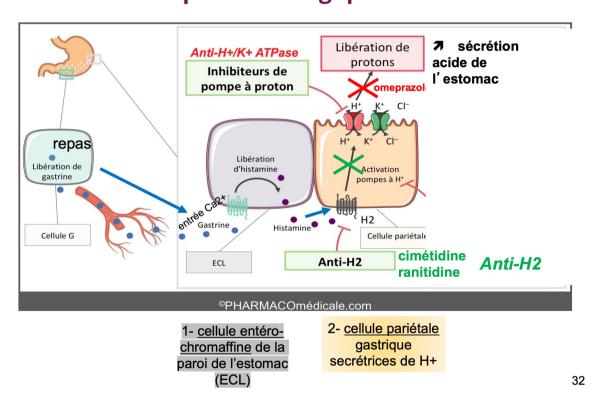
Cette pompe H+/K+ ATPase est située dans les cellules pariétales de la paroi de l'estomac.

Spécialité DCI Oméprazole MOPRAL®

Indications : traitement des ulcéres gastriques et duodénaux ! cf. cours de Véronique Leblais

La pompe H+/K+ ATPase est stimulée par la liaison de l'histamine aux récepteurs de type H2 (R-H2)

Par utilisation d'antagonistes des récepteurs H2 : les anti-ulcéreux


Effets de la prise d'un repas :

- gastrine (une des cholécystokinines CCK)
- > entrée de Ca2+ dans les cellules entérochromaffines de la paroi de l'estomac (au fond des villosités du fundus), au contact des cellules pariétales sécrétrices des protons H+
- > **exocytose d'histamine** qui se lie aux **R-H2 (RCPG)** des cellules pariétales
- > activation de Gs, adenylate cyclase activée, à AMPc intra-cellulaire
- > activation de la pompe H+/K+ ATPase (cible pharmacologique de type transport ionique)
- > sécrétion acide de l'estomac

Par utilisation d'antagonistes des récepteurs H2 : les anti-ulcéreux

Traitement: 2 cibles pharmacologiques différentes:

Par utilisation d'antagonistes des récepteurs H2 : les anti-ulcéreux

Évolution du Traitement des ulcéres gastriques et duodénaux :

- Début du 20e siècle
 - Cause des ulcères: stress et facteurs diététiques, maladie due à la sécrétion d'acide gastrique
 - Traitement de référence: vagotomie bilatérale = section du nerf pneumogastrique, ou nerf vague, au niveau de l'abdomen
- > 1977 découverte des R-H2 sur les cellules pariétales gastriques
 - contrôlant la sécrétion acide
 - cimétidine (TAGAMET®) 1er antagoniste des récepteurs H2 de l'histamine (anti-H2)

Par utilisation d'antagonistes des récepteurs H2 : les anti-ulcéreux

Les Anti-H2, antagonistes des R-H2 de l'histamine

- 1977 cimétidine (TAGAMET®) cp 200 mg
- 1981 ranitidine (AZANTAC®) GlaxoSmithKline
- 1983 ranitidine (RANIPLEX®) Solvay Pharma cp 150 mg
- 2011 famotidine Lab. Eurogenerics et génériques
- nizatidine (NIZAXID®) laboratoire Norgine (Juillet 2020 arrêt de commercialisation)
- 1982 découverte de la bactérie responsable des ulcères: Helicobacter pylori, Prix Nobel 2005: Robin Warren & Barry Marshall

*1987 un inhibiteur de la pompe à protons (IPP) = oméprazole (MOPRAL®) gélule 20 mg,puis pantoprazole (EUPANTOL®), ésoméprazole (INEXIUM®), lansoprazole (OGAST®), rabéprazole (PARIET®)

1994 Traitement d'un ulcère gastrique ou duodénal est la conséquence:

- d'une toxicité médicamenteuse (AINS, salicylés: aspirine)
- et/ou d'une hypersécrétion acide
- d'une infection de la mugueuse par *Helicobacter pylori*

Par utilisation d'antagonistes des récepteurs H2 : les anti-ulcéreux

Affinité/sélectivité pour les Rc-H2: cimétidine TAGAMET® ranitidine AZANTAC®,

Modèle expérimental: estomac isolé de cobaye;

Technique : déplacement de la liaison de la [3H]-histamine

	Récepteur H1 (Ki en nM)	Récepteur H2 (Ki en nM)
Cimétidine	>5000	246
Ranitidine	>5000	190

Agut et al., (1997) Arzneimittelforschung. 47:447-449.

Par utilisation d'antagonistes des récepteurs H2 : les anti-ulcéreux

Schémas thérapeutiques déjà évalués: Tri-thérapie association d'1 antisécrétoire avec 2 antibiotiques pendant 7 à 10 jours

1- ranitidine (AZANTAC®) 2 x 300 mg/jour

OU (et non pas « et »)

oméprazole (MOPRAL®) 2 x 20 mg/jour

OU lansoprazole (LANZOR®) 2 x 30 mg/jour

OU pantoprazole (INIPOMP®)

2- clarithromycine (ZECLAR®, NAXY®) 2 x 500 mg/jour

3- amoxicilline (CLAMOXYL®) 2 x 1 g/jour

Par utilisation d'antagonistes des récepteurs H2 : les anti-ulcéreux

Traitement de l'ulcère en 1ère intention:

TRI-THERAPIE: Éradication de la bactérie Helicobacter pylori en associant:

2 antibiotiques ET 1 antisécrétoire

1997: Récidive annuelle de l'ulcère passe de 70 % à 5 %

1999: 95% de patients correctement traités

Attention :

- résistance aux antibiotiques
- mauvaise observance du traitement

Par utilisation d'antagonistes des récepteurs H2 : les anti-ulcéreux

Traitement de l'ulcère en 1ère intention:

TRI-THERAPIE: Éradication de la bactérie Helicobacter pylori en associant:

2 antibiotiques ET 1 antisécrétoire

1997: Récidive annuelle de l'ulcère passe de 70 % à 5 %

1999: 95% de patients correctement traités

Attention :

- résistance aux antibiotiques
- mauvaise observance du traitement

♥3. Exemples de questions

	Alimémazine	Cétirizine	Ranitidine
	THERALENE®	ZYRTEC ®	AZANTAC ®
Cible			
1ère ou 2ème génération			
Indication?			
Traitement associé ? Si oui, préciser			
Passage de la BHE Oui ou Non ?			

♥3. Exemples de questions

	Alimémazine	Cétirizine	Ranitidine
	THERALENE®	ZYRTEC ®	AZANTAC ®
Cible	Antihistaminique H1	Antihistaminique H1	Antihistaminique H2
1ère ou 2ème génération	1	2	NA
Indication ?	Insomnie ou Traitement symptomatique des manifestations allergiques	Rhinites allergiques	anti-ulcèreux, ou antisecrétoire
Traitement associé ? Si oui, préciser	Non	Non	2 antibiotiques (clarithromycine et amoxicilline) pour traiter Helicobacter pylori
Passage de la BHE Oui ou Non ?	Oui	Non	Non

3. Exemples de questions

La Revue "Prescrire" (2002) 22:248-250

Question: Peut-on co-prescrire l'oméprazole avec la ranitidine en cas d'ulcère?

♥3. Exemples de questions

La Revue "Prescrire" (2002) 22:248-250

Question: Peut-on co-prescrire l'oméprazole avec la ranitidine en cas d'ulcère?

- 2 anti-secrétoires gastriques, 2 cibles différentes avec des mécanismes d'action complémentaires
- 1 IPP et 1 anti-H2
 - ...mais agissant sur la même fonction (secrétion acide gastrique)!
 - > Donc il faudrait se limiter à 1 seul anti-secrétoire!

3. Exemples de questions

La Revue "Prescrire" (2019) "Médicaments à éviter"

Cimétidine (Mylan et autres génériques)!

- Effets indésirables: brûlures d'estomac, renvois acides
- Nombreuses interactions médicamenteuses (contrairement à d'autres anti-H2) car c'est un inhibiteur de CYP2D6 hépatique !
- Recommandation: éviter la cimétidine dans la trithérapie anti-ulcéreuse!

Туре	Protéine G	Localisation	Roles de l'histamine	Médicaments & Indications
Н1	Gq	- muscles lisses -endothelium vasc. - SNC	- Contraction - Broncho-constriction -Vasodilatation - favorise l'éveil	Anti-H1: anti-allergiques; ttmt de l'insomnie -1ère génération: prométhazine alimémazine
H2	Gs	paroi de l'estomac	sécrétion acide	Anti-H2: - cimétidine - ranitidine (anti-ulcéreux)
Н3	Gi/o	autorécepteur sur les neurones	Qd activé: inhibe la libération d'histamine	Anti-H3: pitolisant WAKIX® (ttmt de narcolepsie)
Н4	Gi/o	cellules hématopoïétiques et moelle osseuse	Libération d'IL-16 par les lymphocytes T - CD8?	

Aide mémoire

famille	Suffixe de la DCI	indication
benzodiazépines (BZD)	di azépam , clonazépam	anxiolytiques
ISRS, IRSNa	flu oxétine , par oxétine, dul oxétine	antidépresseurs
	olan zapine , clo zapine (mais aripiprazole, rispéridone,)	neuroleptiques, antipsychotiques
	suma triptan , nara triptan	anti-migraineux
	ondan sétron , grani sétron	anti-émétiques
glucocorticoïdes	dexa méthasone , béta méthsone	anti-inflammatoires stéroïdiens (AIS)
anti-H2	cimétidine, ranitidine	anti-ulcéreux
ß1,2-bloquants	propran olol , atén olol , pind olol	anti-hypertenseurs
Inhibiteurs de l'enzyme de conversion de l'angiotensine	capto pril , périndo pril , énala pril	anti-hypertenseurs