

Dé	finition	
• Me ter	sure d'une propriété physique er npérature T	n fonction de la
	Techniques	Propriété mesurée
	Analyse thermique différentielle (DTA)	$\Delta T = T_{\text{échantillon}} - T_{\text{référence}}$
	Calorimétrie différentielle à balayage (DSC)	$\Delta Q = Q_{\text{échantillon}} - Q_{\text{référence}}$
	Thermogravimétrie (TG) Analyse thermogravimétrique (TGA)	<i>m</i> échantillon
	Analyse thermomécanique (TMA)	Léchantillon OU Véchantillon

THERMOGRAVIMETRIE

Analyse thermogravimétrique (TGA) ou thermogravimétrie (TG)

- Deux éléments constitutifs de la thermogravimétrie : un dispositif de chauffage et un dispositif de mesure de la masse.
- Attention : mesure de la variation de masse de l'échantillon et non pas sa masse absolue

Applications de la thermogravimétrie

- La thermogravimétrie peut donc être appliquée à tout type d'échantillon qui subira une variation de masse au cours du temps sous l'effet de la température dans une atmosphère donnée.
- Les transformations qui n'engendrent pas de variation de masse (comme une fusion ou une cristallisation par exemple) ne pourront pas être détectées par l'ATG

emples types		
Processus	Gain de masse	Perte de masse
Adsorption Absorption	\checkmark	
Désorption Séchage		\checkmark
Déshydration Désolvatation		\checkmark
Sublimation		\checkmark
Vaporisation		\checkmark
Décomposition		\checkmark
Réactions solide-solide (certaines)		\checkmark
Réactions solide-gaz	✓	\checkmark
Transition magnétique	\checkmark	\checkmark

ANALYSE THERMIQUE DIFFÉRENTIELLE

ken	ndles types		
	Processus	Endothermique	Exothermique
	Fusion	\checkmark	
	Vaporisation	\checkmark	
	Sublimation	\checkmark	
	Déshydration	\checkmark	
	Décomposition	\checkmark	
	Cristallisation		\checkmark
	Condensation		\checkmark
	Oxydation		\checkmark
	Polymérisation		✓

<section-header><section-header><text><text><figure>

Facteurs influençant les résultats

A) Instrumentaux

- vitesse de chauffe
- atmosphère et débit
- géométrie de la capsule et du four
- matériau de la capsule

B) Liés à l'échantillon

- masse
- · taille des particules
- · histoire de l'échantillon/pré-traitement
- tassement / compacité
- · conductivité thermique

Identique à l'ATG et à l'ATD ...

	ableau 1	– Maté	ériaux mét	talliques	de calib	rage pou	r tempér	atures j	usqu'à 6	60 degre	İs
N	latériau		Mercure	Indiu	m	Étain	Plo	mb	Zinc	Al	uminium
Origine de	s échantillo	ons	NIST	PTE	3	NIST	LC	GC	LGC		LGC
Phénomèr	ne physique		Fusion	Fusio	on	Fusion	Fus	ion	Fusion		Fusion
T _{fus} (K)			234,3156	429,	75	505,10	600),62	692,68		933,48
T _{fus} (°C)			- 38,8344	156,6	50	231,95	327	,47	419,53		660,33
$\Delta_{fus}H(J/g)$			11,469	28,6	2	60,22	23	,08	108,06		399,87
			Tableau	3 - Maté	eriaux o	ganiques	de calil	brage (1)		
Matériau	n-Pen- tane	n-Hep- tane	n-Octane	n-Décane	n-Dodé- cane	Cyclo- hexane	n-Octa- décane	Biphé- nyle	Naphta- Iène	Acide benzoïqu	Carba zole
T _{fus} (°C)	- 129,7	- 90,6	- 56,8	- 29,7	- 9,6	6,6	28,2	68,93	78,2	122,4	243,0
$\Delta_{fus}H(J/g)$	116,69	141,34	180,79	202,25	214,76	31,25	241,21	18,60	149,2	141,8	175,9
(1) Les vale	urs indiquées	s, arrondies	, sont extraites	de [7].							
111	4 ¹										
calibra	tion av	vec p	lusieurs	s étalor	ıs		Ρ	our l'	enthalp	oie :	

Influence du mode opératoire et limitations expérimentales

- Pour augmenter la sensibilité: grande vitesse de balayage en température et masse d'échantillon plus élevée...mais attention à l'inertie thermique de l'appareil et de l'échantillon
- Pour une meilleure résolution des évènements et un échantillon proche de l'équilibre: faible vitesse de balayage en température et faible masse de l'échantillon.
- Pour une bonne détection des évènements thermiques, il est nécessaire de commencer la mesure loin de la plage de température intéressante (temps nécessaire à l'établissement de l'équilibre thermique)

