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What is stochasticity?
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What is stochasticity?

The notion of "noise" in Biology
refers to any random and
unpredictable disturbance affecting
any biological phenomenon.
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What is stochasticity?
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Deterministic model:
the outcome is fully
determined by
parameter values and
initial conditions.

Initial parameters

!

1 outcome

Stochastic
Greek Stokhastikos, conjecturale
Stokhos, goal

Stochastic model: "A model that,
starting from the same set of initial
conditions, makes it possible to
predict several possible outcomes
with different probabilities.”

Initial parameters

/|1 \

Outcome Outcome Outcome
* A ®

=> Probabilistic model
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Stochastic
LifeScionces Greek Stokhastikos, conjecturale
Stokhos, goal

Deterministic model: Stochastic model: "A model that,
the outcome is fully starting from the same set of initial
determined by conditions, makes it possible to
parameter values and predict several possible outcomes
initial conditions. with different probabilities.”

. Initial parameters
Initial parameters

[ 1\

1 outcome Outcome Outcome Outcome
] >* A @

=> Probabilistic model

Is Life governed by “defined” or “probable” processes?




[ ]
universite

Stochastic
LifeScionces Greek Stokhastikos, conjecturale
Stokhos, goal

Deterministic model: Stochastic model: "A model that,
the outcome is fully starting from the same set of initial
determined by conditions, makes it possible to
parameter values and predict several possible outcomes
initial conditions. with different probabilities.”

. Initial parameters
Initial parameters

[ 1\

1 outcome Outcome Outcome Outcome
] >* A @

=> Probabilistic model

Are these processes really “probable”, or are they simply too complex to seem “defined” to us?
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Deterministic model:
the outcome is fully
determined by
parameter values and
initial conditions.

Initial parameters

!

1 outcome

Stochastic
Greek Stokhastikos, conjecturale
Stokhos, goal

Stochastic model: "A model that,
starting from the same set of initial
conditions, makes it possible to
predict several possible outcomes
with different probabilities.”

Initial parameters

/1 \

Outcome Outcome Outcome

" A @

=> Probabilistic model

In practice, if there is an immense number of causes (deterministic modeling impossible),

we will say that it is stochastic...



Ce que nous appelons le hasard n'est et ne peut étre
qgue la cause ignorée d'un effet connu.

What we call random is and can only be the unknown
cause of a known effect.

Voltaire, Dictionnaire philosophique portatif (1764)

=> \/oltaire was deterministic.
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Why study stochasticity?
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B e.g. Mutations, Bacteria have developed mechanisms often called "phase variation" that
{ e Erianeas Phase variation allow them to easily introduce antigenic variability into surface appendages
and Health (adaptation to host defenses, micro-heterogeneity in colonies), at a rate of

103 per generation in some bacteria!

b
\
N

Environmental
heterogeneity W
& stochasticity

Variations of cell
{(micro-)environment

Aging

e.g. Intracellular
damage or
protein aggregation

"
»
4

Stochasticity of
gene expression

Fluctuations in the set of reactions
that control the abundance of gene products

Bury-Moné & Sclavi, Res. Microbiol. (2017)



Examples of mechanisms allowing a change in surface appendages in bacteria

= pBA
N 0 (rn)CAP) (L7 .
RNA 4 -35 -10
pl= pol ! |

GATC dist  GATC prox
1
Me

DNA synthesis and Dam-
dependent methylation

7 PBA
5 Y
35 <10
GATGdist  GATG prox
I
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Examples of mechanisms allowing a change in the receptors in phage

DGR (Diversity-generating retroelements), a new mechanism to
generate variability!

DGR mechanism (characterized in 2002) Experimentally characterized in
allowing the change of tropism of a Bordetella Bordetella and Legionella, but
pertussis phage would be quite common (not

target gene only in phage)

reverse transcription
cDNA integration into VR

e . SRADUATE SCHOOL
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What is the link between stochasticity and
« Cellular innovations and synthetic
microbiology concepts »?
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iGEM 2015 wiki tools team William

WaM IGEM 2015

WHAT IS NOISE?

IGEM's undergraduate grand prize winning projects

http://2015.1gem.org/Team:Willlam and Mary

As synthetic biologists begin to construct increasingly
complex gene regulatory networks, the need for
accurate quantitative characterization of regulatory
components becomes more pressing. Despite the
extensive characterization of the average strength of
the promoters available on the BioBrick registry, very
few have information pertaining to the variability in
their expression. Our project aims to characterize this
variability, commonly referred to as stochasticity, or
noise, in gene expression, for the most commonly used
promoters in synthetic biology and provide additional
tools for the regulation of these promoters.

Read more on our Project Description page.

4
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CRISPR interference system
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http://2015.igem.org/Team:William_and_Mary
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' Bacteria ensuring
population o
renewal i-.’?"

Heterogenoous Cleaning Factory

__The HeteroGenious -

_ Cleaning Factory

Bacteria ensuring MTX
biotransformation

B: [ —
2 -l MTX standard REpE 1
£ LB-MTX + negative control strain : LER
= B-MTX + ‘MTX-Cleaning Factory’ -
4 ' N ’:'
U ’ -l
c - T
S LEES 7
£ \ -
® { - — -
. —— h
20 o 24
B | >
Retention time (min) e
Figure 1:

A The MethotrExit project : MTX-biotransformation pathway and division of labor strategy
B HPLC analysis of MTX medium incubated with a ‘MTX-Cleaning Factory’

M/S
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Stochasticity of gene expression as an object of study
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A Very Brief History of Stochasticity in Biology

At the end of the 60s, first uses of this notion,

- in the context of developmental noise:

Waddington CH, Kacser H “The strategy of the genes: A discussion of some aspects of theoretical
biology” (1957). George Allen and Unwin, London.

- within the context of the regulation of the lactose operon:

Novick A & Weiner M, “Enzyme induction as an all-or-none phenomenon” (1957), PNAS

Publication in the 1970s of pioneering articles concerning the notion of stochasticity of
gene expression in bacteria :

Spudich & Koshland, “Non-genetic individuality: chance in the single cell”, Nature (1976)

Rigney & Schieve, “Stochastic model of linear, continuous protein synthesis in bacterial
populations”, Journal of Theoritical Biology (1977)

Berg, “A model for statistical fluctuations of protein numbers in a microbial-population”,

Journal of Theoritical Biology (1978)

Rigney, “Stochastic model of constitutive protein levels in growing and dividing bacterial cells”,
Journal of Theoritical Biology (1979)

Rigney, “Note on the kinetics and stochastics of induced protein synthesis as influenced by
various models of messenger RNA degradation ”, Journal of Theoritical Biology (1979)
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Access to the heterogeneity of cell populations

Traditional methods Single cell methods:
(e.g. RNA or protein extraction from a biological ~ Measurement of a phenotype of each cell
sample, beta-galactosidase assay...) : Distribution analysis
Measurement of a mean (p) Monitoring the fate of a cell
e o o
Population = = :
(a) mean = - =
S S5
1 2 3

—

(b)

——

# of cells
# of cells
# of cells

00
0000
"

TRENDS in Microbiology
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Would you say that condition B is an ‘inducing
condition’ of the reporter gene expression?

Promoter-gfp . .

Total population analysis
Averaging method

RatioB/A=2.4

e

140

120

100

80

60

40

20

Mean Fluorescence Intensity (MFI, A.U.)

B Condition A
Condition B

Bury-Moné & Sclavi, Res. Microbiol. (2017)
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Single cell analysis

Fluo
Tot

GFP* cells

% MFI FIuc:Tot

GFP* cell
Promoter-gfp —
Cond. A 99.7 50
Cond.B 93.5 60

Would you say that condition RatioB/A | 0.9 1.2

50
56
1.1

03 1300 4
6.5 1100 72
21.7 0.8 183

B is an ‘inducing condition’ of
the reporter gene expression?

-

Count

Fluorescence intensity (A.U, log-scale)

Bury-Moné & Sclavi, Res. Microbiol. (2017)

Mean Fluorescence Intensity (MFI, A.U.)

Total population analysis

Averaging method

RatioB/A=2.4
140

120
100
80
60
40

20

B Condition A
~ | Condition B
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2 10 4 ¢ ...
Main methodologies for individual monitoring and/or _— 4% /TR -
isolation of cells: ' /
. Efi y L34 Capillaryﬂp'ﬁpene 2
Fluorescence microscopy FLESR CEERER S A
Flow cytometry = 9 i
96-well plate
Microfluidic droplets 3 . ;
Serial dilutions, Optical tweezers, micromanipulations, laser e Mieroludics Blood calection
microdissections, laser tag activation, etc... 4! R @ |7 AntiEpCAM antibody
i s r:gr;pszi;srtg:lutfefer - l , with ma(gneuc particle
Cell — / = :a:e;
Cells from | - ‘ CroploL W ; crc enrlichment
. . . ¢ uspansion e Sy
Combined with methodologies to: —— Y o =2
- Detect a marker (usually fluorescent) - Ex: reporter gene,
. . 9 Sstructure of the barcode primer bead e
fluoresce nt antlbodlesu. i Reverse transcription v:;template switching
. e . . handle Cell barcode UMI ;
- Detecting an amplification product [e.g. PCR single cell, R m—

RT-PCR single cell, MDA single cell (multiple Displacement 1 A« A O
Amplification — Phi29 polymerase)] 9#( & ;}%
- In a targeted way (on a gene of interest) ‘ | —bwpes (P
- In a global way — Ex: DNAseq single cell, RNAseq e
single cell, microarrays Noture
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The revival of the concept of stochasticity of gene expression

b rm.l.n 1

llence

www.sciencemag.org SCIENCE VOL 297 16 AUGUST 2002

Stochastic Gene Expression in a
Single Cell

Michael B. Elowitz,'?* Arnold J. Levine," Eric D. Siggia,®
Peter S. Swain?

Clonal populations of cells exhibit substantial phenotypic variation. Such het-
erogeneity can be essential for many biological processes and is conjectured to
arise from stochasticity, or noise, in gene expression. We constructed strains
of Escherichia coli that enable detection of noise and discrimination between
the two mechanisms by which it is generated. Both stochasticity inherent in the
biochemical process of gene expression (intrinsic noise) and fluctuations in
other cellular components (extrinsic noise) contribute substantially to overall
variation. Transcription rate, regulatory dynamics, and genetic factors control
the amplitude of noise. These results establish a quantitative foundation for
modeling noise in genetic networks and reveal how low intracellular copy
numbers of molecules can fundamentally limit the precision of gene regulation.
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oriC located at almost the same
distance of the origin of
replication?

Transgene expression
is under the control
of the same lac

promoter.
we built strains of Escherichia coli, incorpo- For measurement, cells were grown in LB
rating the distinguishable cyan (¢fp) and yel- medium and photographed through ¢fp and yfp

low (yfp) alleles of green fluorescent protein

, : fluorescence filter sets and in phase contrast
in the chromosome. In each strain, the two

reporter genes were controlled by identical (Fig. 2) E]?) E ;Dm[l:r]ut Enz;d lﬂlﬂg? Eg‘jﬂ]th}'SEE
promoters. To avoid systematic differences in system wdentihicd cclis and quanific cir

copy number, we integrated the genes at loci mean fluorescent intensities
equidistant from, and on opposite sides of,

the origin of replication A result is represented: expression of the CFP (cyan

fluorescent protein) in green, the YFP (yellow fluorescent
Elowitz et al., Science (2002) protein) in red, both simultaneously in yellow.
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Genetically identical individuals
(isogenic - clones) located in an
apparently homogeneous and constant
environment present different
phenotypes.

For measurement, cells were grown in LB
medium and photographed through cfp and yfp
fluorescence filter sets and in phase contrast
(Fig. 2) (7). A computerized image analysis
system identified cells and quantified their
mean fluorescent intensities

A result is represented: expression of the CFP (cyan
fluorescent protein) in green, the YFP (yellow fluorescent
protein) in red, both simultaneously in yellow.
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Theoretical cases of fluorescence
fluctuations of the proteins YFP
(red) and CFP (green) within an

individual cell.

l
'y
k!

Time
What could be the cause of the
variations observed in A? B

| [i [
u
UU|]U[

Time

Elowitz et al., Science (2002)
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Variations in parameters modulating
promoter activity and gene expression
(post-transcriptional regulations)
identically on both promoters.
Difference between cells or over time
but not within the cell itself at a given
time.
=> Extrinsic noise

What additional
phenomenon would be
added to panel B?

Elowitz et al., Science (2002)

Fluorescence

Fluorescence

Noise Components

Time

Time

— CO
—> ( l )
)

)

Heterogeneity between cells
or of a cell over time
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Variations in parameters modulating
promoter activity and gene expression
(post-transcriptional regulations)
identically on both promoters.
Difference between cells or over time
but not within the cell itself at a given
time.
=> Extrinsic noise

Surprisingly, with (quasi-identical)
genetic parameters, expression from
the same promoter is not the same
within the cell at a given time.
=> Intrinsic noise

(stochasticity  inherent in  the
biochemical process of gene
expression)

Elowitz et al., Science (2002)

Fluorescence

Fluorescence

Noise Components

Time

Time

s Y —
. -—
O
—)
—

Heterogeneity between cells
or of a cell over time

Inherent noise in the
gene expression
process and
intracellular
heterogeneity
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Noise components: temporal noise versus population

Flow cytometry

Cell number

Level of X per cell m .

—— @ [y
< 1~ O 4’\"\{\;\/*\?‘\/‘
F = . W AYA

b W S~ @ Wi
lonal populati \Q/ V\jwf\/\r\;/\y

|

Flow cytometry

What is the case reflecting the
best the case of the clonal
population shown here?

Level of protein X

Flow cytometry

Nature Reviews | Genetics

Zernicka-Goetz & Huang, Nature Genetics Reviews (2010)
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Noise components: temporal noise versus population

Flow cytometry

Cell number

Level of X per cell

Snap'shot Snapshot Snapshot
f b c

- /".WWWW/\: 1
L | . WWW‘J‘ o e — %
‘ ‘ o
T ® i A e |
TS @i
Clonal population \ A ' : : =3

@ W AN

Ergodicity Stable individuality
>

Temporal noise B 4 Population noise

Nature Reviews | Genetics

Zernicka-Goetz & Huang, Nature Genetics Reviews (2010)
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F Y
measurement on
eachcell -

Variations in parameters modulating
promoter activity and gene expression
(post-transcriptional regulations)
identically on both promoters.
Difference between cells or over time
but not within the cell itself at a given
time.

Fluorescence
CFP Fluorescence

=> Extrinsic noise

Time YFP Fluorescence

Surprisingly, with (quasi-identical)
genetic parameters, expression from
the same promoter is not the same
within the cell at a given time.
=> Intrinsic noise

(stochasticity  inherent in  the
biochemical process of gene
expression)

Which line represents
extrinsic noise?
The blue or the green?

Fluorescence

Time

Elowitz et al., Science (2002)
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Variations in parameters modulating
promoter activity and gene expression
(post-transcriptional regulations)
identically on both promoters.
Difference between cells or over time
but not within the cell itself at a given
time.
=> Extrinsic noise

Surprisingly, with (quasi-identical)
genetic parameters, expression from
the same promoter is not the same
within the cell at a given time.
=> Intrinsic noise

(stochasticity  inherent in  the
biochemical process of gene
expression)

Elowitz et al., Science (2002)

Fluorescence

Fluorescence

Noise Components

Time

Time

CFP Fluorescence

A

Individual
measurement on
eachcell -

Extrinsic

YFP Fluorescence

Extrinsic noise = covariance

Intrinsic noise = deviation from the
linear regression line

Total noise measured by the

coefficient of variation : CV = %
0.2
or the Facteur Fano : F = ”

U = mean, o? = variance,o = standard deviation
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Single-cell fluorescence levels (x-GFP)
Chalancon et al., Trends in Genetics (2012) TRENDS in Genetics
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Single-cell fluorescence levels (x-GFP)
Chalancon et al., Trends in Genetics (2012) TRENDS in Genetics
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[GENE1|[GENE1]:GENE2:
§ A § E Each black line represents a
© © .
Intrinsic noise (difference in - - given cell.
. . ¢ o = The red lines represent a
expression of a given promoter < c synchronization case
within the same cell) s 8
time time
: B 3 | F
== C
No intrinsic noise € g
3 SR ARDOR | e
© @
Extrinsic noise ,§ § autocomelation e
a a
time time
Global noise £ G g Q
(fluctuations in the rate of ‘:32 ‘g’
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Bury-Moné & Sclavi, Res. Microbiol. (2017)

Genetic variation

e.g. Mutations,
Phase variation

Environmental ) Aging

heterogeneity eg. Intracellular
§se damage or
& StOChaStKlty protein aggregation

Variations of cell
{micro-)environment

A

Stochasticity of
gene expression

Fluctuations in the set of reactions
that control the abundance of gene products

2 Ny

Intrinsic Extrinsic

Differences in gene  Differences from cell to cell

expression between  orin asingle cell over time

identical gene copies  that affect all the copies of
in a single cell the same gene equally

PN
Global

Differences that affect
almost all genes

Specific
Differences that affect
specifically TF- and signaling
pathway- requlated genes
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Intrinsic factors

Fluctuations in
microenvironment

065

Variable availability
of machineries

Recruitment of the
transcriptional machinery

Nucleosome positioning
and occupancy

- Environmental
" noise

—

For instance in Eukaryotes
(similar in Prokaryotes)

Prorr;oter RNA pause | @
architecture prone sites '
Bursty transcription ,‘ Unequal
| ‘ partitioning
mRNA degradation

‘

Translational rate -. ——
Cas
&

+ subcellular location
heterogeneity

Protein degradation

O-@Quw

Expression noise
TRENDS in Genetics

Chalancon et al., Trends in Genetics (2012)

Origins :

- Thermal noise

- Biochemical noise

- Effect of small number

- Intracellular gradients

- Quantum Noise (stochastic
fluctuations in the behavior of
molecules on atomic scales)

One often distinguishes:
- Molecular causes:
efficiency # 100%

- Low regulator concentration

- Topological causes - structure of
chromatin

Process

See Bionumbers
http://bionumbers.hms.harva
rd.edu/
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Random times of MRNA initiation
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Times of appearance of polypeptides from all polysomes

Model of polysome kinetics. At random times, different RNA polymerase molecules
initiate synthesis of mRNA at the promoter of a gene (top line). Following a delay, é, completed
polypeptide chains will be produced from each messenger ; a time interval A separates the times
of appearance of successive polypeptides on a given messenger ; the number of polypeptides per
messenger is random (middle four lines). The times of appearance of polypeptides correspond to
the superposition of the times of appearance on all of the polysomes (bottom line). The random
variable N, (number of polypeptides in the cell at time 1) is found by counting the number of
polypeptide appearances to the left of the position on the bottom line corresponding to time 1.

Rigney, J. theor. Biol. (1979)
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Time (cell cycles)

- 7 - Mechanisms that shape noise in gene
expression. Noise is characterized by bursty expression of mRNA (top).
Proteins typically have longer lifetimes than bursts, leading them to time-
average or ‘buffer’ these bursts (middle). Finally, noise in one gene can

propagate to generate further noise in the expression of downstream genes
(bottom).

Elowitz et al., Nature (2010)
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and Health Growth source
metabolism & replication (Y8 PN \_%)
to predict growth mmj}‘“
T G Eoad
replim?oﬁ:brrii nation C—pg.g ﬁga of
followed by cell division one double fork

mANA synthesis
& partitioning

What the model tells us: b
- Transcription & cell partitioning at division are o
the major determinant of  growth .
heterogeneity in most conditions. i

- Synthesis and removal of mRNAs encoding o¢
nutrient  transporters have a major |

" 1“?!;?&%? 5 l [1D’Caar:'||i20a55acids]
contribution to growth variation. : WWW

enzyme mANA

Growth rate
[dblin]

Slow fluctuations
in growth

(=]

0
# Origins # Coll divisions
4 Call cycle
fluctuations
2
-
1 J

) 0 20 2 40 50
Time [h]

Fig. 1 Stochastic model of single-cell growth. a The outer cycle illustrates the cell cycde model based on the Cooper-Helmstetter model of bacterial
replication. We assume initiation of a new round of replication at a fixed concentration of DNA-origins, analogous to a fixed initiation mass per DNA-
originZ®, thus growth dynamics schedule the replication events and are determined by the intracellular model (inner circle). The latter describes import and
metabolism of resources, and how they fuel gene expression, where the rate of protein-biosynthesis determines growth. Stochasticity of cellular dynamics
is a result of the intrinsic stochasticity of the various reactions and the random partitioning of the cellular content at division. b Stochastic simulations
illustrate the propagation of intrinsic fluctuations in single cells: mRMNAs are synthesised at low numbers per cell (yellow & green lines), which affects

ThO mas et al, Nature Communlcatlons (2018) protein production and so growth rate (red line). Fluctuations in growth lead to temporal variations in cell mass that can span several cell cycles (blue line),

causing fluctuations in the number of replication origins (teal line), in the mass at initiation (filled circles), and consequently in cell divisions (orange line)
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What the model tells us:

Transcription & cell partitioning at division are
the major determinant of  growth
heterogeneity in most conditions.
Synthesis and removal of mRNAs encoding
nutrient  transporters have a major
contribution to growth variation.

Kennard et al. (2016) []
Kiviet et al. (2014) o

Simulation ()
SNA e

0.3

o
)

©
—a

e Partitioning
at cell division

Growth rate fluctuations [CV]

05 1.0 15 20 25 30 35
Mean growth rate [dbl'h]

Thomas et al., Nature Communications (2018)
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to predict growth

What the model tells us:

Transcription & cell partitioning at division are
the major determinant of  growth
heterogeneity in most conditions.

Synthesis and removal of mRNAs encoding
nutrient  transporters have a major
contribution to growth variation.
Environmental conditions can have an impact
on growth variation. Especially, growth
heterogeneity exhibits a complex pattern in
presence of antibiotics => possible impact on
tolerance to antibiotics.

Antibiotic dose [x18 uM)]

Average growth rate [dblh] c Growth rate fluctuations [CV]
0 pr - - . . 0 pr . - .
107 F ; 10°F
107" } { < 10=
—— © 7
ol | - )
1072} g 1072t
; o
>3.5 =
‘ °
o
10°° z 107}
<
107% H - ; . : 107 - . - .
0.02 0.2 2 20 200 0.02 0.2 2 20 200
Nutrient quality Nutrient quality

White line = non-zero drug dose that minimises growth heterogeneity

Thomas et al., Nature Communications (2018)
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Previous deterministic model of cell growth
Weibe et al., PNAS (2015)
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Like a molecular parasite

Previous deterministic model of cell growth
Weibe et al., PNAS (2015)
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Can the noise be genetically encoded?
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We varied independently the
rates of transcription and translation of a single fluorescent
reporter gene in the chromosome of Bacillus subtilis, and we

quantitatively measured the resulting changes in the pheno-
typic noise characteristics. We report that of these two para-

Table 1 * Translational mutants: point mutations in the RBS Table 2 » Transcriptional mutants: point mutations
and initiation codon of gfp in the P,  promoter
Strain  Ribosome binding site Initiation Translational Strain —10 regulatory region Transcriptional efficiency
codon efficiency -10 +1
ERT25 GGG ARA AGG AGG TGA ACT ACT ATG 1.00 ERTS7 CAT BAT GTG TGT RAT 6.63
ERTZ27 GGG AR AGG AGG TGA ACT ACT TTG 0.87 ERT25 CAT AAT GTG TGG RAAT 1.00
ERT3 EEG ARD AGG TGS TGA ACT ACT ATG 0.84 ERTE3 CAT AAT GTGE TGC AAT 0.79
ERTZ29 GGG AR AGG AGG TGA ACT ACT GTG 0.66 ERTS1 CAT AAT GTG TGA AAT 0.76
ERTSS CAT BAT GTG TAA RAT 0.76
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Fig. 2 Biochemical contribution to phenotypic noise. a, Complete experimental data. Each data point is the summarized result of an entire histogram correspond-
ing to a flow cytometer run of a population of typically 10%-10° cells. The phenotypic noise strength of the population (z, in arbitrary fluorescence units) is plotted
as a function of transcriptional efficiency (x, depending on the IPTG concentration) and translational efficiency (y, depending on the translational mutant used).
Transcriptional and translational efficiencies are normalized to those of the wildtype ERT25 strain, allowing these parameters to be directly compared. These data
are fitted to a plane of the form z=ag+a,x+ay using a least-square routine, giving a;=7.1 + 0.9, a,=6.5 £ 0.4, a,=21.8 £ 0.9. The ratio a /a,=3.4 gives the relative
effect of translational versus transcriptional efficiency on phenotypic noise strength. b,c, For clarity, the three-dimensional data are projected parallel to the fit
plane onto the boundary planes x=1 (b), noise strength as a function of translation, and y=1 (c), noise strength as a function of transcription. The intersection of
the fit plane with each boundary plane is shown as a solid line; dotted lines indicate an interval of 1 s.d. Data in b are summarized separately for each translational
mutant (dark circles with error bars that represent 95% c.i.). Inset in ¢ shows results of control experiments conducted on transcriptional mutants at full induction.
Three strains (ERT51, ERT53 and ERT55) are very similar, both in transcriptional efficiency and in noise strength, suggesting that biochemical noise is determined by
the actual transcription rate rather than by the specific method used to achieve it. The strain ERT57 shows a highly amplified transcriptional efficiency, allowing
reliable estimation of correlations. Data are summarized separately for each transcriptional mutant. A linear fit through these points gives a slope a,'=7.3 £ 0.3,

which is consistent with the slope a,=6.5 + 0.4 obtained from a. Ozbudak et al.. Nature Genetics (2002)
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of differential measurements. We varied independently the
rates of transcription and translation of a single fluorescent
reporter gene in the chromosome of Bacillus subtilis, and we
gquantitatively measured the resulting changes in the pheno-
typic noise characteristics. We report that of these two para-
meters, increased translational efficiency is the predominant
source of increased phenotypic noise. This effect is consistent
with a stochastic model of gene expression in which proteins
are produced in random and sharp bursts. Our results thus
provide the first direct experimental evidence of the biochem-
ical origin of phenotypic noise, demonstrating that the level
of phenotypic variation in an isogenic population can be regu-
lated by genetic parameters.

Table 1 * Translational mutants: peint mutations in the RBS Table 2 * Transcriptional mutants: point mutations
and initiation codon of gfp in the P, promoter
Strain Ribosome binding site Initiation Translational Strain -10 regulatory region Transcriptional efficiency
codon efficiency -10 +1
ERT25 ©GC AARA AGG AGE TGA ACT ACT ATC 1.00 ERTS7 CAT AAT GTC TGT AAT 6.63
ERT27 GGG RAR AGE AGE TGA ACT ACT TTG 0.87 ERT25 CAT AAT GTC TGCG AAT 1.00
ERT3 GGG AAM AGG TGG TGA ACT ACT ATG 0.84 ERTS3 CAT AAT GTGE TGC RAT 0.79
ERT29 3¢ AAA AGE AGE TGA ACT ACT GTS 0.66 ERTS1 CAT BAT GTCE TCGA AAT 0.76
ERTSS CAT AAT GTC TAA RAT 0.76
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Table 3 * Examples of genes inefficiently
translated in Escherichia coli

Gene Function of gene product

cl regulator of bacteriophage-i Oy operator?’
cya synthesis of cAMP1?

malT regulator of maltose regulon®

nagC regulator of nag regulon?®

tetR regulator of tetracycline resistance?’

trpR repressor of trp, trpR and aroH operons?®




universite

PARIS-SACLAY Let’s play to the {« nOiSe ga me »

GRADUATE SCHOOL
Life Sciences
and Health

High or low level of noise?
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N
|
3

Raser & O’Shea, Science (2005)
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High or low level of noise?
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Let’s play to the « noise game »
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Noise and gene networks
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Bury-Moné & Sclavi, Res. Microbiol. (2017)
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influence
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Noise is "controllable"

Constitutive unregulated
expression

Negative feedback
(autoregulation)

Weak positive feedback
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Bury-Moné & Sclavi, Res. Microbiol. (2017)
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and Health A Repressor DOX  Activator Activator + Figure 3. Single-Cell Analysis by Flow Cy-
only pg/mi only Repressor tometry

(A and B) The rheostat transcriptional re-
sponse to increasing concentrations of the
inducer mediated by either the activator or
the repressor alone is converted to an on/off
switch in single cells containing both factors.
Populations of cells containing the repressor
(“repressor only”), the activator (“activator
only™), or both (“activator + repressor”) were
treated for 72 hr with the concentrations of
dox indicated. The distribution of GFP ex-
pression in the three populations was ana-
lyzed by flow cytometry. In (A), GFP expres-
sion profiles are shown for each population.
The black and the red lines mark the positions
of the peak of GFP expression in uninduced
and induced conditions, respectively. In the
repressor only and activator only popula-
tions, increasing concentrations of dox lead
to a graded increase in GFP expression in
the entire cell population, as indicated by a
unimodal homogeneous shift to the right of
2 1 10 100 1000 the peak. In the activator + repressor popula-
GFP fluorescence tion, increasing concentrations of dox lead to
the expression of GFP in a subpopulation of
the cells, while no GFP can be detected in the
remainder of the population. This effect is
indicated by the appearance of two distinct
peaks in the GFP expression profiles (Figure
1C). A further increase in the dox concentra-
tion leads to an increase of the GFP-positive
subpopulation at the expense of the GFP-
negative subpopulation. The level of GFP ex-
pression in the positive subpopulation is
equivalent at all doses of inducer, indicative
of an all-or-none response. (B) shows an
overlay of the GFP expression profiles shown
in (A). Whereas in the repressor only and acti-
vator only populations arange of GFP expres-
GFP FLUORESCENCE —» sion levels can be achieved in response to
changes in the concentration of the inducer,
in the activator + repressor population GFP
can either be absent or expressed at maximal

Rossi et al., Molecular Cell (2000) S S e e

10

.50
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Example of bacterial virulence
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Nucleoid associated proteins and regulation of the
expression of a pathogenicity island in Escherichia coli

rad B

Bhatt et'al. Trends in-Microbiology (2011)

2 Injectisome protein

% Effector protein

% Translocator

% Switch complex

- A/E pathogens (attachment/effacement)
Enteropathogenic Escherichia coli (EPEC),
enterohemorragic (EHEC)...

- Phenotype A/E linked to the expression of the
islet of pathogenicity LEE (locus of enterocyte
effacement) encoding a type Il secretion
system

»  Transglycosylase

= Intimin

% Chaperone “» Regulator “» Unknown function
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Ruano-Gallego et al. ACS Synth Biol (2015)
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@ Yes, the pathogenicity island expressed under non-inducing condition!
Bet-hedging theory
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Nucleoid associated proteins and regulation of the
expression of a pathogenicity island in Escherichia coli

LB = medium considered as
a non- inducing condition

SF93M medium

»
|

Nombre de cellules

Fluorescence

Leh et al. mBIO (2017)

v

Fluorescence

EPECWT
- NaHCO,
+ NaHCO; 45mM

LB medium
m‘
£
>
S
o]
(@]

Mouth

+ Chewing and mixing with saliva
* pH 57
* Transit time: 105 - 2 min

= Salivary enzymes (amylase, lingual
lipase)

Small intestine

= Breaking down of macromolecules

and absorption of nutrients

o pH6-7.5
* Transit time: 2 -5 hours

+ Pancreatic juice, bile, NaHCO,

4 EPEC strains:

| - WT
- hns

i - ler

| - hnsler

__________________________

Stomach

» Mechanical and enzymatic processing of
ingested bolus

*pH1-5
* Transit time: 15 min — 3 hours

* HCl, pepsin, gastric lipase

Colon

= Microbial fermentation of undigested
food and water reabsorption

* pH 5-7
= Transit time: 12 — 24 hours

* Microbiota
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@ H-NS silences LEE5 promoter.
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@ Ler is not required for LEE5 activation in absence of H-NS!
=> Regulation model?
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LB = medium considered as
a non- inducing condition

»

Cell counts

LB medium

I

vE

Fluorescence

Nucleoid associated proteins and regulation of the
expression of a pathogenicity island in Escherichia coli

___________________________

Relief of H-NS mediated repression

Only partial in LB
Complete under activating conditions

-

e
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promoter activity

H-NS & Ler in EPEC — Model

Model of LEE5 promoter
regulation that can result
in a bimodal population

LEES expression states

_JOFF

—_— |
Ler binding

G

J

Is bimodal expression found in other pathogens

and bimodality!

High state ) )
Ler anti-silencing predominates

Unstable state o
Ler and H-NS competition

Low state
H-NS silencing predominates

(e.g. Vibrio cholerae, Samonella...) which pathogenicity
island is also silenced by H-NS?

Link between the structure of the bacterial chromatin

Optimal virulence conditions

Mon-optimal virulence conditions

Leh et al. mBIO (2017)
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. Multiple steady

: Weak basal expression

DI states
i and Strong positive feedback g [V /N mmmmmmmmmmmmmmemmmmmmmmmmmmemees
(autoregulation) {
: A " Level of expression
i Double positive feedback loops
C _J,
C encoding genc i | wf
Promoterg .
8
_ Level of expression
A
Toggle switch (double negative feedback loops)
: 1
Cencoding gencll |
Promoterp [A]
_ Level of expression
A

Bury-Moné & Sclavi, Res. Microbiol. (2017)

« Bistability is
impossible if one of
the components acts
too strongly or too
weakly compared to
the others. »

Smith et al., Nature Reviews
Microbiology (2006)
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Examples
Competence (Bacillus subtilis, Streptococcus pneumoniae)
Lactose operon (Escherichia coli)
Lytic vs. Lysogenic decision during A phage infection
SPI secretion system (Salmonella)
Cytotoxicity & mucoidy (Pseudomonas aeruginosa)
Sporulation (Bacillus subtilis)
Formation of the fruiting body (Mycococcus xanthus)

F luorescent imensity (:‘—\U)

-

c

3 Monomodal -I - Bimodal ;W“%
o . '\
T | E
o N § -
2 | )

< Kaiser, TIG (1999)
= \ )Ty

o o\
o \
"

Fluorescent intensity (AU)

Smith et al., Nature Reviews Microbiology (2006)
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The stochasticity of gene expression is considered to be systematic.
The plurimodal nature is more specific to certain genes and conditions.

& o
>@:J
e
Gl o

Elowitz et al., Science (2002) Time

Fluorescence

Metabolism

(e.g. Lactose operon/Escherichia coli)

Stress response

Competence (e.g. Bacillus subtilis)
Sporulation (e.g. Bacillus subtilis)
Persistence (e.g. Staphylococcus aureus)

Pathogenicity

Clonal population of Bacillus .
subtilis in a state of vegetative M UCOIdy
growth or in the process of (eg Pseudomonas aeruglnosa)
sporulation (green), at the end .
of sporulation (white) or in a Defense vs offensive mode (e.g. S. aureus)
state of competence (red) Expression vs latency (e.g. HIV)

Eldar & Elowitz, Nature (2010)
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Every man knows how useful it is to be
useful. No one seems to know how

useful it is to be useless.

Tchouang-Tseu
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”

] F 4 - 1
. Phenetypic he}:__err‘cr_ge_nneity.

’ —

Unadapted phenotypes Optimal phenotypes
in the present situation in the present situation

Strategies adapted Strategies adapted
to environmental fluctuations to life in communities
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Functional outcomes of phenotypic heterogeneity.

Sirategics

Fitness at the individual cell
level

Fitness at the population level

Examplecs

Bet-hedging strategies

Phenotype induced in the absence of the
appropriate signalfInsurance stratepy

Delayed response

Division of labor at the local community level
Production of public goods by release of cell
components as energetic respurces or as

part of the hiofilm matrix
Production of public goods by
complementarity

Division of kabor at the lineage/genotype level

Strain dispersal

Exploration of the phenotypic landscape

(or apparently neatral)

Uncertain®

Uncertain®

Avoidance of invasion by competitors, cheaters and parasites

+
Strategy adapted to
environmental Mluctations
+

Strategy advaniageous

if environmental conditions
revert (o a previous situation

+

Strategy adapted to life in
COImmunities

+

Strategy adapted to life in
communities

+
Strategy important for lineage
propagation

+

Strategy adapted to

environmental Muectuations

Persisters afler anbibiobic treatment
Lactose metabalism

T3I55 expression by EPEC

Timing variability during
dhiferentiation

*Altruistic’ or stochastic cell death

Mitrogen fixation by filamentous
cyanobacteria
Systemic Salmonella infection

*Asocial’ escape from biofilms

Stochastic escape from dormancy/
seout hypothesis

Abortive infection — 1 ‘Altruistic” cell death
Strategy adapted to block
viral propagation
Absence of pene expression in presence of i In the caze of Salmoneila | MNon-virulent Salmonello
appropriate signal Strategy advantageous if pene subpopulation that does not express
expression induces a growth T355
penalty resulting in a loss of
fitness at the individual cel
level
Other
‘Suffered’ noise: heterngeneous phenotypes Uncertain® + Almost universal basal level of noize
due to optimization of cost associated Strategy adapted to keep {despite variable intensity across
with signaling energy cost down EEnes)

Abhreviations: EPEC (enteropathogenic Escherichia coli), T388 (Type 3 sccretion system).
# In this conlext, ‘uncerlain® means that the positive, neutral or negative impact of the phenotype on the filness cannol be predicled.

Bury-Moné & Sclavi, Res. Microbiol. (2017)
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The noise of gene expression is :

- "Universal"

- Genetically coded

- A trait subject to evolution / selection

- "Controllable": Sensitive to the structure of regulatory networks capable of generating
changes in life states without recourse to genetic mutation.

= Genetically inherited
—> Epigenetics? Memory ?



[ ]
universite
PARIS-SACLAY

GRADUATE SCHOOL
Life Sciences
and Health

Stochasticity of gene expression, another look at unicellulars...

a set of sub-populations
made up of different

stable microstates...

'd

Single cells...

... whose "raison d'étre" often
finds a "meaning" / selective
advantage at the evolutionary
level at the population level and
not necessarily at the individual
level.

Sociomicrobiology
Microbial community
« Multicellularity »
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What is the link between
stochasticity and « Cellular
innovations and synthetic
microbiology concepts »?

- Fitness at the population level
- Emergence of new properties at the population level
- Link with synthetic biology :
Noise as a potential barrier to the design of controlled tools,
Noise as the possibility of generating genetic constructs with "controlled"
stochasticity of gene expression.
Interest of synthetic constructs to study noise.
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The question remains as to whether the
biological processes described are in
themselves stochastic or appear

stochastic to us.




