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Modeling the Effect of Human Behavior on
Disease Transmission

By Katie Yan

Abstract. Many infectious disease models build upon the classic Susceptible-Infected-Recovered (SIR)

model, a compartmental system that is used to simulate disease transmission in a population. The SIR

model focuses on the transmission of disease but rarely includes behavioral or informational components

that explore how disease perception influences transmission. In this paper, we propose a six-compartment

behavioral SIR model that further segments the classic SIR system based on knowledge of information

about the disease, and we explore how sharing information affects disease transmission. We designate

two states as aware and unaware based on whether the relevant information is known by the population.

Additionally, we include two types of information: good information that reduces transmission rates and

bad information that increases transmission rates. We find that while compliance with good information is

useful in decreasing community transmission, compliance with bad information has a greater magnitude

of effect in terms of total cases. These results reaffirm that knowledge and human behavior are influential

factors in disease transmission and should be included in future human disease models for more accurate

transmission representation.

1 Introduction

Mathematical models provide quantitative solutions to real-world problems. Examples
range from determining the growth rate of a cell culture to predicting changes in stock
price. They range in complexity from simple algebraic equations to complex systems of
ordinary differential equations (ODEs) and are used to predict outcomes under a certain
set of assumptions and conditions.

Many mathematical models focus on the spread of infectious diseases. These dis-
eases are caused by infectious agents including viruses, bacteria, and protozoa. Recently,
the relevance of mathematical modeling research has increased due to the ongoing
COVID-19 pandemic. This resurgence has brought to light the importance and limi-
tations of such models. In forecasting the spread of disease, we can predict hot-spot
locations for the disease, transmission rates, and effective prevention and protection
measures.
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2 Modeling the Effect of Human Behavior on Disease Transmission

Although many robust mathematical models exist, they often fail to incorporate
human behavior. Recently, the National Science Foundation released a “Dear Colleague
Letter” prompting proposals that research how human behavior could be incorporated
into disease models [1]. As shown throughout the COVID-19 pandemic, the way humans
behave is essential to understanding the spread of disease and how best to decrease
transmission rates.

In this paper we propose a behavioral model of disease, incorporating the idea
of “good” and “bad” information that influences the transmissibility of a disease. We
begin by giving an overview of a simple Susceptible-Infected-Recovered (SIR) model and
behavioral epidemiology in Section 2. In Section 3 we define our behavioral SIR model
which we show in both compartmental and ODE form. We explain simulation results
from this model in Section 4 and discuss our results and conclusions in Section 5. Finally,
we give a table of variables and compartments in Appendix A, and additional simulation
results in Appendix B

2 Background

2.1 The SIR Model

The SIR compartmental model is one of the most common models used to describe
the transmission of a disease within a population. The SIR model is described by the
compartmental model shown in Figure 1 [2]. The susceptible (S) compartment repre-
sents individuals in a population who are susceptible to disease infection but are not
currently infectious or infected. The infected (I) compartment represents individuals in
the population who carry the disease and spread it to susceptible individuals. Finally,
recovered (R) individuals have passed the infectious stage of the disease and no longer
transmit the disease. Individuals in the population will move from S to I and finally to R
as the disease progresses.

Figure 1: SIR Compartmental Model: In this model, individuals are separated based on
infection status. As the disease progresses individuals become infected at rate β and
recover at rate α.

In the SIR compartmental model, people in the susceptible compartment move at
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Katie Yan 3

rate β to the infected compartment. Likewise, the recovery rate α describes the rate
at which individuals recover from the disease and are no longer infectious. Several
simplifying assumptions are made to the model. These assumptions include:

1. The total population size N, where N = S + I+R, is constant. There are no births or
deaths.

2. After someone recovers from the disease, they are considered immune to the
disease. They cannot reenter the S compartment.

3. The incubation period of the disease is short enough to be ignored. The incubation
period is defined as the period in which an individual is infected but not infectious;
during this time the individual might or might not be aware they are infected.

4. The SIR compartments are uniformly mixed to ensure an equal risk of catching
the disease.

5. Healthy individuals in the susceptible compartment get sick at a rate proportional
to the product of S and I. This follows from the assumption that the population is
uniformly mixed to ensure an equal risk of getting the disease.

6. The recovery rate α is proportional to the number of infected individuals at time t .

The SIR compartmental model can be written as a series of ODEs to describe the
rate of change of each compartment given by the System of Equations (1) and thus to
describe the movement of individuals from one compartment to another. The SIR model
as described in (1) has two parameters α and β. In the model, β has units of one over
time per individual, and α has units of one over time.

Ṡ =−βSI

İ = βSI−αI

Ṙ = αI

(1)

We assume, at t = 0, the population size is a non-negative value, the number of sus-
ceptible and infected individuals is non-zero, and the number of recovered individuals
is 0. Therefore, the initial conditions for our model are S(0) = S0 > 0, I(0) = I0 > 0, and
R(0) = 0.

2.2 Behavioral Epidemiology

Behavioral epidemiology is the study of human behavior, its influences, and its impact
on the spread of infectious diseases. Developed in the 1970s, behavioral epidemiology
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4 Modeling the Effect of Human Behavior on Disease Transmission

is an interdisciplinary field that draws from mathematics, biology, sociology, psychol-
ogy, economics, and other disciplines that study human behavior and disease. Modern
interpretations of the phrase “behavioral epidemiology" have shifted to a more math-
ematical and modeling-centered perspective. Specifically, the modern interpretation
of behavioral epidemiology aims to understand the effects of determinants on human
behavior.

In a classic SIR model and its variations, we operate under the assumption that
people within our population of interest behave homogeneously. This means there are
no outliers in terms of human behavior, and we expect an even mixing of susceptible,
infected, and recovered individuals. However, this is rarely the case in real-life disease
scenarios, where individuals will react and change their behavior based on various
influences they experience.

In this paper, we use the schema described by behavioral epidemiology to improve
the SIR model formulation as we aim to understand the influence of both helpful and
harmful information. Specifically, we are motivated to explore the compliance and non-
compliance of individuals in following public health guidelines and recommendations
throughout the COVID-19 pandemic.

3 Behavioral Mathematical Models

In this section, we explore the relationship between disease transmission and informa-
tion sharing. To model this relationship we propose a six-compartment mathematical
model and corresponding system of equations similar to Funk et al. in [3].

3.1 The Behavioral Model of Disease

As seen in Figure 2, this model expands on the basic SIR model depicted in Figure 1 by
subdividing each compartment into aware (a) and unaware (u) groups depending on if
the individuals within each compartment are aware or unaware of the information.

Individuals begin in either the aware or unaware group. As time progresses, individu-
als spread the information and the disease. The spread of information is represented
by susceptible individuals moving from the unaware group to the aware group (Su to
Sa). As in the original SIR model, the spread of disease is represented by individuals
moving from the susceptible compartment to the infected compartment corresponding
to their aware or unaware state. Once an individual is infected, regardless if they know
the information or not, they progress through the I compartment to the R compartment
as they would progress in the classic SIR model.

To differentiate the types of information, we use two infection rate parameters βa and
βu . In scenarios where knowing the information is helpful, βa < βu . For example, useful
information could be recommending protective measures like social distancing, isola-
tion, or quarantine. When the information being spread is harmful, βa > βu . Examples of
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Katie Yan 5

Figure 2: Behavioral SIR Six Compartment Model: Knowledge of information is denoted
by subscript u (unaware) and a (aware) with different infection rates (βu or βa) for each
group. Note that the recovery rate, α, is the same for both the unaware and aware groups.
Information is shared across susceptible groups at rate δ.

harmful information include misinformation about the disease such as suggestions that
the disease is not real or recommendations to not comply with public health measures.

Similar to the classic SIR model, in the behavioral SIR model after an individual is
infected, they recover at rate α, regardless if they know the information or if the informa-
tion is helpful or harmful because we model the effects of information on transmission,
not recovery. As before we assume the birth and death rates of the whole population
are negligible. Finally, the most important difference between our described model and
the classic SIR model is the addition of an information-sharing rate δ. The parameter δ
represents the flow of information from the aware population to the unaware group. In
this model, we assume that information can spread only between susceptible people.
Individuals in the infected and recovered compartments are unable to share information,
and individuals cannot forget the information over time. We assume that information
can only be shared between susceptible people since we assume the information only
affects disease transmission and not disease recovery. All parameters and their meanings
are shown in Table 1.

Using the compartmental model described and shown in Figure 2, we write a system
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6 Modeling the Effect of Human Behavior on Disease Transmission

Table 1: Parameter definitions for Behavioral SIR Model: In this model, we subdivide β
into βa and βu to allow for the differences in infection rates dependent on knowledge of
information. We maintain a population-level α parameter such that information does
not influence one’s recovery from the disease. Finally, we include δ as our information-
sharing rate.

Parameter Meaning
βa Infection rate for aware population
βu Infection rate for unaware population
α Population recovery rate
δ Information sharing rate

of six ODEs describing the sharing of information and the spread of disease through the
population. Note System (2) essentially combines two SIR models of form (1), one for
aware (a) and one for unaware (u). The only movement between these two models is
through the addition of the term δ(SaSu) to describe the change in aware and unaware
susceptible individuals.

Ṡa =−βa(SaIa)+δ(SaSu)

İa = βa(SaIa)−αIa

Ṙa = αIa

Ṡu =−βu(SuIu)−δ(SaSu)

İu = βu(SuIu)−αIu

Ṙu = αIu

(2)

Like Funk et al.’s six-compartment model, in System of Equations (2) we see that
information is shared causing individuals to move from the unaware to the aware suscep-
tible compartment. Akin to the classic SIR model we assume a homogeneously mixed
population within the aware and unaware groups.

In our behavioral SIR model, System of Equations 2, we make several simplifying
assumptions. These assumptions include:

1. The total population size N, where N = Sa+Ia+Ra+Su+Iu+Ru , is constant. There
are no births or deaths.

2. After someone recovers from the disease, they are considered immune to the
disease. They cannot reenter the S compartment.

3. The incubation period of the disease is short enough to be ignored. The incubation
period is defined as the period in which an individual is infected but not infectious;
during this time the individual might or might not be aware they are infected.
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Katie Yan 7

4. The SIR compartments for each group, aw ar e and unaw ar e, are uniformly mixed
to ensure an equal risk of catching the disease.

5. Healthy individuals in the susceptible compartment get sick at a rate proportional
to the product of S and I. This follows from the assumption that the population is
uniformly mixed to ensure an equal risk of getting the disease.

6. The recovery rate α is proportional to the number of infected individuals at time t
and is the same across groups.

7. Transmission of the disease from infected to susceptible individuals depends on
the group.

8. When information is shared individuals in the susceptible unaware class, Su , can
move to the susceptible aware class, Sa , at rate δ.

3.2 RStudio Model

To simulate epidemic scenarios using System of Equations (2), we use R along with the
tidyverse, DescTools, and deSolve packages [4, 5, 6, 7]. We utilize RStudio to investigate
the effects of varying parameter values and to determine the final and maximum values
population for each compartment. Additionally, the shinySIR package is used to vary
the values of βa , βu , and δ [8].

3.3 Methods

To explore the relationship between human behavior and disease transmission, we solve
System (2) numerically with a range of βa and βu values. As described previously, we
interpret βa > βu as a situation where the information is harmful and a situation where
βa < βu as one where the information is helpful.

Our initial conditions and parameters replicate G. F. Raggett’s 1921 paper, modeling
the plague in Eyam, England. The plague in Eyam began in 1665 and within 2 years,
267 of Eyam’s 350 residents died from the plague. However, the death toll could have
been much higher had the village rector, William Mompesson, not decided to cease all
travel in and out of Eyam to protect the surrounding villages. In the summer months,
after the initial wave of the plague, Rector Momepesson gathered Eyam’s remaining
residents to propose a quarantine. In the fall, the plague returned causing a second wave
of infections. This wave lasted until November of 1666 when the last death was recorded.
Using Rector Mompesson’s historical records of plague-related deaths, Raggett created a
SIR model of the second wave of infection, which occurred in the late summer to early
fall. Using these recorded values, at the start of the second wave of infection there were
254 remaining uninfected villagers and 7 infected villagers. Raggett also used these death
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8 Modeling the Effect of Human Behavior on Disease Transmission

records to estimate the average rate of infection and recovery, which he found to be
β= 2.82

159 = 0.0177 (people×months)−1 and α= 2.82 months−1, respectively.
In our analysis and for all of our simulations, the initial populations remain fixed

while we manipulate the rate parameter values. The initial conditions, in number of
people, adopted from Raggett’s Eyam model [9], are as follows:

Sa(0) = Su(0) = 254

Ia(0) = Iu(0) = 7

Ra(0) = Ru(0) = 0.

We follow the same process for each of our experiments. First, we hold βa , βu , and α

constant and set δ= 0 to simulate a subdivided population that contains two groups,
aware and unaware, that do not share information between them. Next, we hold βa ,
βu , and α constant, but we set δ = 0.0001 to simulate a population with two groups
that communicate between themselves, allowing information to spread. We repeat this
process for both good and bad information. Then, we complete a sensitivity analysis
for βa and βu to determine for what ratios an outbreak occurs. The parameter values for
each scenario are provided in the description of each model simulation.

For each of our simulations, we also calculate an approximate R0, R̃0 for the aware
and unaware groups over time. R0 is classically defined as the number of secondary
infections from one initial infection in a fully naive population [10]. However, since we
are drawing from Ragget’s plague simulations, we begin with 7 infected individuals in
an otherwise susceptible population. Thus, we use an approximate value R̃0, which is
calculated by

R̃0(t ) ≈ βi (Si (t )+ Ii (t )+Ri (t ))

α
, where i = a or u (3)

As we monitor the R̃0 over time, we also consider whether the R̃0 for each group
exceeds 1. For an infection to spread successfully in a population, R0 > 1 such that for
each infected individual in a fully susceptible population more than one individual is
infected by the originally infected individual. When R0 < 1 an infection is unable to take
hold in a population and will not sustain a long chain of transmission. We also monitor
if the R̃0 value for each group, aware and unaware, has a crossing point such that one R̃0

becomes larger than the other.

4 Model Simulation Results

In this section, we describe our numerical simulation and results for each of our experi-
ments. Our experimental design is below in Table 2.
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Katie Yan 9

Table 2: Experimental design: Our 2×2 experimental design varies the type of informa-
tion (good or bad) and whether it is shared across groups (aware or unaware).

Type of Information
Good (βa < βu) Bad (βa > βu)

Sharing of Information
Not Sharing (δ= 0) Scenario A Scenario B

Sharing (δ= 0.0001) Scenario C Scenario D

We begin with exploring the null model results when βa = βu and we consider when
δ= 0 and δ= 0.0001. Then, we introduce good information, βa < βu , scenarios A and C.
We consider the introduction of bad information, βa > βu , scenarios B and D. When we
introduce good and bad information we also conduct a sensitivity analysis, varying the
ratio between βa and βu from 1: 2

3 to 1: 1
4 . In total, 18 unique experiments were conducted.

We define the 1:1 scenario as the null scenario, with or without information sharing,
where unaware and aware groups transmit at equal rates. Our full results can be found
in Appendix B. Here we highlight our main findings.

4.1 The Null Model

When there is no information sharing, δ = 0, we observe two decoupled SIR models
with no movement of individuals between the aware and unaware groups. In Figure 3
notice that the aware and unaware trajectories are indistinguishable as they are the same
SIR system repeated twice. However, when information is shared across groups, even
with βa = βu we notice that the final value of Ra is much larger than Ru . The increase
in the final Ra value when δ is increased to 0.0001 makes sense as unaware susceptible
individuals have three possible paths as time progresses. Either they will become infected
or not, or they will move to the susceptible aware class and then potentially become
infected. Thus, because individuals cannot move from the aware group to the unaware
group, an increase in the final Ra number is logical.
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10 Modeling the Effect of Human Behavior on Disease Transmission

Figure 3: Spread of disease in the null model. In this simulation, we model when βa = βu

and δ is equal to 0 (3A) or 0.0001 (3B). Note that when δ= 0 both the unaware group and
aware group produce the same results.

4.2 The Effects of Good Information

Recall that good or helpful information is information that leads to behavior that de-
creases disease transmission amongst aware individuals, such that βa < βu . Before
testing the model, we hypothesize that all levels of good information will help reduce the
intensity of disease outbreaks. We define a reduction of disease intensity as when fewer
individuals in the aware group are recovered than in the unaware population. That is,
the final Ra < Ru .

In our sensitivity analysis, we vary the βa and βu ratio from 1: 2
3 to 1: 1

4 . See results
in Figure 4. We use this relationship between β values to simulate an imagined plague
that is as transmissible as the one observed in Eyam, and where the knowledge of good
information reduces the infectiousness of the simulated plague.

When βa = 2
3βu , Figure 4A, we see that the final number of infected individuals in

the aware group is large compared to when βa = 1
3βu , Figure 4C. We find a boundary

for which an epidemic will not occur between βa = 1
2βu and βa = 1

3βu . In general, as the
ratio between βa and βu changes from 2

3 of βu to 1
3 of βu , we find that R̃0 for the aware

group does not exceed 1. More simply, there is such a thing as shared information that is
"good enough” to stop an epidemic from occurring.

4.3 The Effects of Bad Information

Bad or harmful information, as defined previously is information that causes a specific
behavior that increases the disease transmission rate amongst aware individuals such
that βa > βu . We hypothesize that as bad information ”worsens" we will observe an
increase in the number of overall infected individuals.

For our testing, we assume unaware individuals transmit the disease at a smaller
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Figure 4: Spread of disease when good information is shared. In this simulation, we
model when βa < βu and δ is equal to 0.0001. An epidemic is modeled in 4A and 4B when
βa = 2

3βu , but not in 4C and 4D when βa = 1
3βu

rate than the aware. These values simulate scenarios where knowing the information is
related to infecting others at an increased rate compared to not knowing the information.
Here, we hold βa constant, with the same value as in the Eyam model. In summary, this
section aims to understand the influence of information that increases the infection rate
on disease transmission.

When bad information is introduced and shared, the number of infected individuals
increases slightly as the ratio between βa and βu changes from 2

3 of βa to 1
3 of βa . Both

outbreaks are of a similar magnitude. However, as we change the ratio between βa and
βu the R̃0 value for the unaware group decreases below 1, the epidemic threshold. In
general, when bad information is shared there is little change between the epidemic
curves, as shown in Figure 5. We also see this lack of change reflected in the R̃0 values
over time.

5 Discussion and Conclusions

As discussed in the previous subsections, 4.2 and 4.3, the effects of information depend
on the type of information being shared — if that information is good and how "good”
that information is. Across all simulations, sharing good information will result in a
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12 Modeling the Effect of Human Behavior on Disease Transmission

Figure 5: Spread of disease when bad information is shared. In this simulation, we
model when βa > βu and δ is equal to 0.0001. An epidemic occurs in all bad information
scenarios.

smaller amount of infected individuals compared to sharing bad information. However,
until βa = 1

3βu we find that a decoupled SIR system, such that information is not shared,
outperforms the sharing of good information when considering the total number of
infected individuals.

Figure 6 shows the variation in the total number of infected individuals as the infec-
tion rate ratio is increased. When no information or good information is shared, the total
number of infected individuals decreases as the ratio decreases. However, when bad
information is shared the total number of infected individuals only slightly increases.
Comparing the effects of sharing two types of information for a variety of transmission
rates, not sharing results in a total of 188 to 354 infected individuals, sharing good infor-
mation results in a total of 49 to 427 infected individuals, and sharing bad information
results in a total of 417 to 427 infected individuals. In general, regardless of information
type, as the ratio moves towards 1, which means as the βa and βu values approach each
other, the total number of infected individuals also increases.

The inclusion of information in the classic SIR model system introduces more com-
plex dynamics, especially when one considers the ability to share and not share infor-
mation across groups. When information exists, but is not shared, we see a decoupled
SIR system that can potentially reduce the total number of infected individuals by 166
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Figure 6: Total Number of Infected Individuals for Differing Infection Rate Ratio.

individuals, a nearly 50% reduction. However, when we qualify information as good or
bad we see further nuances in the ways that information can potentially avert infections.
Good information is always better than bad information at averting infections. The
introduction of shared good information can reduce infections by about 90% while
sharing bad information only reduces infections by about 2%.

It should be noted, however, that until βa < 1
2βu the sharing of information, good or

bad, produces more infections than when information is not shared across groups. Even
in the worst-case scenario, βa = βu , the total number of infections when no information
is shared is 354 compared to 427 infections when good or bad information is shared.

Therefore, from a decision-making framework, if the ability exists to separate those
who do and do not know the information, and decouple the SIR system, then when βa is
reduced by 1

2 a coupled system is preferred.
A potential example of such a scenario would be when intervention behaviors, such

as masking, are tied to information. Imagine that when an individual hears information
about masking, they choose to begin masking which reduces their transmission potential
from βu to βa . If masking is so powerful that it reduces βa < 1

2βu , then a decision maker
should feel comfortable in allowing the masked (aware) and unmasked (unaware) groups
to mix. However, if masking is not as powerful such that βa > 1

2βu , then susceptible
individuals should not be allowed to intermix.

Although the introduction of good information was not always enough to decrease
the overall number of infected individuals, Figure 6, our results are still useful when
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14 Modeling the Effect of Human Behavior on Disease Transmission

considering biological and epidemiological interpretations. Particularly, we see that
the introduction of good information results in an earlier disease outbreak amongst
unaware individuals, emphasizing the importance of information campaigns in slowing
the spread of disease. Additionally, the delay in disease outbreaks within the aware group
could potentially be further time to share useful information.

When bad information is introduced, the number of total infected individuals aware
and unaware is always greater than unshared and shared good information. In general,
these simulations suggest that the negative effect of bad information is potentially more
pronounced than the benefit of good information and that in an imagined scenario with
only bad information, a decision-maker should prioritize stopping the spread of such
information.

Our work can also be broadly applied to all disease-mitigation strategies, where we
consider the aware and unaware groups akin to compliant and non-compliant. Using
this framework we can apply our behavioral model to masking, social distancing, and
other mitigation methods. Note that parameters for the specific type of mitigation strat-
egy should be calculated and used to fully consider each mitigation method. However,
in a purely theoretical system, this model serves as a useful tool to consider the ideal
power of mitigation against disease transmission.

In this model, we segregate individuals depending on whether they are aware or
unaware. In doing so we model a population where infected and recovered individuals
of different groups do not intermingle. This scenario is representative of when individ-
uals with differing beliefs or knowledge do not mix such that individuals who comply
with public health measures only socialize with others who are compliant. Likewise,
those who are non-compliant only socialize with those who are also non-compliant. In
the future to continue expanding this work, a model featuring separate recovery rate
parameters for aware and unaware groups could be developed. This model could be
used to investigate the spread of information that impacts recovery.

In this paper, we present a six-compartment model of disease transmission and in-
formation sharing to analyze the effect of human behavior on disease transmission. Our
findings suggest that when separating a population by knowledge of information, good
information is not always “good enough" such that there is a boundary between when an
outbreak will and will not occur. Conversely, bad information is incredibly powerful such
that in our simulations an outbreak will always occur when bad information is present
and shared throughout the population. These findings indicate that while both good
and bad information are essential to monitor in the context of disease management and
decision-making, greater attention should be focused on misinformation and harmful
information that increases disease transmission.
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A Variable and Compartment List

Table 3: An index of the variables and compartments used in this manuscript

Symbol Type Meaning
S Compartment Susceptible individuals
I Compartment Infected individuals
R Compartment Recovered individuals
N Population Value Total population size
R̃0 Population Value Approximate R0

β Parameter Infection rate
α Parameter Recovery rate
S_a Compartment Susceptible aware individuals
I_a Compartment Infected aware individuals
R_a Compartment Recovered aware individuals
S_u Compartment Susceptible unaware individuals
I_u Compartment Infected unaware individuals
R_u Compartment Recovered unaware individuals
βa Parameter Aware infection rate
βu Parameter Unaware infection
δ Parameter Information sharing rate
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16 Modeling the Effect of Human Behavior on Disease Transmission

B Sensitivty Analysis Results

In our full sensitivity analysis, we used 18 sets of unique parameters to understand how
information sharing and type interact and affect disease outbreaks.

In Figure 7 we varied the ratio between βa and βu when good information, βa < βu

was shared, δ= 0.001 across groups.

Figure 7: Spread of disease when varying levels of good information are shared.
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Figure 8: R̃0 when varying levels of good information are shared.

Our results from the sharing of good information sensitivity analysis are corroborated
by our findings in Figure 8.
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18 Modeling the Effect of Human Behavior on Disease Transmission

In Figure 9 we varied the ratio between βa and βu when bad information, βa > βu

was shared, δ= 0.001 across groups.

Figure 9: Spread of disease when varying levels of bad information are shared.
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Figure 10: R̃0 when varying levels of bad information are shared.

Finally, in Figure 10 we confirmed the lack of qualitative differences between the
curves shown in Figure 9.
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