

Etude et exécution de l'ordonnance

Que rechercher ? Quelques réflexes à acquérir

P. HINDLET
Pharmacie clinique

Ce que nous allons voir...

- ☐ Les réflexes à acquérir :
 - Selon le profil du patient
 - Selon les médicaments
- Profils d'iatrogénie médicamenteuse
- ☐ Arrêt progressif des médicaments : pourquoi ?
- Interactions pharmacocinétiques
- Médicaments et heure de prise
- Médicaments et repas

Iatrogénie médicamenteuse et profils

Profils physiopathologiques

- □ Obèses
- Malades Alzheimer
- □ Prise d'oestroprogestatifs
- Parkinsoniens
- Migraineux
- Asthmatiques
- Hypertrophie bénigne de la prostate
- □ Alcool
- □ Diabète

Patients obèses

- □ Pourquoi ?
- Certains médicaments entraînent une prise de poids
 - □ Quels médicaments rechercher ?

Prise de poids induite par les médicaments

- Hypoglycémiants
 - Insuline, sulfamides hypoglycémiants
- - Olanzapine, Rispéridone, Clozapine...

Metformine, inh DPPIV GLP1 analogue?, gliflozines Neuroleptiques atypiques

Corticoïdes

Olanzapine >> Aripiprazole, Halopéridol

ADO neutre au niveau pondéral :

- Normothymiques
 - lithium
- Antiépileptiques
 - Acide valproïque, gabapentine, prégabaline, lévétiracétam...
- Certains antiH1
 - Ketotifène (Zaditen), Flunarizine (Sibélium), Cyproheptadine (Periactine),

Patients atteints de maladie d'Alzheimer

- □ Pourquoi ?
 - Aggravation des troubles cognitifs
 - Aggravation des troubles du comportement
- Interactions avec les traitements

□ Iatrogénie cumulée ?

Médicaments aggravant les troubles cognitifs

- Psychotropes : BZD, neuroleptiques
- Médicaments anticholinergiques: confusion, désorientation, hallucinations visuelles...
 - Antispasmodique atropiniques : Oxybutynine, solifénacine, toltérodine, trospium..
 - Antidépresseurs imipraminiques
 - Neuroleptiques de type phénothiazines
 - Bronchodilatateurs, etc
 - Néfopam
 - Les antihistaminiques

Mesure à prendre :

Vérifier la composition des médicaments conseils

- Alimémazine (Théralène®)
- Oxomémazine (Toplexil®, Humex toux sèche®)
- Chlorphénamine (Actifed états Grippaux®, Drill rhume®...)
- Prométhazine (Fluisedal®, ...)

AUTOMEDICATION

Iatrogénie cumulée

- □ Patients sous mémantine (Ebixa°)
- Risque d'accumulation de mémantine par diminution de l'élimination rénale
- Aggravation insuffisance cardiaque
 - Patients sous anticholinestérasiques
 - Addition effets cardiaques
 - Addition effets convulsivants
 - Addition de troubles extrapyramidaux

Indicateur d'alerte HAS

Surmortalité des patients « Alzheimer » sous Neuroleptiques

PROGRAMME AMI - ALZHEIMER

Alerte et Maitrise de la latrogénie des Neuroleptiques dans la Maladie d'Alzheimer

La réduction de la prescription des neuroleptiques dans la maladie d'Alzheimer constitue une priorité en matière de prévention de la iatrogénie évitable et d'amélioration de la qualité de vie des patients.

Patientes sous contraceptif hormonal oestroprogestatif

- □ Pourquoi ?
 - Risque d'échec de la contraception
- □ Interactions avec les contraceptifs
- ☐ Iatrogénie cumulée ?
 - Additions d'effets thromboemboliques
 - Additions d'effets hyperglycémiants
 - Additions d'effets hypertenseurs
 - Additions d'effets hyperlipidémiants

Risque d'échec de la contraception

- Inducteurs enzymatiques
 - Antiépileptiques
 - □ Carbamazépine, phenobarbital, phenytoine, topiramate...
 - Antibactériens
 - ☐ Rifabutine, Rifampicine
 - Antiretroviraux
 - ☐ Efavirenz, Névirapine, Télaprévir
 - Plantes
 - Millepertuis
- □ Diminution de l'absorption
 - Accélération du transit ou diarrhée iatrogène (Orlistat...)
 - Ralentissement de la vidange gastrique (Analogue GLP-1)

Interactions médicamenteuses des oestroprogestatifs sur les autres médicaments

- Lamotrigine
- Acide valproïque

Diminution des concentrations plasmatiques des antiépileptiques (induction enzymatique)

Mesure à prendre:

Ajustement des doses d'antiépileptique Modification de la méthode de contraception

AVK

Risque thromboembolique propre des oestroprogestatifs

Mesure à prendre:

En fonction du risque

Modification de la méthode de contraception

Patients parkinsoniens

- □ Pourquoi ?
- Interaction avec la pathologie/diminution apparente de l'efficacité du traitement
- Syndrome parkinsonien / troubles extrapyramidaux

Potentialisation des troubles extrapyramidaux

- Neuroleptiques antipsychotiques
 - □ Préférer Clozapine*
- Neuroleptiques antiémétiques
 - ☐ Métoclopramide, Alizapide, Métopimazine
 - □ Préférer Dompéridone
- Neuroleptiques « cachés »
 - ☐ Anti-allergiques: *Alimémazine, Prométhazine* (attention automédication)
 - ☐ Traitement de la migraine: Flunarizine
 - O ...
- Les anticholinestérasiques

Patients migraineux

- Pourquoi ?
- Médicaments déclenchant des crises migraineuses
 - Les contraceptifs hormonaux
 - Nombreux médicaments
- Interactions avec les anti-migraineux spécifiques
 - Les triptans
 - Les dérivés de l'ergot de seigle
- □ Iatrogénie cumulée ?

Patients sous triptans

Sumatriptan, Zolmitriptan, Naratriptan, Almotriptan, Elétriptan, Rizatriptan, Frovatriptan

- Risque de syndrome sérotoninergique
 - IMAO
 - ☐ Antidépresseur *Iproniazide*, *Moclobémide*
 - □ Antibiotique *Linezolide*
 - ☐ Antiparkinsonien *Sélégiline, Rasagiline*
 - IRSS, IRSNA, antidépresseurs imipraminiques
 - Antiémétiques: sétrons
 - Autres médicaments indiqués dans la migraine
 - □ Tramadol
 - □ Dérivés de l'ergot de seigle
- Addition d'effet hypertenseurs et vasoconstrictions
 - Ergot de seigle
 - ...

Patients asthmatiques ou bronchitiques chroniques

- □ Pourquoi ?
- Risque d'exacerbation
- □ Interactions avec les antiasthmatiques ?
- □ Iatrogénie cumulée ?

Médicaments provoquant un bronchospasme

- Bêtabloquants
 - Notion relative de cardiosélectivité
- □ Réaction allergique
 - AINS
 - ..

Patients avec hypertrophie bénigne de la prostate

- □ Pourquoi ?
- Risque: rétention aigue d'urine infection urinaire
- Potentialisation des symptômes
- □ Iatrogénie cumulée ?

Potentialisation des troubles mictionnels

Rétention d'urine :

Sympathomimétiques alpha

- Décongestionnants nasaux
 Phényléphrine (Hexarhume®), Naphazoline (Derinox®),
 - Oxymétazoline (Deturgylone®)
- Stimulants pseudoéphédrine (Actifed®), éphédrine (Rhino Sulfuryl®)

AUTOMEDICATION

- Mesure à prendre:
- > Toujours vérifier la composition des médicaments conseils

Potentialisation des troubles mictionnels (suite)

Médicaments anticholinergiques : cf Alzheimer

Patients consommant de l'alcool

- □ Pourquoi ?
- Risque de réaction antabuse
- Risque de sédation majorée avec les dépresseurs du SNC
- □ Quels médicaments rechercher ?

Disulfirame

Glibenclamide, Glipizide

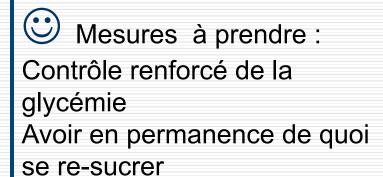
Griseofulvine, Ketoconazole, Metronidazole, Tinidazole, cotrimoxazole

Patients diabétiques

- □ Pourquoi ? :
- Déséquilibre glycémique
- Risque d'hypoglycémie
- Quels médicaments rechercher ?
 - Hypoglycémiants
 - Hyperglycémiants

Médicaments hyperglycémiants

- Corticoïdes qq soit la voie d'administration
- Neuroleptiques atypiques
- ☐ Inhibiteurs de la protéase du VIH
- □ B2 stimulants en IV
- Lévothyroxine
- Estroprogestatifs
- Ciclosporine, Tacrolimus
- □ Tabac, nicotine
- Isoniazide



Wesure à Prendre:

Contrôle renforcé de la glycémie

Médicaments hypoglycémiants

- Aspirine à forte dose
- alcool
- Sulfamides antibactériens
- Quinine
- □ Tramadol ?
- ☐ IRSS?

Analyse d'ordonnance et iatrogénie médicamenteuse

Iatrogénie médicamenteuse : il faut rechercher un risque de ...

- Hyperkaliémie
- Hypokaliémie
- Hyperuricémie
- ☐ Hyponatrémie
- Anémie
- □ Torsades de pointe
- Bradycardie
- Photosensibilisation
- Crampes et rhabdomyolyse

Hyperkaliémies

- □ Définition
 - Concentration plasmatique en potassium > 5 mmol/l
- □ Conséquences
 - ☐ Troubles du rythme cardiaque (arythmies ventriculaires, arrêt, ...)
 - Anomalies fonctions musculaires (faiblesse, ...)
- □ Facteurs favorisants :
 - ☐ Insuffisance rénale
 - □ Diabète, acidose métabolique
 - □ Brûlure, hémolyse

Hyperkaliémies

□ Médicaments responsables :

- Sels de potassium, sels de régime
- Diurétiques hyperkaliémiants (spironolactone, amiloride)
- IEC, sartans
- Immunosuppresseurs (ciclosporine, tacrolimus)
- Excipients : formes effervescentes, Transilane[®], Veinobiase[®]

Hypokaliémies

□ Alcalose aiguë

□ Définition : Concentration plasmatique en potassium < 3.5 mmol/l ☐ Conséquences : □ Troubles du rythme cardiaque (torsade de pointe) Faiblesse musculaire □ Ileus □ Facteurs favorisants : Pertes digestives (vomissements, diarrhées) Pertes rénales : hyperaldostéronisme

Hypokaliémies

■ Médicaments responsables :

- Diurétiques hypokaliémiants : furosémide, thiazidiques
- Amphotéricine B par voie IV
- Corticoïdes
- Laxatifs
- Insuline
- Bêta-2 stimulants de courte durée d'action : salbutamol, terbutaline, fénotérol

Association avec médicaments induisant des torsades de pointe

Hyperuricémies

- □ Définition :
 - Concentration plasm. en ac urique >0.42 mmol/l
- ☐ Conséquences :
 - Poussée inflammatoire aiguë : goutte, tophi
 - Néphropathie, calculs urinaires
- ☐ Facteurs favorisants:
 - □ Excès d'apport : abats
 - □ Insuffisance rénale
 - ☐ Lyse cellulaire massive : anticancéreux

Hyperuricémies

□ Médicaments responsables :

- Cytotoxiques (lyse cellulaire)
- Diurétiques de l'anse
- Antirétroviraux : ritonavir, lopinavir, didanosine
- Immunosuppresseurs : ciclosporine, tacrolimus

Uricosuriques Uricolytiques Régime

Hyponatrémies

□ Définition :

Concentration plasmatique en sodium < 135 mmol/l

- □ Conséquences :
 - ☐ Hypotension artérielle
 - Somnolence, confusion, nausées
- ☐ Facteurs favorisants:
 - Pertes rénales et digestives
 - Polydipsie, rétention d'eau (dysfonctionnement rénal)
 - Insuffisances d'apport

Hyponatrémies

- Médicaments responsables :
 - □ Diurétiques thiazidiques, de l'anse
 - Desmopressine
 - Antidépresseurs IRSS, IRSNA : fluoxétine, citalopram, venlafaxine
 - Sulfamides hypoglycémiants

Risque de chutes chez sujet âgé

Anémies

□ Définition :

Concentration en hémoglobine sanguine <13 g/dl chez les hommes, un peu moins chez les femmes

☐ Conséquences :

- Augmentation du travail cardiaque : dyspnée, palpitations, tachycardie
- □ Etourdissements, fatigue

Anémies

- □ Facteurs favorisants :
 - Dysfonctionnement moelle osseuse : hémopathies
 - Maladies inflammatoires
 - ☐ Carences en vit B12, fer, folates
 - □ Pertes : saignements, hémolyse, hémorragies
 - □ Thalassémies, drépanocytose, paludisme
 - □ Insuffisance rénale chronique

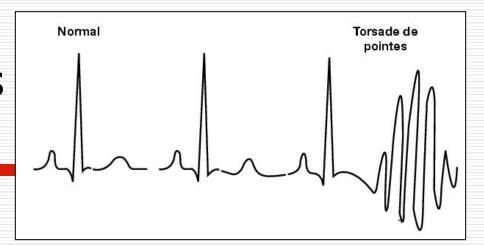
Anémies

- □ Médicaments responsables :
 - □ Diminution production des hématies :
 - Chimiothérapies, radiopharmaceutiques, immunosuppresseurs
 - Antifoliques : méthotrexate, trimétoprime, antirétroviraux
 - □ Destruction hématies :
 - Ribavirine
 - Médicaments de la goutte
 - □ Hémorragiques :
 - Anticoagulants, antiagrégants

Rechercher les facteurs de risque et complémenter (Fer, ac folique, Vit B12)

Bradycardies

- □ Définition :
 - Fréquence cardiaque anormalement basse
- ☐ Conséquences :
 - ☐ Lipothymie, syncope, chute
 - □ Torsades de pointes
- □ Facteurs favorisants :
 - Anomalie cardiaque : BAV


Bradycardies

□ Médicaments responsables :

- Antiarythmiques : disopyramide, quinidine, lidocaïne, digoxine, bêtabloquants, inhibiteurs calciques, (amiodarone)
- Méfloquine
- Anticholinestérasiques

Torsades de pointes

□ Définition :

Tachycardie ventriculaire donnant un tracé ECG caractéristique associé à un allongement de l'espace QT

☐ Conséquences :

- ☐ Aiguë: lipothymie
- Chronique : évolution vers une fibrillation ventriculaire fatale

☐ Facteurs favorisants:

- Allongement de l'espace QT : congénital, médicaments
- □ Hypokaliémie, bradycardie

Torsades de pointes

Médicaments responsables :

- Médicaments qui allongent l'espace QT
 - Antiarythmiques : disopyramide, amiodarone, quinidine, flécaïne, ...
 - □ Neuroleptiques : domperidone, haloperidol
 - Macrolides IV
 - ☐ Antipaludiques : halofantrine, méfloquine, quinine
 - Antifongiques : fluconazole, posaconazole, voriconazole
 - Antidépresseurs : venlafaxine, citalopram
- Hypokaliémiants: voir ci-dessus
- Bradycardisants:
 - Antiarythmiques, inhibiteurs calciques
 - Anticholinestérasiques

Photosensibilisation

```
□ Définition :
     Sensibilisation anormale aux rayons UV
        phototoxicité
        photo-allergie
☐ Conséquences :
     brûlures, éruptions, eczémas, urticaires, ...
☐ Facteurs favorisants:
     sensibilité individuelle
```

Photosensibilisation

- □ Médicaments responsables :
 - □ Psoralènes
 - Antituberculeux : pyrazinamide, rifampicine
 - Amiodarone, furosémide
 - □ Fluoroquinolones, cyclines
 - AINS

éviter le soleil, **protection solaire** (vêtement, chapeau, produit de très haute protection)

Crampes

□ Définition :

Contraction douloureuse et involontaire d'un muscle Résolution spontanée. Survient au repos ou en activité

☐ Conséquences :

Douleur, réveil

☐ Facteurs favorisants :

- Âge, sportifs,
- Hyponatrémies (sudation intense, diarrhée, hémodialyse)
- Hypoglycémies, hyperthyroïdies
- Troubles neurologiques : SEP, SLA, etc

Crampes

- □ Médicaments responsables :
 - Perturbations hydro-électrolytiques :
 - Diurétiques
 - Laxatifs
 - Corticoïdes
 - Hyperthyroïdiens
 - Bêtabloquants, IEC, sartans
 - Bêta-2 stimulants bronchodilatateurs

Rhabdomyolyses

□ Définition :

Nécrose d'un muscle strié avec libération dans la circulation sanguine du contenu des cellules. Signe biologique associé : augmentation CK

☐ Conséquences :

- Douleurs, faiblesses musculaires, contractures, crampes
- Coloration des urines en rouge-brun (myoglobine)
- Insuffisance rénale aiguë
- Hyperkaliémie, acidose, troubles cardiaques, arrêt

Rhabdomyolyses

☐ Facteurs favorisants:

- Traumatisme, écrasement, immobilisation par coma
- Alcool
- Venins, toxiques (champignons), drogues (cocaïne, ecstasy)
- Effort physique intense chez sujet non entrainé

Rhabdomyolyses

□ Médicaments responsables :

- Statines
- Neuroleptiques
- Anticancéreux : imatinib, sunitinib
- Nifédipine
- Isotrétinoïne
- IPP
- Immunosuppresseurs : ciclosporine, tacrolimus
- Antirétroviraux
- Antidépresseurs

Si douleurs, contrôler CK. Arrêt médicament si > 5N

Iatrogénie médicamenteuse : arrêt progressif des médicaments

Médicaments nécessitant un arrêt progressif

□ Pourquoi ?

- Éviter un syndrome de sevrage
- Éviter un rebond de la pathologie
- Éviter une décompensation

☐ Comment?

- Réduction progressive des doses
- Alternance des prises : 1 j /2, etc

Médicaments nécessitant un arrêt progressif

■ Médicaments :

- Antidépresseurs
- Anxiolytiques, hypnotiques
- Antiparkinsoniens
- Antihypertenseurs centraux
- Antihypertenseurs bêta-bloquants
- Antalgiques palier 3
- Corticoïdes

Absorption
Distribution
Métabolisme
Elimination

Absorption:

- Mécanismes :
 - □ Interaction physico-chimique : adsorption (charbon), chélation (sels de Ca)
 - ☐ Interaction physique : pansements gastriques
 - □ Diminution solubilité : anti-acides
 - Modification transit : anti-diarrhéiques, métoclopramide
 - Modification P-glycoprotéine intestinale

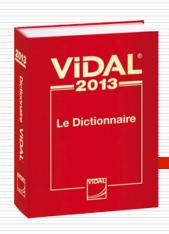
Absorption:

- Conséquences :
 - Modification biodisponibilité
 - Modification efficacité

Oméprazole

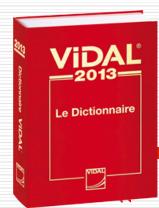
« L'oméprazole diminue la sécrétion gastrique acide »

risque d'interactions médicamenteuses?


L-Dopa

« Absorption : La prise simultanée d'aliments, les repas riches en protéines ou en certains acides aminés retardent la résorption du produit. La prise après un repas réduit la C max de 30% »

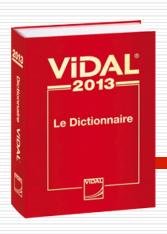
moment de prise?


Méthotrexate

« Absorption : Pour les faibles doses (0.1 mg/kg), l'absorption est presque complète ; elle est faible pour les doses plus importantes. »

voie d'administration?

Alendronate


La biodisponibilité est quasi nulle lorsque l'alendronate est administré au cours d'un petit déjeuner normal ou dans les deux heures qui suivent.

L'administration concomitante avec du café ou du jus d'orange réduit sa biodisponibilité de 60 %. »

Il est recommandé de prendre l'alendronate au moins une demi-heure avant le repas avec de l'eau du robinet (ou eau minérale faiblement minéralisée en calcium et en magnésium).

Atazanavir (REYATAZ°)

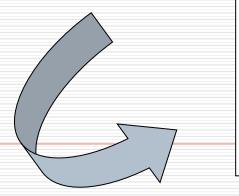
« Les antiacides augmentent le pH gastrique et diminuent l'absorption de l'atazanavir » Diminution de 87 % SSC de l'atazanavir

Espacer la prise des deux médicaments.

Prendre l'antiacide 1 h avant ou 2 h après l'atazanavir avec nourriture

Distribution

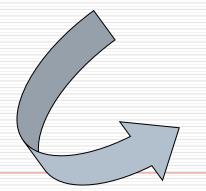
- Mécanismes :
 - Déplacement fixation sur protéines tissulaires
 - □ Compétition vis-à-vis d'un transporteur (BHE)
- Conséquences :
 - Augmentation toxicité
 - Diminution efficacité


Simvastatine

« La simvastatine est liée à 90% aux protéines plasmatiques »

risque d'interactions médicamenteuses ?

- □ Métabolisme hépatique : induction
 - Mécanisme :
 - Augmentation quantité ou activité des enzymes
 - Conséquences : inactivation ou toxicité
 - Médicaments responsables



Se reporter aux listes

« Médicaments substrats, inducteurs, inhibiteurs enzymatiques »

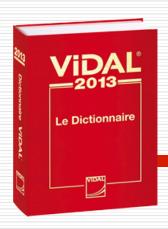
sur e Campus


- □ Métabolisme hépatique : inhibition
 - Mécanisme :
 - □ Diminution activité des enzymes
 - Conséquences : inactivation ou toxicité
 - Médicaments responsables

Se reporter aux listes

« Médicaments substrats, inducteurs, inhibiteurs enzymatiques »

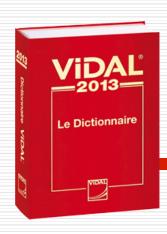
sur e Campus



Simvastatine

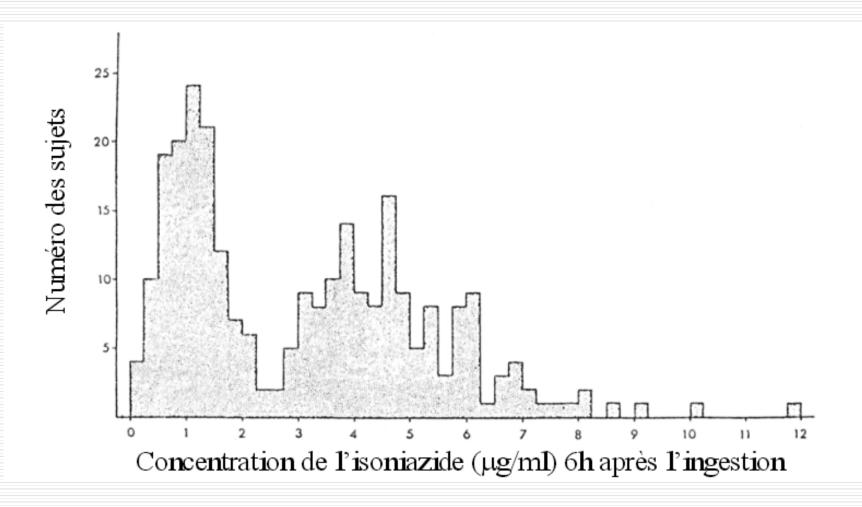
« Important métabolisme de 1er passage »

conséquences si association à un inhibiteur enzymatique ?



Léflunomide

« Le léflunomide est rapidement et totalement transformé en un métabolite actif par un métabolisme de premier passage intestinal et hépatique »



Isoniazide

« Métabolisme : L'isoniazide est métabolisé essentiellement par acétylation en acétyl-isoniazide. Ce métabolisme est stable chez un sujet donné et génétiquement déterminé. »

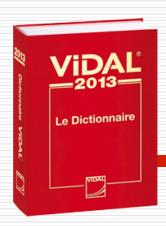
Acétylation de l'isoniazide

Acétylation de l'isoniazide : répartition dans la population

Europe: environ 50%

Groupes Ethniques	% d'acéty lateurs rapides
Egyptiens	18
Suédois	32
Tchèques	40
Américains	48
Philippins	72
Japonais	88
Esquimaux (canadiens)	100

Conséquences du polymorphisme génétique


□ Acétyleurs rapides :

- diminution de l'effet thérapeutique
- production de métabolite hépatotoxique :
- % d'hépatotoxicité plus élevé que chez les acétyleurs lents lorsque la **rifampicine** est associée à l'isoniazide.
- La rifampicine est un inducteur de l'acétyltransférase et l'hépatotoxicité est probablement due à l'acétyl-isoniazide dont l'apparition est favorisée en présence de rifampicine

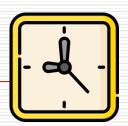
□ Acétyleurs lents :

 apparition de produits toxiques et risque accru d'effet indésirables neurologiques

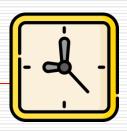
- □ Elimination rénale
 - Mécanisme :
 - Modification pH urinaire: bicarbonates
 - □ Interaction/ sécrétion tubulaire : probénécide
 - Conséquences :
 - Augmentation durée d'action
 - Augmentation toxicité
 - Accélération élimination

Lithium

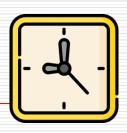
« La voie prédominante d'excrétion est le rein (90 %). La clairance totale représente environ 20 % du débit de filtration glomérulaire.


Compétition entre les ions lithium et sodium lors de la réabsorption au niveau du tubule proximal. »

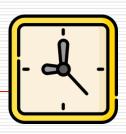
risque si déplétion sodée ?



Médicaments et heure de prise


Pourquoi une heure de précise ?

- Précision de l'intervalle entre les prises
- Chronobiologie
- Pharmacocinétique


☐ Pharmacologie:

- Diurétiques : matin ou midi
- Corticoïdes, psychostimulants : matin
- Antihistaminiques : le soir car hypnogènes
- Laxatifs : prise le soir pour effet le matin
- AINS : le soir si douleurs de type inflammatoires

□ Pharmacocinétique :

- Hypnotiques : au coucher pour faciliter endormissement
- Antidiabétiques (répaglinide) : avant repas pour réduire pic post-prandial
- Anti-acides : pas avant repas car neutralisent l'acidité utile à la digestion

☐ Chronobiologie:

- Corticoïdes : entre 6 et 8h du matin : pic physiologique du cortisol
- Hormone de croissance : le soir pour reproduire profil sécrétion physiologique
- Anti-H2 : pic de sécrétion acide nocturne
- Hypocholestérolémiants : synthèse nocturne du cholestérol

Médicaments et repas

Repas

Pourquoi faire attention aux repas?

- Repas peuvent être inhibiteurs enzymatiques
- Repas peuvent réduire la résorption ou être inducteurs enzymatiques
- Interactions pharmacologiques

Repas: inhibition enzymatique

Jus de pamplemousse	Substrats des CYP450 3A4	Risque de surdosage
Ail	Substrats des CYP450 3A4	Risque de surdosage

Repas : réduction de la résorption ou induction enzymatique

Lait	Fer	Formation de complexes avec le fer
Lait	Tétracyclines	Formation de complexes insolubles avec le Ca
Thé	Neuroleptiques	Précipitation des neuroleptiques
Cuisson au barbecue	Substrats des CYP450 1A2 et 3A4	Perte d'efficacité thérapeutique

Repas: Interaction pharmacologique

Fromages fermentés, bières	IMAO	Poussée hypertensive
Aliments riches en vitamine K	AVK	Thrombose
Réglisse	Antihypertenseurs	Annulation effet anti-hypertenseur
Café	ciprofloxacine	Excitation
Alcool	Dépresseurs du SNC	Majoration effet : somnolence, etc
Phosphore	Chélateurs du phosphore	Interaction recherchée

Interactions avec l'alcool

☐ Pourquoi?

- Risque de réaction antabuse
- Risque de sédation majorée avec les dépresseurs du SNC

☐ Quels médicaments rechercher ?

- Disulfirame
- Glibenclamide, Glipizide
- Griseofulvine, Ketoconazole, Metronidazole, Tinidazole, cotrimoxazole

Etude et exécution de ordonnance