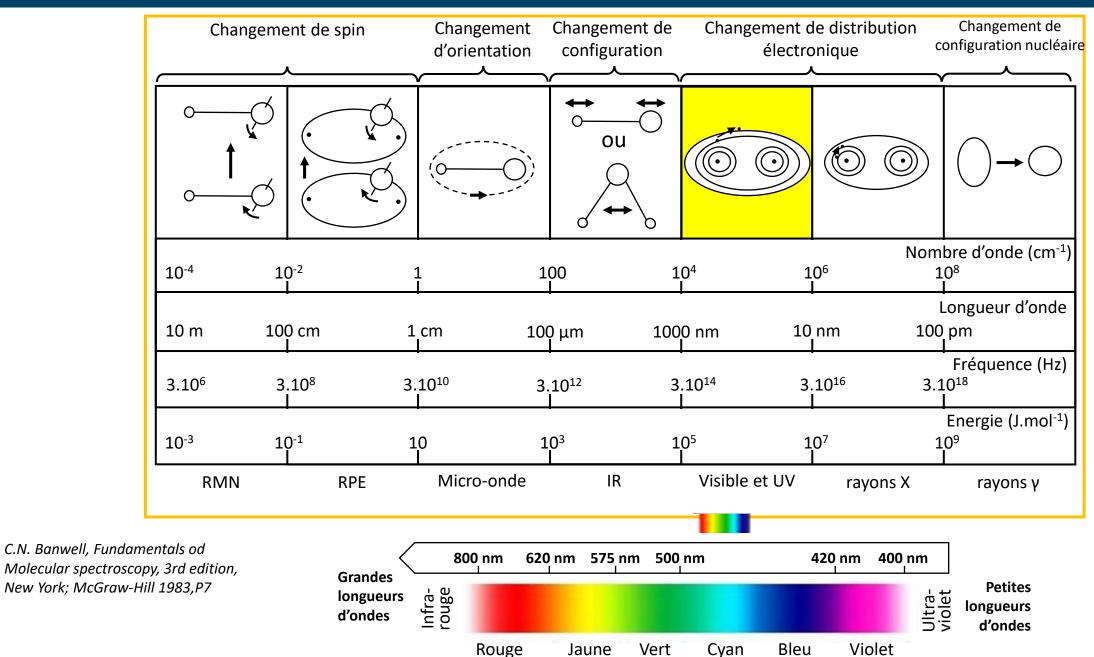


UE5C: Sciences Analytiques – Techniques spectrales

Spectrophotométrie électronique


Spectrométrie de Fluorescence moléculaire

Ali TFAYLI

cours 2

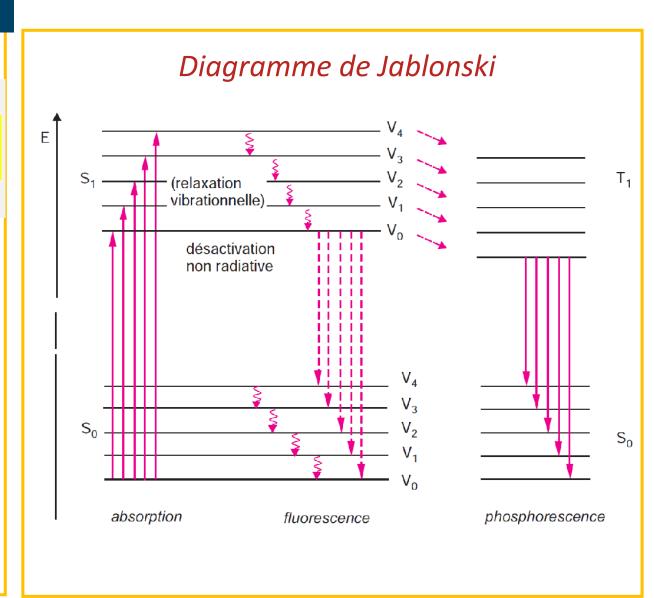
ali.tfayli@universite-paris-saclay.fr

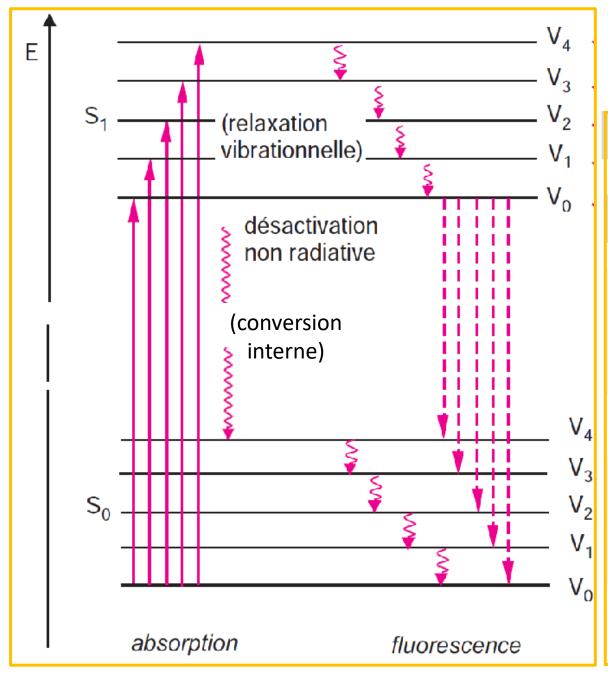
Spectroscopies optiques moléculaires dans l'uv-visible

Spectrométrie de Fluorescence moléculaire

Plan

- Introduction
 - Spectroscopies d'émission moléculaires
- Théorie de la fluorescence
- Les spectres de fluorescence
- Quantification de la fluorescence
 - Rendement quantique
 - Intensité de la fluorescence
 - Durée de vie de la fluorescence
- Effet de la structure des molécules fluorescentes
- Facteurs influençant la fluorescence
- Appareillage
- Applications

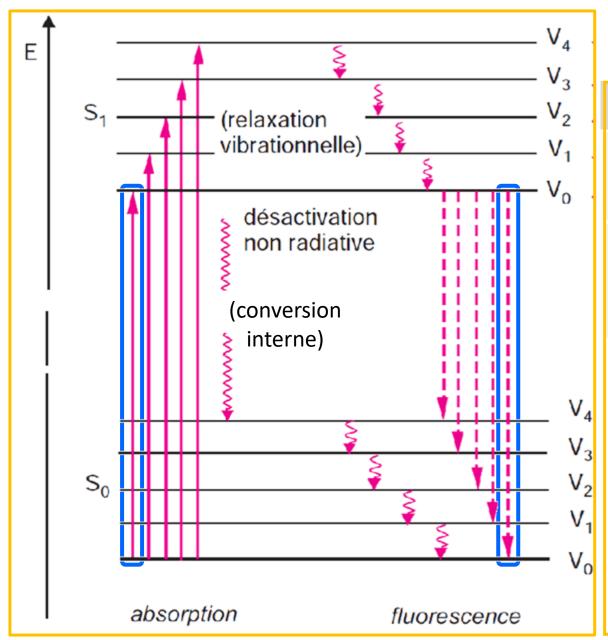

Introduction: Emission moléculaire


Principe général

L'émission moléculaire est un phénomène qui peut être observé quand les espèces excitées reviennent à l'état fondamental en libérant l'excès d'énergie sous forme de photons.

Émission = luminescence

- Photoluminescence (photons UV visible)
 - Fluorescence (état singulet)
 - Phosphorescence (état triplet)

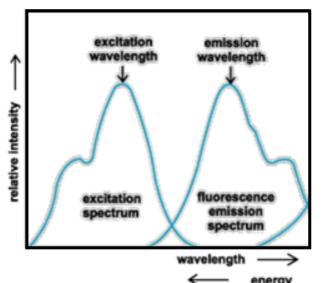

Théorie de la fluorescence

 $S_0 \rightarrow S_1$: absorption (uv-visible): 10^{-15} s

 $S_1 -> S_0$:

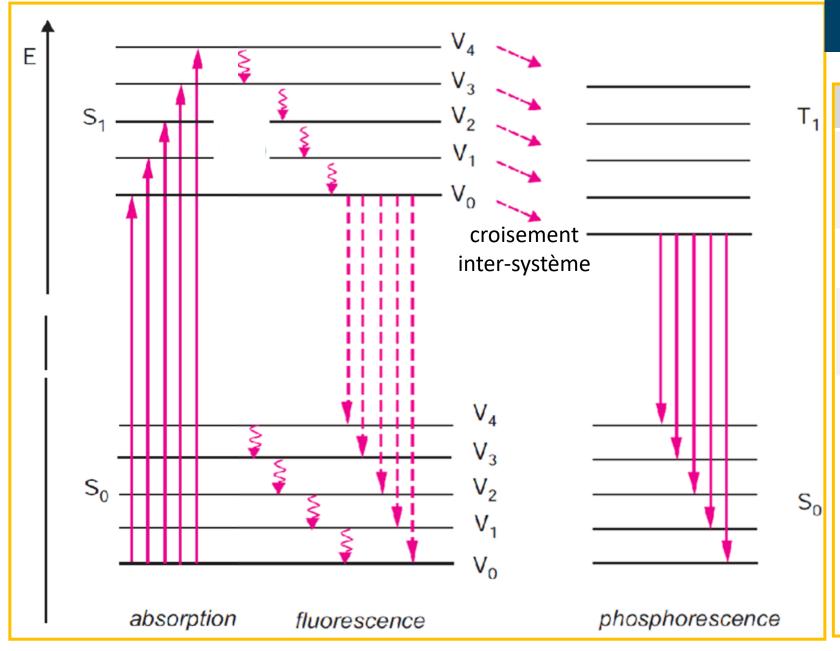
- Désactivation non-rayonnante
 - Relaxation vibrationnelle: 10⁻¹² à 10⁻¹⁰ s
 - Conversion interne: 10⁻⁹ à 10⁻⁶ s

- Fluorescence:
 - V_0 de S_1 vers S_0
 - $-10^{-11} à 10^{-6} s$


Théorie de la fluorescence

Absorption vs fluorescence

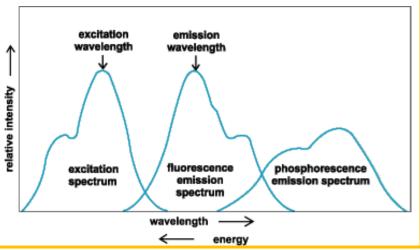
- Fluorescence: ΔE max : V₀ de S₁ vers V₀ de S₀
- Absorption: ΔE min : V₀ de S₀ vers V₀ de S₁


déplacement des bandes de fluorescence vers des énergies inférieures donc longueurs d'ondes supérieures

Déplacement de Stokes

- λ_{exc} et λ_{em} : spécificité
- Image en miroir
- Loi de Stokes : $\lambda_{em} > \lambda_{exc}$
- Déplacement de Stokes

$$\Delta v = 1/\lambda_{\text{exc max}} - 1/\lambda_{\text{em max}}$$



Théorie de la fluorescence

Phosphorescence vs fluorescence

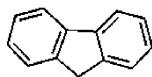
- Passage à l'état triplet: croisement inter-système:
- Phosphorescence: de V₀ de T₁ vers S₀

- Fluorescence: ΔE max : V₀ de S₁ vers V₀ de S₀
- Phosphorescence: ΔE max : V₀ de T₁ vers V₀ de S₀

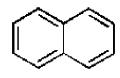
Structure des composés fluorescents

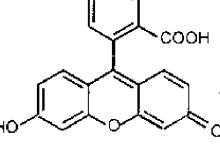
Effet de la structure moléculaire

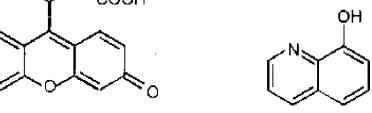
Un chromophore qui se désexcite en fluorescent est un **fluorophore**


- Pour qu'une molécule soit fluorescente, elle doit absorber les photons de UV-visible
- Elle doit contenir des chromophores insaturés à électrons π délocalisés (transitions $\pi \to \pi$ * d'énergie faible)
- Molécules cycliques, rigides possédant des électrons π .
- La fluorescence est augmentée groupements électro-donneurs et diminuée par les électro-attracteurs.
- La présence d'atome lourds interne diminue la fluorescence (Br, I...)

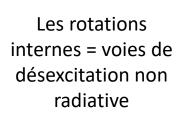
La **rigidité**, la **planéité** et la **conjugaison** augmentent la fluorescence


Rendement de fluorescence relatif au fluorène.


biphényle (0,2)

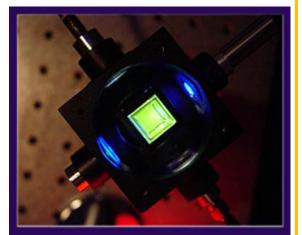

fluorène (1)

naphtalène (0,55)



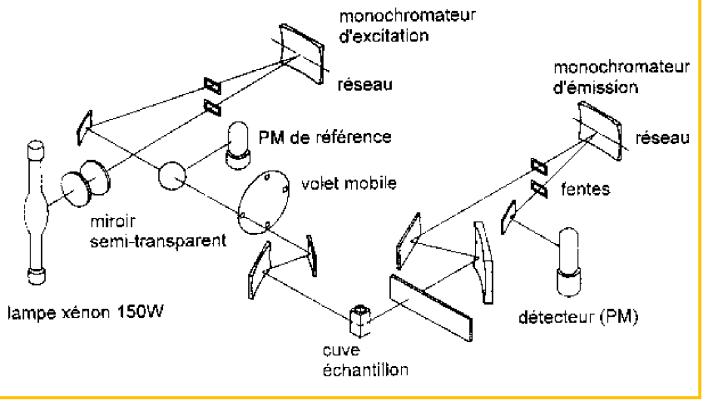
fluorescéine (0,92 dans NaOH 0,1 M et 0.65 à pH = 7)

8-hydroxyguinoléine


La 8HQ forme des complexes fluorescents avec le fer

Phénolphtaléine (0)

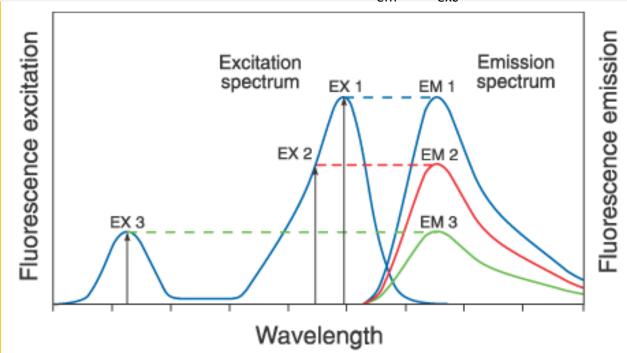
Appareillage

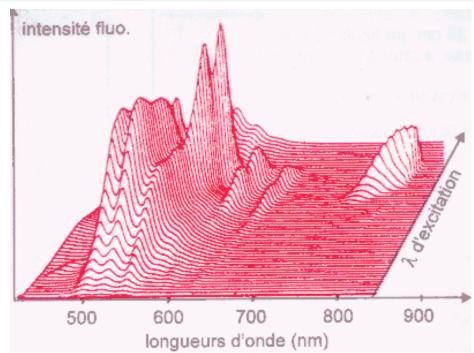

La mesure de l'intensité de fluorescence s'effectue perpendiculairement au faisceau incident

Spectrofluorimètre

- Sources lumineuses
- Lampes à spectre continu (Xénon...)
- Laser: Intensité élevée : sensibilité ↗
 - Radiation monochromatique

Les appareils de fluorescente sont équipés de deux monochromateurs, un pour l'excitation, l'autre pour l'émission

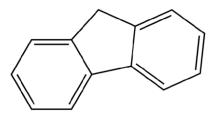

Les spectres de fluorescence


Spectre d'excitation et spectre d'émission

Le **spectre d'excitation** s'apparente au spectre d'absorption de la molécule. Il est obtenu en balayant les longueurs d'ondes d'excitation (λ_{ex}) et en maintenant fixe la longueur d'onde d'émission (λ_{em})

Le **spectre d'émission** correspond à la lumière réémise par les molécules. Il est obtenu en fixant la longueur d'onde d'excitation et en balayant les longueurs d'onde d'émission (λ_{em})

Les spectres se recouvrent faiblement c'est l'effet « anti-Stokes » les électrons peuvent retourner a un niveau d'énergie plus faible que le niveau de départ (d'où $\lambda_{em} < \lambda_{exc}$)


Quantification de la fluorescence

Rendement quantique

$$\Phi_f = \frac{\text{nombre de photons \'emis}}{\text{nombre de photons absorb\'es}}$$

- $0 < \Phi_{F} < 1$
- Sans dimension
- Le rendement quantique dépend de la structure de la molécule et de son micro-environnement

Rendement de fluorescence relatif au fluorène

$$\Phi_{F} = 1$$

Intensité de la fluorescence

$$I_F = I_A \cdot \Phi_F$$

 Φ_{F} : rendement quantique de fluorescence (dépend de la molécule)

I_A: Intensité absorbée (dépend de l'appareil)

$$I_A = I_0 - I_t$$

Or, pour relier I_F à la concentration c des molécules fluorescentes

$$A = \log\left(\frac{I_0}{I_t}\right) = \varepsilon lc$$

$$A = \log\left(\frac{I_0}{I}\right) = \varepsilon lc$$

$$I_t = I_0.10^{-A} = I_0.10^{-\varepsilon lc}$$

$$I_{\rm F} = \Phi_F . I_0 . \left(1 - 10^{-\varepsilon lc}\right)$$

Quantification de la fluorescence

Intensité de la fluorescence

$$I_F = \Phi_F . I_0 . (1 - 10^{-\varepsilon lc}) = \Phi_F . I_0 . (1 - e^{-2.3\varepsilon lc})$$

Développement en série de Mac Laurin

$$e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots$$

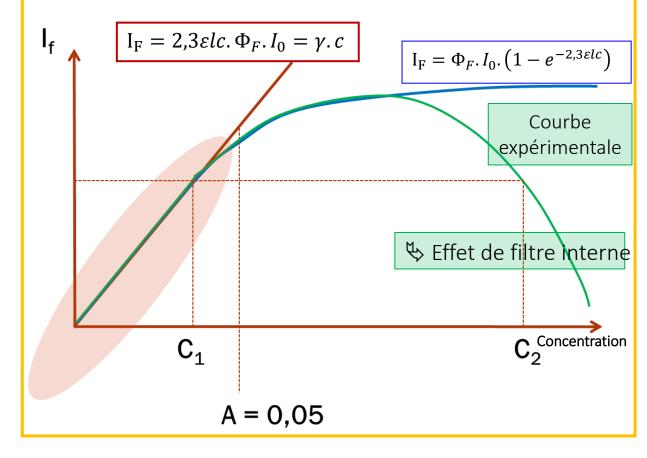
Or si x est petit (c.-à-d. si **A<0,05**)

$$e^{-x} = 1 - x$$

$$e^{-2,3\varepsilon lc} = 1 - 2,3\varepsilon lc$$

Donc si **A<0,05**):

$$I_F = 2,3\varepsilon lc.\Phi_F.I_0$$
 $(2,3\varepsilon l.K.\Phi_F.I_0 = cste = \gamma)$

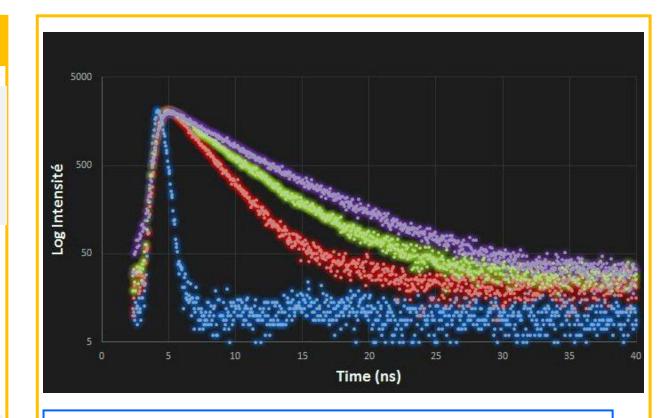

Pour une λ donnée:

$$I_{F} = \gamma . c$$

$$(2,3\varepsilon l.K.\Phi_F.I_0 = cste = \gamma)$$

⇒ I_f dépend de I₀

Validité limitée aux faibles concentrations: aux fortes concentrations, le rayonnement émis est absorbé par les molécules de solutés : effet de «filtre interne» ou «quenching»


Durée de vie de fluorescence

Durée de vie de fluorescence

Si l'on envoie sur l'échantillon un «flash» de lumière (lasers pulsés). Après l'excitation, l'intensité de fluorescence décroît selon une loi exponentielle.

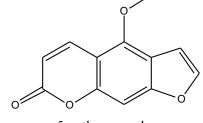
$$I_f = I_0.e^{\left(-\frac{t}{\tau}\right)}$$

La durée de vie τ de fluorescence est de l'ordre de la nanoseconde celle de la phosphorescence est de l'ordre de la seconde

Spectroscopie de fluorescence résolue en temps

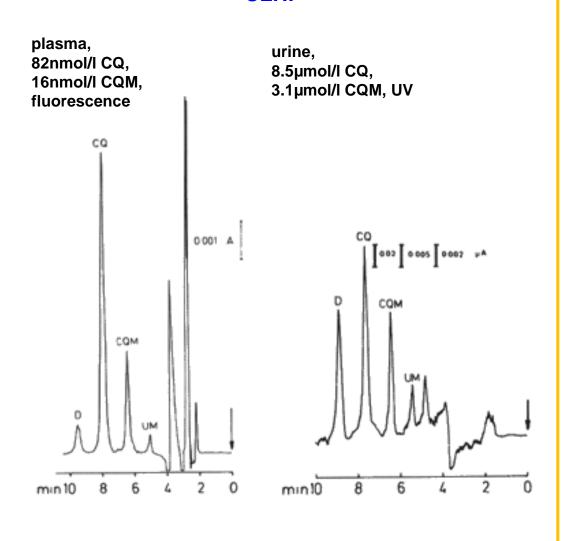
Applications biologiques:

Ex: indicateur de l'activité métabolique cellulaire


Applications

- I_F ¬¬¬¬, permet des analyses de traces
- Spécificité ↗↗↗

Molécules d'intérêts


 10 % environ des molécules d'intérêt pharmaceutique sont fluorescentes

PROPOFOL (DIPRIVAN®)

5-methoxy psoralen
5MOP (PSORADERM®)

Dosage de la chloroquine et de son metabolite la desethylchloroquine dans le plasma et l'urine par CLHP

Applications

Analyses quantitatives

- Méthodes d'analyses directes, indirectes ou couplées à des techniques séparatives (HPLC ou EC)
 - Analyse d'ions inorganiques : réaction avec un fluorophore
 - Cations formant des chélates fluorescents (applications limitées)
 - Inhibition de fluorescence par la présence des anions (très utilisée)
 - Composés organiques
 - Composés ayant une fluorescence native
 - Composés non fluorescents après dérivation chimique et greffage d'un groupement chromophore
 - Immunodosages
 - Polarisation d'immunofluorescence (FPIA) ex: pour le dosage de la digoxine dans le plasma

Résumé

- La fluorescence peut être observée quand les espèces excitées reviennent à l'état fondamental en libérant l'excès d'énergie sous forme de photons
- Les longueurs d'ondes d'émission de fluorescence sont supérieurs aux longueurs d'ondes d'absorption (Déplacement de Stokes)
- Fuorofore: chromophore qui se désexcite en fluorescent
 - doit contenir des chromophores insaturés à électrons π délocalisés
 - I_f augmente avec: rigidité, planéité, conjugaison

- Analyses quantitatives pour des faibles concentrations
- I_f dépend de:
 - concentration, I₀
 - coefficient d'absorption, pH du solvant,
 - température, viscosité,
 - polarité du solvant ...
- Nombre de molécules qui fluorescent limité
- Sélectivité élevée 777
- Limites de détection jusqu'à 1000 fois inférieurs aux limites de l'absorption: sensibilité 777

Spectrométrie de Fluorescence

- Chimie analytique: Skoog, West, Holler, Crouch. De BOECK, 3ème édition, ISBN: 9782804190712, Juin 2015
- Techniques de l'ingénieur, Spectrophotométrie d'absorption dans l'ultraviolet et le visible, Dominique DI BENEDETTO, Philippe BREUIL, Réf : P2795 v2
- Pharmacopée Européenne 7.0 (Tomes 1 & 2)
- Chimie analytique, méthodes spectrales et analyse organique. M. Hamon, F. Pellerin, M. Guernet, G. Mahusier, Masson, 2^{ème} édition, ISBN 2-225-83507
- Analyse chimique: Méthodes et techniques instrumentales, F. Rouessac, A. Rouessac, 8^{ème} édition. ISBN 978-2-10-074688-0
- Chimie générale, John W. Hill et al. 2ème édition, ERPI, ISBN 978-2-7613-2434-2