

Master 2 Pharmacotechnie et Biopharmacie

Nanoscale drug delivery systems (UE 3)

The magic bullet

Paul Ehrlich (1854-1915)

Magic bullet

- 1906 : "Magic bullet" (magische Kugel)
- An ideal therapeutic agent, capable of targeting the causative element of the disease

(Nano)carrier

Targeting

Dr. Ehrlich's Magic Bullet

Thursday ■ July 31 ■ 7:00 p.m.

Starring EDWARD G. ROBINSON (Dr. Paul Ehrlich) RUTH GORDON (Mrs. Ehrlich) OTTO KRUGER (Dr. Emil Von Behring) DONALD CRISP (Minister Althoff) MARIA OUSPENSKAYA (Franziska Speyer) MONTAGU LOVE (Prof. Hartman) Directed by WILLIAM DIETERLE Written by JOHN HUSTON, HEINZ HERALD, and NORMAN BURNSIDE

The scale of objects

The scale of objects

	Red b cells	blood	Virus 20 -400 nm	Protein 10 -20 nr	Molecule ⁿ < 10 nm
				States	returne
		1000 nm	100 nm	1 nm	
Centimètre (10 ⁻² mètre)	Millimeter (10 ^{- 3} meter)	Micrometer (10 ⁻⁶ meter)		Nanometer (10 ⁻⁹ meter)	
					10- ⁹ m
	10 μm	500 nm –10 μm	Am V Spot Mase - Bot (WD) Con V To 2000er - SE - (100		
			Polymer nanopartic	cle s	iposome

The magic bullet

Make the fate of a drug dependent from a carrier

Biotransformations

Targeting and reducing side effects

Targeting and reducing side effects

Targeting and reducing side effects

heart (tight endothelium) · · · · · · · · · · · · ~150 nm 0 passive tumor targeting, broad organ distribution lower myocardial concentrations umo (leaky endothelium) strong DNA damage weak DNA damage in myocardium in myocardium strong cardiotoxicity weaker cardiotoxicity

Cardiotoxicity of doxorubicin

- Efficacy of CAELYX not inferior to doxorubicin
- Significantly less cardiotoxicity in first-line treatment of women with metastatic breast cancer

Protection against degradation

Protection against degradation_prodrug strategy

- Sustained drug release
- Increase of the drug chemical stability
- Reduced toxicity before metabolization occurs

The magic bullet

Make the fate of a drug dependent from a carrier

Traditional chemotherapy

- Instability/metabolization
- Limited intracellular accumulation
- Lack of cell/tissue specificity
- Induction of resistance phenomena

Nanoparticle

Nanomedicines

- Protection from degradation
- Increase intracellular penetration
- Cell/tissue targeting
- Overcome resistance

Nanomedicine generations

1st generation

2nd generation

Stealth/Long circulating

3rd generation Stealth/Long circulating Surface functionalized

Nanomedicine generations

1st generation

2nd generation

Stealth/Long circulating

3rd generation Stealth/Long circulating Surface functionalized

Interactions in the biological medium

Acquisition of a biological Identity

Interactions in the biological medium_the protein corona

Opsonins

- Coagulation proteins : fibrinogen/kininogen-1
- Acute phase proteins
- Tissue leakage proteins
- Components of the complement system
- Immunoglobulins

NON Opsonins

- Albumin
- Apoproteins

Acquisition of a specific molecular signature

Interactions in the biological medium_the protein corona

- Hydrogen bonds
- Electrostatic interactions
- Hydrophobic interactions
- Acid-base interactions

Hydration/solvation forces

- Steric hindrance
- Electrostatic repulsion

First generation : Fate of nanoparticles after IV administration

• Macrophage uptake and liver accumulation

Opsonization

Rapid removal from the circulation

Interactions in the biological medium_the protein corona

Internalization pathways

Endocytosis

Doxorubicin

Doxorubicin _Livatag, doxorubicin transdrug

in vivo model of hepatic metastasis

Dox-loaded PIHCA nanoparticles

PRECLINICAL	PHASE I	PHASE II	PHASE III	PHASE IV
	ŴŴ		09090909 09090909 09090909 09090909	
Laboratory Research determines if treatment is useful and safe	6-10 Participants Understand effects of treatment in humans	20-50 Participants Evaluate safety and efficacy of treatment	100-200 Participants Confirm benefit and safety of treatment	200+ Participants Evaluate long-term effects of treatment

Doxorubicin _Livatag, doxorubicin transdrug

in vivo cytotoxicity in X/myc transgenic mice

Potential breakthrough in the treatment of hepatocellular carcinoma

Doxorubicin _Livatag, doxorubicin transdrug

• PHASE II

Baseline Tumor size 3000 mm²

intra-arterial infusion (30 mg/m²)

After 4 weeks Evident necrotic area

Increased survival time 17 versus 15 months for patients getting current best of care (transarterial chemoembolisation with a cytotoxic drug)

doxorubicin transdrug_ReLIVE: phase III NCT01655693

- 397 patients, 11 countries, 70 centers
- Randomized, open label, comparative 3 parallel arms study

Best Standard Care

Administration through a slow 6 hours IV infusion every 4 weeks (n=263)

20 mg/m²

30 mg/m²

PRECLINICAL PHASE I PHASE II PHASE III PHASE IV 6-10 Participants Understand effects boratory Resea determines if 20-50 Particina 00-200 Participa 200+ Participant Evaluate safety Confirm benefit luate long-ter of treatment and efficacy effects and safety in humans of treatment

doxorubicin transdrug_ReLIVE: phase III NCT01655693

doxorubicin transdrug_ReLIVE: phase III NCT01655693

September 11, 2017

- Unexpected high survival in the comparative group
- Livatag[®] showed a similar effect to the control group
- No difference between the two arms (20 or 30mg/m²)
- Favorable overall safety and tolerability

doxorubicin transdrug_ReLIVE: phase III NCT01655693

September 11, 2017

- Unexpected high survival in the comparative group
- Livatag[®] showed a similar effect to the control group
- No difference between the two arms (20 or 30mg/m²)
- Favorable overall safety and tolerability

- Enrollment of patients with a better prognosis than in previous trials
- Placebo is not the control group
- Standard treatment is the control group (47% gemcitabine plus oxaliplatin)

First generation

Conclusions

The first generation of nanocarriers was promising

The liver is always the target, so many liver diseases are likely to benefit from such targeting

Nanomedicine generations

1st generation

2nd generation

Stealth/Long circulating

3rd generation Stealth/Long circulating Surface functionalized

If you want to be invisible, look like water

Poly(ethylene glycol)

If you want to be invisible, look like water

Poly(ethylene glycol)

- Non-ionic hydrophilic polymer
- Biocompatible
- Stealth effect
- Prolonged circulation

Poly (methoxypolyethyleneglycol)-co-nhexadecyl cyanoacrylate NPs

	Nanoparticles	Protein adsorbed (%)		
	PEG ₅₀₀₀ -PHDCA (243 nm)	34		
	PEG ₅₀₀₀ -PHDCA (171 nm)	23		
	PEG ₅₀₀₀ -PHDCA (80 nm)	6		
	PEG ₂₀₀₀ -PHDCA (172 nm)	29		
	PEG ₁₀₀₀₀ -PHDCA (169 nm)	9		
	PHDCA (242 nm)	58		
	PHDCA (173 nm)	56		
	PHDCA (85 nm)	57		

Poly (methoxypolyethyleneglycol)-co-nhexadecyl cyanoacrylate NPs

Nanoparticles	Protein adsorbed (%)
PEG ₅₀₀₀ -PHDCA (243 nm)	34
PEG ₅₀₀₀ -PHDCA (171 nm)	23
PEG ₅₀₀₀ -PHDCA (80 nm)	6
PEG ₂₀₀₀ -PHDCA (172 nm)	29
PEG ₁₀₀₀₀ -PHDCA (169 nm)	9
PHDCA (242 nm)	58
PHDCA (173 nm)	56
PHDCA (85 nm)	57

Protein adsorption is surface and size dependent

Second generation

The enhanced permeability and retention effect (EPR)

- Enhanced permeability
 - Stimulation of the blood vessel production
 - Important vascularization (blood supply)
 - Wide fenestrations, abnormal architectures
- Enhanced retention
 - Inefficient lymphatic drainage

Accumulation of nanoparticles in tumor and inflammed tissues

Second generation

The enhanced permeability and retention effect (EPR)

Prolonged blood circulation

Second generation

The enhanced permeability and retention effect (EPR)

Healthy tissue

Tumor tissue

@30'

@24h

@48h
Second generation

nanomedicines in the market_Doxil (1995)

80-90 nm PEG-coated unilamellar liposomes

- •Metastatic breast cancer
- •Kaposi's sarcoma in patients with AIDS
- •Multiple myeloma
- Drug: doxorubicin

Second generation

nanomedicines in the market_Doxil (1995)

80-90 nm PEG-coated unilamellar liposomes

- •Metastatic breast cancer
- •Kaposi's sarcoma in patients with AIDS
- Multiple myeloma
- <u>Drug: doxorubicin</u>

• Plasma concentration

Lammers T et al. Clin Cancer Res 2012;18:4889-4894

Doxil Accumulation in KS lesions

Indium-111–labeled PEGylated liposome

Doxil

Cardiotoxicity

- Reduced
- Only 0.8% withdrawal due to cardiotoxicity
- Increasing dose and duration of treatment

Complement activation-related pseudo allergy

- Slower infusion rate
- Pretreat

Hand-foot syndrome

- Rich capillary network, increased blood flow
- Increased drug accumulation
- protracted slow release

Symptoms		
Grade I	Mild erythema	
Grade II	Erythema with desquamation	
Grade III	Blistering	
Grade IV	Diffuse	

Tumor

- Extent of the EPR effect and pores cut off
- Diffusion within the extracellular matrix
- Hydrostatic pressure within the tumor

Particles

- Mean diameter
- Charge and surface chemistry
- Shape

Hobbs, S. K. et al. Proc. Natl Acad. Sci. USA, 1998, 95, 4607

Heterogeneous vasculature

Heterogeneous tumor composition

Evaluate the extent of the vasculature leakage and

tumor drug accumulation

Predict the outcome of the treatment

Evaluate the extent of the vasculature leakage and

tumor drug accumulation

Predict the outcome of the treatment

Iv injection of iodine-labeled liposomes

Vasculature visualization of tumor site and normal tissues

Good prognosis groups

highest X-Ray signal enhancement

Bad prognosis groups

lowest X-Ray signal enhancement

Evaluate the extent of the vasculature leakage and

Predict the outcome of the treatment

Iv injection of iodine-labeled liposomes

Vasculature visualization of tumor site and normal tissues

• Gray levels signal enhancement

After probe administration:

- highest enhancement in tumor tissue
- no substantial enhancement in normal tissue

Without probe administration:

• no enhancement in tumor lesion of control group

• Tumor permeability

• In vivo efficacy

High variability of tumor leakiness

High variability of tumor response

• Tumor permeability

• In vivo efficacy

Significant higher response to chemotherapy of good-prognosis subgroup

Nanomedicine generations

1st generation

2nd generation

Stealth/Long circulating

3rd generation Stealth/Long circulating Surface functionalized

ligand mediated targeting

ligand mediated targeting

THE JOURNAL OF BIOLOGICAL CHEMISTRY @ 1994 by The American Society for Biochemistry and Molecular Biology, Inc.

Vol. 269, No. 5, Issue of February 4, pp. 3198-3204, 1994 Printed in U.S.A.

Delivery of Liposomes into Cultured KB Cells via Folate Receptor-mediated Endocytosis*

(Received for publication, June 25, 1993, and in revised form, September 1, 1993)

Robert J. Lee and Philip S. Low[‡] From the Department of Chemistry, Purdue University, West Lafayette, Indiana 47907

• Uptake Confocal microscopy

• Internalization kinetic *fluorescence spectroscopy*

ligand mediated targeting

Ligand type	Name	Ligand	Target	Nanocarrier	Payload	Indication	NCT no.	Status	Ref
Antibodies	TargomiRs	Anti-EGFR bispecific antibody	EGFR	Minicell	miR-16-based microRNA mimic	NSCLC MPM	02369198	Phase I	165
Antibody	C225-ILs-DOX	Anti-EGFR Fab'	EGFR	Liposome	DOX	Solid tumors	01702129	Phase I	188
fragments	MM-302	Anti-HER2 scFv	HER2	Liposome	DOX	Breast cancer	01304797	Phase I	189 190 204 191 192
	SGT-53	Anti-TfR scFv	TfR	Liposome	p53 plasmid	Solid tumors	00470613	Phase I	190
						Pancreatic cancer	02340117	Phase II	204
	SGT-94	Anti-TfR scFv	TfR	Liposome	RB94 plasmid	GUC	01517464	Phase I	191
	Lipovaxin-MM	Anti-DC-SIGN V _H	DC-SIGN	Liposome	Melanoma antigens and IFN-γ	Melanoma	01052142	Phase I	192
Proteins	MBP-426	Tf	TfR	Liposome	Oxaliplatin	Solid tumors	00355888	Phase I	248
						AGC or EAC	00964080	Phase I/II	249
	CALAA-01	Tf	TfR	Polymeric nanoparticles	RRM2 siRNA	Solid tumors	00689065	Phase I	251
Peptides	2B3-101	GSH	GSH transporters	Liposome	DOX	Breast cancer	01386580	Phase I/II	279
	Rexin-G	vWF-derived	Collagen	Retroviral vector	dn-CCNG1	Osteosarcoma	00572130	Phase II	259
		motif				Sarcoma	00505713	Phase I/II	259
						Pancreatic cancer	00504998	Phase I/II	260

prostate specific membrane antigen (PSMA) targeting

prostate specific membrane antigen (PSMA) targeting

Accurins

Targeting ligands Stealth and protective layer Controlled-release polymer matrix Therapeutic payload

•BIND-014 (PSMA-targeted docetaxel)
•BIND-510 PSMA-targeted vincristine
•PLK1, KSP inhibitor accurins

	PATIENTS EXPRESSING	i PSMA
TUMOR	TUMOR CELLS	NEOVASCULATURE
Prostate	184/184 (100%)	2/12 (17%)
Breast	0/6 (0%)	5/6 (83%)
Colorectal	0/130 (0%)	110/130 (85%)
Renal Cell	0/75 (0%)	67/75 (89%)
Bladder	8/167 (5%)	167/167 (99%)
Gastric	0/119 (0%)	79/119 (66%)
Neuroendocrine	0/5 (0%)	5/5 (100%)
Melanoma	0/5 (0%)	5/5 (100%)
Pancreatic Duct	0/4 (0%)	4/4 (100%)
NSCLC	0/5 (0%)	5/5 (100%)
Soft Tissue Sarcoma	0/6 (0%)	5/6 (83%)

PSMA is not found in normal vasculature

Early tests in animals and small clinical trials showed that the approach was safer than docetaxel alone

Later clinical trials disappointed

- BIND-014 failed against cervical and head-and-neck cancers
- Efficacy on lung cancer was not clear

prostate specific membrane antigen (PSMA) targeting

Last updates February-April 2016

			Modify th	is search How to Use Search Results				
-	List By Top	ic On Map	Search Details					
Sho	w Display Opti	ons		🖓 Download 🔊 Subscribe to RSS				
Incl	ude only open s	studies 🗆 Exclude st	udies with Unkno	wn status				
lank	Status	Study						
1	Completed	A Phase 2 Study	to Determine th	e Safety and Efficacy of BIND-014 (Docetaxel Nanoparticles for Injectable				
		Suspension), Ad	ministered to Pa	atients With Metastatic Castration-Resistant Prostate Cancer				
		Con	ditions: CRPC	; Prostate Cancer				
		Interv	vention: Drug:	BIND-014				
2	Completed	A Study of BIND-014 Given to Patients With Advanced or Metastatic Cancer		tients With Advanced or Metastatic Cancer				
		Con	ditions: Metas	tatic Cancer; Cancer; Solid Tumors				
		Interv	vention: Drug:	BIND-014				
3 C	Completed	A Phase 2 Study to Determine the Safety and Efficacy of BIND-014 (Docetaxel Nanoparticles for Injectable						
		Suspension) as Second-line Therapy to Patients With Non-Small Cell Lung Cancer						
		Co	ndition: Non-s	mall Cell Lung Cancer				
		Interv	vention: Drug:	BIND-014				
4	Completed	A Study of BIND-014 (Docetaxel Nanoparticles for Injectable Suspension) as Second-line Therapy for						
		With KRAS Positive or Squamous Cell Non-Small Cell Lung Cancer						
		Con	ditions: KRAS	Positive Patients With Non-small Cell Lung Cancer;				
			Squar	nous Cell Non-small Cell Lung Cancer				
		Interv	vention: Drug:	BIND-014 (Docetaxel Nanoparticles for Injectable Suspension)				
	Townshipstord	A Study of BIND-014 in Patients With Urothelial Carcinoma, Cholangiocarcinoma, Cervical Cancer and						
5	rerminated							
5	lerminated	Squamous Cell C	arcinoma of the	Head and Neck				
5	Terminated	Squamous Cell C Con	arcinoma of the ditions: Urothe	e Head and Neck elial Carcinoma; Cholangiocarcinoma; Cervical Cancer;				

TO TOP

prostate specific membrane antigen (PSMA) targeting

BANKRUPTCY

Last updates February-April 2016

TROUBLED TIMES

BIND Therapeutics raised US\$70.5 million in an initial public offering of stock in September 2013. But the company's stock price has fallen in response to its recent financial woes.

Need to reach the biological target

The abnormal microenvironment impairs uniform delivery and efficcacy of therapeutic agents

Transport through the microenvironnement

Efficient drug delivery to cancer cells requires crossing of multiple biological barriers

Need to have relevant predictive models

Extravasation

Fourth generation: stimuli responsive

Efficient spatio temporal and dosage release control

- Endogenous stimuli
- pH
- Redox status (glutathion concentrations)
- Enzymatic activity

- Exogenous stimuli
- Magnetic/electric field
- Light
- Ultrasound
- Temperature

Fourth generation: pH sensitive

• Body pH variations

Fourth generation : temperature sensitive

Heat-activated doxorubicin loaded liposomes : Thermodox[®]

"Leaky" tumor blood Vessels Heat adds permeability

Heat-triggered release

Fourth generation: temperature sensitive

• Heat-activated doxorubicin loaded liposomes : Thermodox®

- Micro metastasis outside the ablation zone "kill" area.
- Potential site of recurrence if not treated

Fourth generation: temperature sensitive

• Heat-activated doxorubicin loaded liposomes : Thermodox®

- Micro metastasis outside the ablation zone "kill" area.
- Potential site of recurrence if not treated

• Survival data for single-lesion patients

• Moving to the personalized medicine

Nanotheranostics

Personalized nanomedicine

Non responding patients

Limiting toxicity

Combine targeted therapeutic & diagnostic functions

- Non invasive longitudinal monitoring
- Assessment of disease progression

•Evaluation of intervention efficacy at an early stage

Optimized and individualized treatment protocols

Nanomedicine for drug delivery

Physical drug encapsulation

Important limitations:

- Poor drug loading (< 5%)
- Burst release of surface adsorbed drug

The prodrug strategy

Advantages:

- Sustained drug release
- Increase of the drug chemical stability
- Reduced toxicity before metabolization occurs

The prodrug approach

• Polymer prodrugs

ncorporation into nanocarriers

The prodrug approach

• Polymer prodrugs

nanocarriers

Squalene (SQ)

• Lipid Prodrugs

٠

- Acyclic triterpene widely distributed in nature
- Intermediate in the cholesterol biosynthetic pathway
- Dynamically folded conformation in aqueous solution

The squalenoylation approach

chemical conjugation of squalene to a biologically active drug molecule leading to bioconjugates which self-assemble as nanoparticles in water

The prodrug approach: squalene based

The prodrug approach: squalene based

In vivo fate of lipid prodrug-based nanoparticles (NPs)

Cholesterol: transported in circulation by lipoproteins

Squalene: precursor in the cholesterol biosynthesis

Behaviour analogy?

• In vitro & in vivo studies

500 times higher affinity of SQGem for LDL compared to albumin

Preferential association with lipoproteins

Interaction with the main cholesterol transporters in the circulation

D. Sobot, S. Mura, S. Yesylevskyy, L. Dalbin, F. Cayre, G. Bort, J. Mougin, D. Desmaële, S. Lepetre-Mouelhi, G. Pieters, B. Andreiuk, A.S. Klymchenko, J.L. Paul, C. Ramseyer. P. Couvreur. *Nature Comm* **2017**, 8, 15678: D. Sobot, S. Mura, M. Rouquette, B. Vukosavljevic, F. Cayre, E. Buchy, G. Pieters, S. Garcia-Argote, M. Windbergs, D. Desmaële, P. Couvreur. *Mol. Therapy* **2017**, 25, 1596

• *In vitro* & *in vivo* studies

500 times higher affinity of SQGem for LDL compared to albumin

Preferential association with lipoproteins

Interaction with the main cholesterol transporters in the circulation

D. Sobot, S. Mura, S. Yesylevskyy, L. Dalbin, F. Cayre, G. Bort, J. Mougin, D. Desmaële, S. Lepetre-Mouelhi, G. Pieters, B. Andreiuk, A.S. Klymchenko, J.L. Paul, C. Ramseyer. P. Couvreur. *Nature Comm* **2017**, 8, 15678; D. Sobot, S. Mura, M. Rouquette, B. Vukosavljevic, F. Cayre, E. Buchy, G. Pieters, S. Garcia-Argote, M. Windbergs, D. Desmaële, P. Couvreur. *Mol. Therapy* **2017**, 25, 1596

• In vitro & in vivo studies

500 times higher affinity of SQGem for LDL compared to albumin

Preferential association with lipoproteins

Interaction with the main cholesterol transporters in the circulation

Radioactivity quantification

D. Sobot, S. Mura, S. Yesylevskyy, L. Dalbin, F. Cayre, G. Bort, J. Mougin, D. Desmaële, S. Lepetre-Mouelhi, G. Pieters, B. Andreiuk, A.S. Klymchenko, J.L. Paul, C. Ramseyer. P. Couvreur. *Nature Comm* **2017**, 8, 15678; D. Sobot, S. Mura, M. Rouquette, B. Vukosavljevic, F. Cayre, E. Buchy, G. Pieters, S. Garcia-Argote, M. Windbergs, D. Desmaële, P. Couvreur. *Mol. Therapy* **2017**, 25, 1596

- Current loading strategies
 - Incorporation of drugs into endogenous isolated particle

Complex LDL isolation

Potential contamination

Storage concerns (aggregation/degradation)

• Design of drug loaded synthetic lipoprotein-like systems Batch reproducibility

Costs of large-scale production

Synthetic carriers

Too many drawbacks: no industrial development

Lipid prodrugs: Cholesterol Gemcitabine

Conjugate	Mean diameter (nm)	Polydispersity index (PdI)	Zeta Potential (mV)	Drug loading (%)
SQGem	82 ± 7	0.11 ± 0.03	-20 ± 7	40.7
CholGem	97 ± 15	0.09 ± 0.02	-21 ± 7	38.9

Stability over time (RT, mQ) •

SQGem NPs

100 nm

Lipid prodrugs: Cholesterol Gemcitabine

• Physical mixtures : 5' @ 37° C

Lipid prodrugs: Cholesterol Gemcitabine

• AFM analysis: lysine-coated MICA surface

The physico-chemical properties of the NPs strongly influence the fate in the bloodstream

Nanoscale drug delivery systems

From the bench to the bedside Need of a relevant preclinical evaluation (UE 3)

Drug development timeline

Drug development timeline

Physiologically relevant models

• Patients

Easy and convenient set-up
Highly reductionist
Flat cells, simple geometry
Lack of architecture
Less realistic drug response

0

0

0

Very useful	
Expensive, time consuming	
Specie differences	
Ethical issues	

In vivo studies

•

87

Physiologically relevant models

• Patients

Easy and convenient set-up
Highly reductionist
Flat cells, simple geometry
Lack of architecture
Less realistic drug response

• In vivo studies

•

0

0

Very useful Expensive, time consuming Specie differences Ethical issues

Physiologically relevant models

27

Ð	Easy and convenient set-up
0	Highly reductionist
0	Flat cells, simple geometry
0	Lack of architecture
0	Less realistic drug response

Very useful Expensive, time consuming Specie differences Ethical issues

Patients

٠

- □ Cell-to-cell, cell-to-matrix interaction
- Oxygen, nutrient and waste gradient
- **Q** Recreation of the microenvironment
- □ Vascularization

89

0

0

0

FDA Modernization Act 2.0

Breaking News FDA Modernization Act 2.0 approved ...make use of "certain **alternatives to animal testing**, including cell-based assays and computer models, to obtain an exemption from the Food and Drug Administration to investigate the safety and effectiveness of a drug"...

*"removes a requirement to use animal studies*as part of the process to obtain a license for a biological
product that is biosimilar or interchangeable with another
biological product"

FDA no longer has to require animal testing for new drugs

Agency can rely on animal-free alternatives before human trials

By Meredith Wadman

w medicines need not be tested in animals to receive US. Food and Drug Administration (FDA) approval, according to legislation signed by President Joe Biden in late December 2022. The change-long sought by animal welfare organizationscould signal a major shift away from animal use after more than 80 years of drug safety regulation.

"This is huge," says Tamara Drake, director of research and regulatory policy at the Center for a Humane Economy, a nonprofit animal welfare organization and key driver of the legislation. "It's a win for industry. It's a win for patients in need of cures."

In place of the 1938 stipulation that potential drugs be tested for safety and efficacy in animals, the law allows FDA to promote a drug or biologic—a larger molecule such as an antibody—to human trials after either animal or nonanimal tests. Drake's group and the nonprofit Animal Wellness Action, among others that pushed for changes, argue that in clearing drugs for human trials the agency should rely more heavily on computer modeling, "organ chips," and other nonanimal methods that have been developed over the past 10 to 15 years.

But pro-research groups are downplaying the law, saying it signals a slow turning of the tide-mot a tsumami that will remake the drug approval process overnight Jim Newman, communications director at Americans for Medical Progress, which advocates for animal research, argues nonanimal technologies are still "in their infancy" and won't be able to replace animal models for "many, many years." FDA still retains tremendous discretion to require animal tests, he notes, and he doesn't expect the agency to change tack anytime soon.

13 JANUARY 2023 • VOL 379 ISSUE 6628 127

FDA Modernization Act 2.0

Five alternatives to animal testing

Researchers are rapidly developing non-animal alternatives that promise more accurate and cost-effective approaches to the discovery process. "I think what's going to happen is that as the field becomes more and more comfortable, confident, and experienced with using these newer methods, eventually they will completely replace the use of animals," says Aysha Akhtar, M.D., M.P.H., co-founder and CEO of the Center for Contemporary Sciences, a non-profit that is working to advance research and testing approaches that are rooted in human biology.

Organoids

Organoids are cultures of stem cells capable of differentiating and spontaneously self-organizing into small 3D structures that mimic, to an extent, organs. Heart, lung, and other organoids offer screening platforms for drugs, as well as mechanistic insights.

Researchers at the Center for Alternatives to Animal Testing at the Johns Hopkins Bloomberg School of Public Health have created brain organoids for studying neurodegenerative disease, electrophysiology, and even intelligence.

Organ-on-a-chip

fashion, researchers can create multi-organ systems or even a human-on-a-chip. Such efforts recently resulted in the first FDA approval of human trials for a drug candidate without preclinical animal efficacy data.

Human tissue Studies on tissue derived from volunteers and

surgical procedures offer opportunities to evaluate

therapeutic interventions on accurate models of the disease. For example, researchers studying vitiligo, an autoimmune skin disorder, can directly assess how a potential intervention impacts autoimmune processes in skin tissue derived from people with vitiligo. Such experiments generate data that promote a level of precision medicine unattainable using animal models.

Phase 0 clinical trials

In Phase 0 trials, study participants are given sub-therapeutic levels of an investigational drug, followed by tests to identify changes in physiology. Despite the low dosage, data concerning potential toxicity and efficacy may be derived.

Digital twins 💻

The application of machine learning methods takes advantage of enormous amounts of data from patient records and previous clinical trials to generate predictive models of patient response to an intervention. The creation of a "digital twin" could limit the need for animal testing and the number of patients required for a clinical trial. Theoretically, the model's accuracy would progressively increase with each subsequent trial based on the newly generated data.

Cell culture models

Uptake of fluorescently-labeled liposomes by macrophages (membrane labeled in green)

Drug / NPs

2

Cell-uptake studies

Confocal microscopy

• Cell-Based

Cell-Based

 Cell/Extracellular Matrix (ECM)-Based

94

 Cell/Extracellular Matrix (ECM)-Based

3D culture models

• Microfluidic Cancer-on-a-Chip (CoC)

Cell culture models

Spheroids

• A549 human lung carcinoma cells stably expressing the red fluorescent protein

Cell aggregation and spheroid formation: D3= 400 μm D10= 560 μm

Ancorage independent

- Common and versatile method for 3D cell culture
- Physico-chemical gradients

Tumor spheroids

• Fabrication methods

- Fabrication methods
- Hanging drop

)pve	
		Frank

• AggreWell™

• Fabrication methods

STEMCELL Technologies 10,7 k abonnés

• Spinning Flask

Spheroids vs Organoids

• Three-dimensional (3D) multi-cellular, microtissues derived from human embryos, organs or tumors.

• Heterotype multicellular spheroids triple co-culture (PANC-1: MRC-5: HUVEC)

Liquid overlay

LBL coating

VEGF

• Histology

 Light sheet fluorescence microscopy (LSFM)

First model of triple spheroid co-culture combining tumor cells, fibrotic tissue and a collapsed vessel-like structure

3D culture models

Synthetic hydrogels

Non-natural

- Polyethylene Glycol (PEG)
- Polylactic Acid (PA)
- Polyglycolic Acid (PGA)

Natural

- Hyaluronic Acid (HA)
- Peptides

- Biomimetic
- Mimic physiological cell/material interactions
- Batch to batch variability
- Limited range of material properties
- Limited cell adhesion site number

- Possibility to easily tune structural properties
- Mimic specific microenvironment features
- Potential toxicity due to fabrication methods
- Limited bioactivity
 - poly-lactic-glycolic polycaprolactone acid

Anchorage dependent: natural hydrogels

- Chitosan-alginate polyelectrolyte complex
- Cell culture

• Scaffold porosity

Pore morphology

Pore wall

Florczyk SJ et al., J Mater Chem B. 2016; 4, 6326

Microfluidic devices

- Culturing living cells in continuously-perfused, micrometer sized chambers
- Model physiological functions of tissues and organs
- Incorporate physical forces, fluid shear stress
- Strong control of culture parameters
- Evaluation of biological responses: cell recruitment, response to drug treatment

Organs-on-chips (OoCs) - microphysiological systems - tissue chips

- Integration of design, technology and biological science for more reliable models
- Provide insights into normal human organ function and disease pathophysiology
- Predict the safety and efficacy of promising new compounds and therapeutics

• NIH, FDA and DARPA funded programs

Tissue Chips for Drug Screening

develop 3D microsystems to represent multiple tissue types

Microphysiological systems programme

develop a system integrating at least 10 human organs/tissues to mimic and replicate biological crosstalk between tissues.

• Pubmed search « organ on chip »

Organs-on-chips (OoCs) - microphysiological systems - tissue chips

CEA IRIG

FRANCE 2030 - PEPR MED-OOC : Organes et organoïdes sur puce

Le PEPR exploratoire MED-OOC vise à réunir organoïdes, microfluidique avancée et expertise clinique pour obtenir des organes sur une puce reproduisant fidèlement la situation in vivo afin d'accélérer la découverte de médicaments, de modéliser les processus de développement et de développer des systèmes expérimentaux personnalisés ou des « jumeaux cliniques ».

Ce PEPR a été retenu en 3ème vague en 2023 et se met en place. La DRF devrait y contribuer activement par le biais de ses instituts lrig et Jacob.

Co-pilotes : CEA, CNRS, Inserm Budget : 48 M€ Durée : 6 ans

PEPR* exploratoires: accompagner une transformation qui commence à émerger et en est à ses débuts voire à ses prémices, pour un montant prévu de 1 Md€

Permettre la conduite d'une politique scientifique sur des domaines d'intérêts national et européen, aux retombées pouvant être multiples

• Perfusable microvascular network

Optimised pore designNO gel leakageVasculogenesis, Sprouting & Anastomosis

• Perfusable microvascular network

Optimised pore design
•NO gel leakage
•Vasculogenesis, Sprouting & Anastomosis

Wang X et al., Lab on a Chip 2016, 16,282; Sobrino A et al., Scientific reports 2016, 6, 1.

• Perfusable microvascular network• Coculture with cancer cells: Vascularized Micro-Tumors

• Drug treatment: cancer or endothelial cell targeting

Pazopanib

Suitable for the development of novel treatment with multiple targets

Stromal cells in perivascular position

Basement membrane deposition

Wang X et al., Lab on a Chip 2016, 16,282; Sobrino A et al., Scientific reports 2016, 6, 1.

- **Open top device for nanomedicine screening**
- Chip Design

Central region for trapping tumor spheroids

Confluent HUVEC monolayer

Ovarian cancer cells (SKOV3) spheroids ٠

• NP accumulation in vivo (influence of ligands)

T-VOC

Animal model

Better mimicking the in vivo tumor microenvironment

- 2D monolayer: FA-modification promotes NP uptake
- 3D tumor spheroids: less significant
- Microchip & in vivo: non-significant

Better mimicking the in vivo tumor microenvironment

Animal model

Conclusions

- Lack the organ function
- Lack structure and complexity

- Very costly and complex
- Low availability
- Some engineering skills
- Not suitable for high-throughput screening

- Lower reproducibility
- Endpoint readouts to be optimized
- Challenge to study on a single cell level
- Often limited perfusion

- In Vivo is not a human
- Very costly and time-consuming
- Extrapolate results to the human situation
- Limited mechanistic information

What is your question?

Simple question: use a simple model

Complex question: go to a more complex model

What is your question?

Simple question: use a simple model

Complex question: go to a more complex model

Conclusions

• Reduction of animal use in research

Ethical and economic benefits

- Proteins and molecules interaction at the surface of nanoparticles
- Perfusion and Flow pressure
- Control of the heterogeneity
- Characterization
- High throughput
- Automated techniques need to be adapted from 2D to 3D

