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Chapter 1

Design methodology

1 Introduction

Digital systems are ubiquitous in our everyday life. A digital system processes informa-

tion in binary form. However, the information coming from the environment is in gen-

eral in analog form. Sampling and quantification methods allows to make this informa-

tion usable by different processors. In the literature, there are two major classifications

for digital systems:

1. General Purpose Systems: combination of hardware and software for public/pri-

vate use.

2. Embedded systems: generally implemented into an another system where the name

of embedded. They are designed to perform specific functions.

Figure 1.1: General block diagram of a digital system.

According to figure 1.1, the hardware part of a digital system can be broken down into

two main parts: processor and peripherals. The processor manages the processing of

information, while the peripherals allow interaction with the outside world via the vari-

ous inputs and outputs or, to provide the processor with additional capacities to accom-

plish its task via the memory blocks and co-processors. On the other hand, the software
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6 CHAPTER 1. DESIGN METHODOLOGY

part is also important. The software part includes all the tools necessary for application

development: programming languages, compilers, debugging tools, emulators, and op-

erating system.

Unlike general-purpose systems, an embedded systems system must meet more con-

straints as time scheduling. Therefore, functions and tasks are handled by a specific op-

erating system designed around a real-time kernel, RTOS and, in this case, the system is

said to be real-time.

1.1 Processor

A term processor is a generic name of a processing unit whose purpose is to process

the input information in a sequential manner by a succession of simple operations and

instructions. There are two main types of processors: general purpose and special pur-

pose. general purpose processors can be programmed and are therefore very versatile.

The memory associated with the processor contains a series of instructions to be exe-

cuted at each clock cycle. This type of processor is often referred to by the name CPU,

Central Processing Unit. These processors are more suitable for applications without

constraints of resources, memory, or autonomy. On the other hand, specific use proces-

sors are CPU to which, additional components are added for a specific application such

as signal or image processing (figure 1.2 ).

Figure 1.2: The simplest model of a digital system. A CPU for processing data, memory

for storing data and/or instructions, and a set of I/O ports.

An example of special purpose processors are DSP, Digital Signal Processor, FPGA, Field-

Programmable Gate Array, ASIC, Application-Specific Integrated Circuit, etc. More re-

cently, and to meet more and more constraints of integration and complexity, the use of

SoC, System on-Chip, has become a standard in the design of digital systems . Figure 1.3

shows the motherboard of a Samsung Galaxy S8 smartphone and figure 1.4 shows a

Qualcomm Snapdragon 835 SoC chip developed by Samsung for these smartphones. It

should be noted that to implement a given function, a general purpose processor uses

more resources than a specific purpose processor because the latter uses tailor-made

logic.
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Figure 1.3: The motherboard of a Samsung Galaxy S8 smartphone.

Figure 1.4: SoC Qualcomm Snapdragon 835: more than 3 billion transistors. It contains

a GPU, DSP, modem LTE, audio codec, camera ISP and a CPU Qualcomm Kryo 280 (8

cores, 4 x 2.45 GHz with 2MB cache L2 + 4 x 1.9 GHz with 1MB cache L2).

A CPU can be broken down into two main parts: the datapath and the control unit.

The datapath includes registers and functional units, such as ALU, Arithmetic and Logic

Unit, as well as several multiplexers for transferring and manipulating data. Figure 1.5

represents the basic datapath of a microcontroller of the AVR family. The datapath re-

ceives data, performs calculations, and produces results. It also receives signals from

the control unit indicating the operations to be carried out and the blocks to be acti-

vated. The datapath transmits status signals (status) to the control unit, indicating the

status of the operations performed.
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Figure 1.5: Datapath of an AVR architecture.
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Figure 1.6: And what about the µC? A µC combines CPU, ROM, RAM, and I/O ports on

the same chip. Other components can also be integrated: timers, ADC, communication

interfaces, etc.

1.2 Semiconductor market

The global semiconductor market will be 655.6 B$ in 2025 compared to 342.7 B$ in 2015

with a CAGR of 6.7% (Compound Annual Growth Rate).

Figure 1.7: The global semiconductor market.

While the overall semiconductor market growth will be lower than in the past, several

areas will experience significantly higher growth than the overall semiconductor mar-

ket. For example, the semiconductor and sensor markets for IoT, Internet of Things, are

expected to reach 114.2 B$ in 2025, up from 27.6B$ in 2015, with a CAGR of 15.3%. Ma-

jor semiconductors in IoT applications include controllers, wireless connectivity, and
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built-in non-volatile memory. Also, the IoT market consists of many segments, includ-

ing commerce, automotive, medical, logistics and home automation, which have high

growth potential, but with the need for very low power consumption energy for mobile

devices.

Figure 1.8: Growing demand for semiconductors in the Internet of Things.

Nonetheless, the semiconductor industry’s margins are under pressure. For example,

companies that produced three to five 65nm chips per year could effectively use their

operations teams. However, the move to 40nm and below has dramatically changed the

economics model. A 28nm tape-out 1 takes 78% of design time in addition and 40 %

non-recurring investments 2 more than a 40nm tape-out.

Despite these issues, progress is being made whether with tools, methodologies or plat-

form approaches that rely heavily on reuse. While projections show that it will cost up

to 300 B$ to develop new SoCs (figure 1.9), the actual costs are generally much lower,

provided that there are a lot of reusable IP products.

1In electronic design, tape-out is the end result of the design process of integrated circuits before they

are sent for manufacture.
2Refers to the one-time costs of research, design, development and test of a new product, Wikipedia.
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Figure 1.9: Development cost. The design costs of integrated circuits have gone from

51.3 M$ for 28nm chip to 297.8 m$ for 7nm and 542.2 M$ 5nm chip.

2 Wired logic

The development of digital systems through wired logic was widely used until the mid-

1980s. Wired logic allows a wide assortment of integrated circuits (IC) to be connected,

each containing only a few logic gates, performing a single logic function. This solution

results in fixed digital systems without any possible evolution or flexibility in the design.

An example of the most basic logic gate is the NOT gate, shown in figure 1.10.

Figure 1.10: Logic NOT gate.

Among the most widely used IC are those of the 74 series. Figure 1.11 shows the inte-

grated circuit 7404, which includes six NOT gates, in the form of a DIP package, dual-

inline package. For each circuit in the 7400 series, several variants are built with different

technologies. The 74LS00 variant is built using TTL, transistor-transistor level technol-

ogy, while the 74HC00 variant is built using CMOS, complementary metal oxide semi-

conductor.
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Figure 1.11: 7404 IC: two pins are used to connect to VDD and Gnd. The other pins

provide a connection to the NOT gates.

Figure 1.12 shows an example of wiring three logic IC to implement the function f =
x1x2 + x̄2x3.

Figure 1.12: Example of a wired logic circuit: fonction f = x1x2 + x̄2x3 is implemented

by using 3 IC, 7404, 7408 and 7432.

3 Programmable logic

The function provided by each of the 7400 series circuits is fixed and cannot be adapted

to all possible design situations. In addition, each circuit contains only a few logic gates,

making these circuits inefficient for the realization of large digital systems. It was nec-

essary to manufacture circuits with a high density of logic gates having a more flexible

structure. These new circuits were introduced in the 1970s and are called PLD, pro-

grammable logic devices. Therefore, a PLD is a generic name of the programmable de-

vices used in the realization of logic circuits. A PLD contains a collection of logic gate

elements and programmable switches that can be customized in different ways.
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Programmable logic

SPLD CPLD FPGA

PLA PLD PAL GAL

combinational combinational PLA micro-cell complex GAL LUT

sequential 1 plan

PROM PROM PROM EEPROM EEPROM DRAM/SRAM

Table 1.1: The different derivations of the PLD.

Several types of PLD are commercially available as shown in table 1.1. The first PLD

marketed was the PLA, Programmable Logic Arrays, introduced in the 1970s. The gen-

eral structure of a PLA is illustrated in figure 1.13. The basic idea comes from the fact that

logical functions can be realized as a sum of products. PLAs are networks of unassigned

gates, traversing a plane of AND gates which in turn feeds a set of OR gates. The con-

figuration of the networks is determined by programming each interconnection. So the

PLA inputs, namely, x1, · · · , xn go through a set of buffer, which provide both the value

xi and its complement x̄i , to a circuit block called AND plane. The latter produces a set

of product terms P1, · · · ,Pk where each of these terms can be configured to implement

a AND function of x1, · · · , xn . The product terms serve as inputs to a OR plan, which

produces the outputs f1, · · · , fm . Each output can be configured to achieve any sum of

P1, cdot s,Pk .

Figure 1.13: PLA: programmable logic array where each point of intersection is built

by a fuse. The AND and OR plans are programmable where unwanted connections can

be removed by blowing the corresponding fuses. Some versions of PROM-based PLA are

programmed by ultraviolet exposure. The first output is: f1 = x1x2+x1x̄3+x̄1x̄2x3+x1x3.

Historically, programmable switches (fuses) presented two difficulties for manufactur-

ers: they were difficult to manufacture correctly and reduced the speed performance
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of the implemented circuit. These drawbacks led, towards the end of the 1970s, to the

development of a similar circuit in which the AND plane is programmable, but the OR

plane is fixed, as shown in figure 1.14. Such a circuit is called PAL, Programmable Array

Logic.

Figure 1.14: PAL: programmable array logic. Outputs are: f1 = x1x2x̄3 + x̄1x2x3 and f2 =
x̄1x̄2 + x1x2x3. Usually, a PAL can be programmed electrically only once and then the

PROM can no longer be programmed.

In many PALs, additional circuitry has been added to the output of each OR gate in

order to provide additional flexibility (figure 1.15). The OR gate combined with the extra

circuit is often referred to as macro-cell.

Figure 1.15: Example of a macro-cell.

The GAL, Generic Array Logic, introduced in the early 80’s. Unlike PAL and PLA which

use PROM memories, programmable only once, the GAL uses EEPROM. Figure 1.16

shows a GAL22V10 with 10 OLMCs with AND planes of varying sizes. For example, the

two OLMCs associated with pins 14 and 23 have an AND plan of 8 terms. Each of the

macro-cells has two main functional modes: combinatorial and register (figure 1.17).

The mode is selected by the select inputs of the 4-input multiplexer. The latter also al-

lows to define the logical polarity of the output signal at the pin level as being active high

or active low. In combinatorial mode, the pin associated with an OLMC is driven by the
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output of the OR gate. The tri-state gate allows a pin to be defined as dynamic input,

output, or I/O. In register mode, the output pin associated with an OLMC is controlled

by the Q output of the D flip-flop.

Figure 1.16: Lattice GAL22V10 uses OLMC, Output Logic Macro-cell.

Figure 1.17: Combinational and register mdoes.

PLAs and PALs are useful for implementing a wide variety of small digital circuits. These

circuits are limited to fairly modest sizes, generally supporting a combined number of

inputs/outputs not exceeding 32. For the implementation of circuits requiring more

inputs and outputs, a more dense circuit type can be used called CPLD, Complex PLD,

represented in figure 1.18.

Figure 1.18: CPLD EPM7128S MAX 7000 from Altera includes CMOS EEPROM cells, 2500

logic gates, 128 macr-ocells, 8 LAB and 100 I/O. Each LAB is formed by 16 macro-cells.
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CPLDs, introduced in mid-1980s, include multiple circuit blocks in the same chip, with

internal wiring resources to connect the circuit blocks (figure 1.19). Each circuit block is

similar to a PAL or PLA with a programmable AND plane and each macro-cell has a fixed

OR plane and a configurable register with clock, enable, clear and preset functions.

Figure 1.19: CPLD: complex programmable logic device.

In CPLDs, macrocells are combined into groups called LAB, Logic Array Blocks as shown

in figure 1.20. Several LABs are linked together by a PIA, Programmable Interconnect

Array representing a global bus powered by all dedicated inputs, I/O pins and macro-

cells. To create complex logical functions, each macro-cell can be supplemented with

shareable expander product terms and high-speed parallel expander product terms

to provide up to 32 product terms per macro-cell.
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Figure 1.20: CPLD: macro-cell, LAB and PIA.

The macro-cell can be individually configured for sequential or combinational logic op-

eration. The macro-cell consists of three functional blocks: logic array, product-term

select matrix, and programmable register (figure 1.21).
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Figure 1.21: Zoom inside a macrocell within a CPLD.

Logic array is used to implement combinational functions. Product-term select ma-

trix allows directing the product terms either as primary logic inputs (at OR and XOR

gates) to implement combinational functions, or as secondary inputs to register control

functions (clear, preset and enable). Shareable expander product terms are inverted

product terms and are fed back into the logic array (figure 1.22). Parallel expanders are

product terms borrowed from adjacent macro-cells. The development software auto-

matically optimizes the allocation of product terms based on design requirements.

Figure 1.22: Shareable Expanders and Parallel Expanders.

Even for CPLDs, only moderately sized logic circuits can be integrated into a single chip.

A simple method to quantify the size of a circuit to be developed is by using simple

logic gates. A commonly used metric is the total number of two-input NAND gates that

would be required to build the system, this metric is often referred to as the number of

equivalent gates. By using this metric, the size of a 7400 IC is simple to measure because

each chip contains only single gates. For PLDs and CPLDs, the typical metric used is that
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each macro-cell represents about 20 equivalent gates. Thus, a typical PAL of 8 macro-

cells can support a circuit requiring up to approximately 160 gates. A large CPLD of 500

macro-cell circuits can support a circuit requiring up to about 10 000 equivalent gates.

To implement larger circuits, one must use a FPGA, Field-Programmable Gate Array.

FPGAs are very different from PLDs and CPLDs in that they do not contain AND or OR

plans but it is constructed based on the philosophy as shown in figure 1.23.

Figure 1.23: An FPGA contains three types of resources: logic blocks arranged in a two-

dimensional array, I/O blocks for connection to pins, and programmable interconnect

switches organized into horizontal and vertical routing channels. Example, FPGA cy-

clone III from Altera, 15408 LE, 346 I/O, 4 PLL, 56 M9K Memory blocks, 504 Kb RAM, 56

Multiplier

A variety of FPGA products are available in the market, with different types of logic

blocks. The most commonly used logical block is LUT, lookup table. Figure 1.24 shows a

LUT, in truth table form, containing storage SRAM cells used to implement a small logic

function. LUTs of different sizes can be created, the size being defined by the number of

inputs.
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Figure 1.24: 2-inputs LUT and 4-inputs LUT.

When a circuit is implemented in an FPGA, the logic blocks are programmed to per-

form the necessary functions and the routing channels are programmed to establish

the required interconnections between the logic blocks. Storage cells are volatile, which

means they lose their stored contents every time the power is off. Therefore, the FPGA

must be programmed each time power is applied. Figure 1.25 shows an example of in-

ternal interconnection in FPGA to set up a logical function f . In this example, 2-input

LUTs are used and connected by four wire routing channels. Switches displayed in black

are disabled.

Figure 1.25: A preview on a small section of a programmed FPGA. The output function

is f = f1 + f2 where f1 = x1x2 and f2 = x̄2x3.

For reasons internal to the various FPGA manufacturers, several terminologies exist to

designate the internal architecture of an FPGA. For Cyclone family, Altera uses the term

LE, Logic Element, to denote a basic cell including a LUT, an adder and a register. A LAB,

Logic Array Block, groups 10 LE. For the Stratix family, Altera replaced the LE with ALM,

Adaptive Logic Modules. An ALM consists of two LUTs, two adders and two registers. For
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the Stratix family, a LAB brings together 10 ALMs. For FPGAs of the Spartan and Virtex

families, Xilinx uses the term slice for a basic module including two LUTs, two adders

and two registers. A CLB, Configurable Logic Block, groups two or four slices, depending

on the FPGA family.

Figure 1.26 shows an example of LE for an FPGA of the Cyclone III family from Altera (In-

tel since 2015). The logical elements, LE, are the smallest logical units in the architecture

of this family. Each LE is composed of a LUT with four inputs allowing to implement any

function of four variables, a programmable register, a carry chain connection (for addi-

tion), a register chain connection (to form registers of more than one bit). LEs operate in

the following modes: normal and arithmetic. The development software automatically

chooses the appropriate mode. Normal mode is suitable for general logic applications

and combinatorial functions. The arithmetic mode is ideal for implementing adders,

counters, accumulators and comparators.

Figure 1.26: Logic element, LE, of an FPGA of the Cyclone III family.

The programmable register can be configured to be a D, T, JK or SR flip-flop. Each regis-

ter has data, clock, enable and clear entries. Each LE has three outputs that drive local,

row, and column routing resources. Register feedback mode allows the output of the

register to return to the LUT.

3.1 FPGA Market

The global FPGA market is expected to grow from 5.9 B$ in 2020 to 8.6 B$ by 2025. It

is expected to grow at a CAGR 3 of 7.6% from 2020 to 2025. This growth is fueled by

3Compound Annual Growth Rate or CAGR Rate
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the increased adoption of the FPGA in AI applications4, IoT5 and ADAS6. FPGAs offer

capabilities such as high compute density and low power consumption (for low power

FPGA series), making them the preferred architecture for various applications requiring

high data flow and processing. continuous data. Here are some features:

In 2019, the APAC7 region held the largest share of the global FPGA industry as this re-

gion is home to large semiconductor companies.

Figure 1.27: FPGA market in billion USD.

FPGAs are also used in military equipment. In November 2018, Xilinx launched Kin-

tex and Virtex FPGAs for space and military applications. These circuits are designed

to withstand harsh environments and ensure safe and reliable operation. Also, FPGAs

have been adopted as an IaaS resource 8. Several cloud service providers are deploying

FPGAs to accelerate service-oriented tasks such as network encryption, deep learning,

web page ranking and video conversion. For example, the Amazon.com site uses an

FPGA in its virtual machine for hardware accelerations. Likewise, Microsoft uses FPGAs

in its Azure platform for Deep Neural Network assessment and search ranking through

its Bing engine. In February 2019, Google announced an investment of over 13B$ in

data centers in the United States. On the other hand, the automotive industry is in-

creasingly using FPGAs in the design of ADAS systems, primarily for vision processing

applications that require high level processing and fine parallelism. In November 2019,

Xilinx launched the new automotive qualified FPGAs, FinFET+, which target ADAS and

self-driving cars.

4Artificial Intelligence
5Internet of Objects
6Advanced driver-assistance systems
7Asia-Pacific
8Infrastructure as a Service, a model of cloud computing.
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Figure 1.28: Global FPGA market share by domain in 2019.

From an FPGA manufacturing technology perspective, the SRAM9 segment accounted

for the largest share of the market. SRAM offers better flexibility, re-programmability,

high integration and high performance for various applications. SRAM-based FPGAs

are widely adopted in military and aerospace, telecoms, and wireless communications

systems. Fuse-based FPGAs are more rugged than SRAM-based ones, especially in ra-

diation environments. On the other hand, a high demand is known for FPGAs based

on Flash memory. For example, in October 2019, Lattice Semiconductor launched the

CrossLinkPlus FPGA family for the on-board vision system based on the MIPI D-PHY

interface10. Nevertheless, FPGAs based on EEPROM memory are still relevant today.

Figure 1.29: United States FPGA Market by Technology in billion USD.

3.2 ASIC

ASIC, Application Specific Integrated Circuit, are designed for a single application and

function the same throughout their lifetime, and its function cannot be changed. The

logic function of ASIC is developed in the same way as in the case of FPGAs, using HDL

languages such as VHDL. However, in the case of an ASIC, the resulting circuit is perma-

nently etched in silicon while for FPGAs, the circuit is made by programming a certain

number of configurable blocks.

9Static-RAM
10MIPI D-PHY connects megapixel cameras and high-resolution displays to a processor.
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Figure 1.30: ASIC vs. FPGA costs. ASIC costs are higher initially even for low volume due

to very high NRE costs, but the slope is flatter. However, at a certain production volume,

the cost of an ASIC and an FPGA intersect where the ASIC becomes more cost effective.

ASICs have very high one-time engineering costs (NREs), while in the case of FPGAs this

cost is almost zero. ASIC prototyping in small quantities is very expensive, but in large

volumes the cost becomes more attractive. In the case of FPGAs, the cost of the IC is

quite high, so in large volumes it becomes expensive compared to ASICs. Therefore,

choosing between an FPGA and an ASIC depends on the end product, target market,

budget, and speed required. Nevertheless, it is very convenient to at least prototype and

validate the circuit using FPGAs before moving to an ASIC with very specific require-

ments.

3.3 IP

Traditionally, the implementation of algorithms in a digital circuit has been accom-

plished using ASICs or software-programmed microprocessors. These processors ex-

ecute a set of instructions to perform a calculation. The alternative approach is to use

reconfigurable circuits such as the FPGA, which is intended to bridge the gap between

hardware and software approaches, achieving much higher performance than micro-

processors, while maintaining a higher level of flexibility than ASIC. However, FPGA

systems require a great deal of development and programmability, a factor that limited

their early adoption.

Thus, FPGA vendors have gradually integrated more functionalities into their programmable

circuits, by integrating in the logic resources, particular devices like DSP blocks and

memory blocks in the form of wired functions, as shown in figure 1.31. Also, another

trend has emerged namely the introduction of complete solutions of microprocessors

in the FPGA structure, called hard processors.
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Figure 1.31: Heterogeneous FPGA platform with general configurable resources, hard

blocks and any software IP blocks.

On the other hand, soft IP refers to Intellectual Property libraries of high level functions

that can be included in the design. These functions are generally represented using

an HDL language at the RTL11 abstraction level. These software IP functions are then

synthesized into a group of programmable logic blocks and then mapped to the FPGA.

4 HDL design

4.1 Methodology

Since the appearance of the first complex systems, the design approach has continued

to evolve. It involves raising the level of representation of the system as illustrated by

figure 1.32. This approach has gone from a full custom design (a description at the

transistor level) to a cell based design (a description at the logic gate level) then, in the

form of a hardware description language. With this logic, we look more and more at the

functionality of the system without necessarily questioning its electronic composition.

Therefore, we design a system at a high level of abstraction (figure 1.33), and today we

talk about design at the system level itself.

11Register Transfer Level
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Figure 1.32: Évolution des méthodologies de conception.

Figure 1.33: Abstraction Levels: at each level, the characteristics of the system must be

analyzed and tested in order to optimize the digital system. We start from the basic com-

ponent towards the architecture (bottom-up methodology) or the reverse (up-bottom

methodology) or in both directions.

Figure 1.34: Transistor level for a Full-Adder circuit.
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Figure 1.35: Full-Adder circuit: perform the addition between two bits A, B , by taking

account for the carry input C . It gives at its outputs the addition result S and a carry

output bit Cout

Figure 1.36: Gate and Register Transfer level for a Full-Adder circuit.

4.2 Design flow

A design flow is a sequence of step procedures to design a digital circuit and implement

it in a given technology. As shown in figure 1.37, design begins with establishing the

specifications by breaking down the digital system into basic modules. The description

of the behavior of each module can be done by a combination of code HDL.

Figure 1.37: Synthesis step.

Then, the synthesis step is the process of generating a logic circuit from the HDL de-

scription. CAD tools, like Quartus, generate circuit implementations from these spec-

ifications. The process of translating, or compiling, an HDL code to a network of logic

gates is part of the synthesis. The output is a set of logical expressions describing the

logical functions necessary for the realization of the circuit (figure 1.37). However, re-

gardless of the type of design used, it is impossible for a digital systems designer to pro-
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duce optimal circuits manually. Thus, one of the important tasks of synthesis tools is to

manipulate the user’s design to automatically generate an equivalent but better circuit.

Functional Simulation occurs just after the synthesis step. A circuit represented as log-

ical expressions can be simulated to verify that it will work as expected. A functional

simulator, like ModelSim, uses the logical expressions generated during synthesis, and

assumes that these expressions will be implemented with perfect gates through which

signals propagate instantly. The simulator requires the user to specify a test-bench to

be applied during the simulation. The results of the simulation are usually provided

in the form of a timing diagram that the user can examine to verify that the circuit is

functioning as required.

Figure 1.38: Mapping of the resources available on the FPGA to achieve the functional-

ities described by an HDL language. In this figure, 6 LUTs and 2 flip-flops are used to

map the 11 inputs to the 2 outputs.

Physical Design comes just after the logical synthesis step. It consists of determining

exactly how to implement the circuit on a given chip. The physical design tools map a

circuit specified as logical expressions by using the FPGA available resources as shown in

figure 1.38. They determine the placement of specific logical elements and what wiring

connections should be made between these elements. The last step is commonly re-

ferred to as routing.

Implementation, in this step we split the list of interconnections into components avail-

able on the target FPGA (figure 1.39). The implementation includes the steps of place-

ment and routing. Placement consists of arranging the components of the circuit in

rows and columns by respecting certain time and/or space constraints imposed by the

developer. Routing consists in choosing the paths followed by the interconnection wires

between the components of the circuit. This step is also subject to constraints, usually

of time.
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Figure 1.39: Implementation on FPGA: placement and routing.

Timing Simulation, a very important step in the design flow. Logic gates and other log-

ical elements such as registers and flip-flops cannot perform their function with zero

delay. When the values of inputs of the circuit change, it takes some time before a cor-

responding change occurs at the output. This is called a circuit propagation delay. Each

logic element needs time to generate a valid output signal whenever there are changes

in the values of its inputs. In addition, there is a delay caused by the signals which must

propagate along the wires which connect various logic elements. The combined effect

is that real circuits exhibit delays, which significantly impact the performances. A tim-

ing simulator evaluates the expected delays of a designed logic circuit. Its results can be

used to determine whether the generated circuit meets the timing and speed require-

ments imposed by the specifications. If the requirements are not met, the designer can

re-optimize the physical design by incorporating the timing constraints.

The last step generally consists in programming the FPGA or generating the masks which

will make it possible to buildand ASIC. Figure 1.40 summarizes the design flow set for a

digital system using an FPGA circuit.
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Figure 1.40: Design flow of a digital system.



Chapter 2

VHDL

The acronym VHDL stands for Very high speed integrated circuit Hardware Description

Language. It is standardized by the IEEE, Institute of Electrical and Electronics Engineers.

The first standard dates back to 1987, then updates were made in 1993, 2000, 2002 and

2008.

1 HDL

Hardware description language, is similar to a programming language except that HDL

is used to describe a digital system rather than being execute on the digital system.

Many HDL languages are available, some are proprietary, and can only be used to imple-

ment circuits only in proprietary technology as is the case for Altera and Xilinx. Others

are supported by standardization associations like Verilog and VHDL.

2 HDL Description

The description of a digital system in VHDL has three parts:

1. declaration of libraries,

2. declaration of entities,

3. entity architecture.

2.1 Entity

Entity is a black-boxed description of the system. The entity is defined by declaring its

ports. Each port is characterized by a type, and a mode.

1 entity entity_name is
2 port ( liste_ports )
3 { Types_specifique_pour_entity }
4 end entity_name ;
5

6 liste_ports :

31
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7 ( port_identifier : [mode] indication_type [:= expression ])
8

9 mode : in | out | buffer | inout
10

11 --exemple :
12 entity porte_logique is
13 port ( x : in std_logic ; y : out std_logic );
14 end porte_logique ;
15

16 entity and_or_inv is
17 port ( a1 , a2 , b1 , b2 : in bit := ’1’; y : out bit );
18 end and_or_inv ;

2.2 Architecture

An architecture provides the detail of the circuit declared in the entity. It has two main

parts: the declarative section and the body of the architecture. The declarative section

can be used to declare signals, new types, variables, constants, functions, components

and more. The body of the architecture represents the functional description of the

system. Two descriptions are possible: concurrent and sequential.

1 architecture identifier of entity_name is
2 { block_declarative }
3 begin
4 { concurrent_statement }
5 end identifier ;
6

7 --exemple
8 architecture abstract of adder is
9 begin

10 sum <= a + b;
11 end abstract ;
12

13 --exemple
14 architecture primitive of and is
15 signal and_a , a1 , a2 : std_logic ;
16 begin
17 and_a <= a1 and a2;
18 end primitive

2.3 Library

A librairy includes essential packages for the design of a circuit. It consists of two

clauses: library and use. Three librairies exist:

1. WORK: built-in default library. It includes the project being designed before and

after compilation.

2. STD: built-in. It includes the definition of logical, relational and other operators.
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3. IEEE must be explicitly declared. It includes other types as the std_logic and the

corresponding operations defined in the ieee.std_logic_1164 package. A specific

type can be defined but we can invoke the set of types by the keyword all.

1 library IEEE;
2 use IEEE. std_logic_1164 .all;

2.4 Concurrence

In VHDL, everything is concurrent, and hence the order of expressions within a VHDL

description does not have any importance. However, VHDL also allows to describe se-

quential operations via the process mechanism. A process is evaluated at each change

of signals’ state in its sensitivity list.

1 --syntaxe
2 process ( signal_names | all ) is
3 { process_declarative_item }
4 begin
5 { sequential_statement }
6 end process ;
7

8 --exemple
9 process (A, B, C, D)

10 begin
11 if (A = ’1’ and B = ’0’) nor (C = ’0’ and D = ’0’) then F <= ’1’;
12 else F <= ’0’;
13 end if;
14 end process ;

3 Description styles

There are three styles of VHDL description:

1. Dataflow design,

2. Behavioral design,

3. Structural design.

To explain each of these styles, we consider the circuit of the figure 2.1.

Figure 2.1: Example.
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3.1 Behavioral

The behavioral description of a digital system is similar to programming with any pro-

cedural language like C or Java. This description provides a high level of abstraction in

describing the system’s behavior where the process is the basic unit. We can use Boolean

equations, conditional and selection tests. In the body of a process, expressions are eval-

uated sequentially, unlike expressions written in the body of the architecture, evaluated

in a concurrent fashion.

1 architecture behavior of bloc is
2 signal A_B , C_D: std_logic ; --internal signal declarations
3 begin
4 process (A, B, C, D, A_B , C_D)
5 begin
6 A_B <= A and not B;
7 C_D <= not C and not D;
8 F <= A_B nor C_D;
9 end process ;

10 end behavioral ;
11

12 --ou encore
13 architecture behavior of bloc is
14 begin
15 process (A, B, C, D)
16 begin
17 if (A = ’1’ and B = ’0’) nor (C = ’0’ and D = ’0’) then F <=

’1’;
18 else F <= ’0’;
19 end if;
20 end process ;
21 end behavioral ;
22

23 --ou encore
24 architecture behavior of bloc is
25 begin
26 process (A, B, C, D)
27 begin
28 case (A and not B) nor (not C and not D) is
29 when ’1’ => F <= ’1’;
30 when ’0’ => F <= ’0’;
31 when others => null;
32 end case;
33 end process ;
34 end behavioral ;

Il est à noter que les assignations de valeurs aux objets signal ne sont effectuées que

lorsque le processus se termine. Si plusieurs assignations sont faites à un objet sig-

nal dans un processus, seule la dernière sera en fait effectuée. Les expressions con-

tenant des objets signal sont évaluées avec les valeurs présentes lorsque le processus

est lancé. Il faut donc utiliser les assignations multiples et interdépendantes d’objets

signal à l’intérieur d’un process avec beaucoup de prudence. A l’inverse, les objets vari-



3. DESCRIPTION STYLES 35

able prennent immédiatement la valeur qui leur est assignée par une expressions. C’est

l’essence même de la description behavior qui veut se rapprocher de la programmation

procédurale. Cependant, ces variables ne sont pas synthétisables et il va falloir être très

prudent lors de la synthèse du circuit sur FPGA.

Note that assignments of values to signal objects are only made when the process ends.

If more than one assignment is made to a signal object in a process, only the last one will

actually be available. Conversely, variable objects immediately take the value assigned

to them by an expression. This is the very essence of the description behavior which

wants to get closer to procedural programming. However, these variables cannot be

synthesized and it will be necessary to be very careful when synthesizing the circuit on

FPGA.

3.2 Dataflow

In this description, the values of signals and ports are established by concurrent assign-

ments. We use Boolean equations, conditional and selection tests.

1 architecture dataflow of bloc is
2 begin
3 --Boolean equations
4 F <= (A and not B) nor (not C and not D);
5

6 --conditional signal assignments
7 F <= ’1’ when ((A and not B) nor (not C and not D)) = ’1’ else

’0’;
8

9 --selected signal assignments
10 with (A and not B) nor (not C and not D) select
11 F <= ’1’ when ’1’,
12 ’0’ when ’0’,
13 ’0’ when others ;
14 end dataflow ;

3.3 Structural

Hierarchical design using primitives named component. The description of the digital

system is based on a simple assembly of the different components that constitute it.

1 component my_component is
2 port ( port_interface_list )
3 end component ;

instantiation: create a copy of an existing component.

port map: interconnection of a component’s generic I/O with real I/O or other interme-

diate signals.

1 instantiation_label : component component_name port map (
port_association_list );

2 port_association_list :
3 port_name => ( signal_name | expression | open )
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1. Partitioning:

2. Define the components:

1 --Component definition for AND_1
2 library IEEE;
3 use IEEE. std_logic1164 .all;
4

5 entity and_1 is
6 port ( i1 , i2: in std_logic ; o1: out std_logic );
7 end and_1;
8 architecture dataflow of and_1 is
9 begin

10 o1 <= i1 and not i2;
11 end dataflow ;

3. Declare the top-level entity:

1 --Top Level
2 library IEEE;
3 use IEEE. std_logic1164 .all;
4 entity bloc is
5 port (A, B, C, D : in std_logic ; F : out std_logic );
6 end bloc;
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4. Declare the components in the architecture’s declarative section of the top-level entity:

1 component and_1 is port (i1 , i2: in std_logic ; o1: out std_logic );
2 end component ;
3 component and_2 is port (i1 , i2: in std_logic ;o1: out std_logic );
4 end component ;
5 component or_1 is port (i1 , i2: in std_logic ;o1: out std_logic );
6 end component ;

4. Instantiations and port mapping:

1 C1: and_1 port map (i1 => A, i2 => B, o1 => A_B);
2 C2: and_2 port map (i1 => C, i2 => D, o1 => C_D);
3 C3: or_1 port map (i1 => A_B , i2 => C_D , o1 => F);

Two ways for port mappin:

1. named association: mapping is done by name from a generic I/O like i 1 to a real

signal like (A). The order is not important.

1 C1: and_1 port map (o1 => A_B , i1 => A, i2 => B);
2 C2: and_2 port map (i1 => C, o1 => C_D , i2 => D);
3 C3: or_1 port map (i2 => C_D , o1 => F, i1 => A_B);

2. positional association: generic I/O are omitted to have more readability but we

must respect the order of the component’s I/O as they declared in its entity.

1 C1: and_1 port map (A, B, A_B);
2 C2: and_2 port map (C, D, C_D);
3 C3: or_1 port map (A_B , C_D , F);

4 Data types

4.1 Objects and types

The information in VHDL is represented as objects. Three types of objects are defined:

signals, constants and variables. Each object in VHDL has a value of a particular type.

The type defines the set of values and the set of operations (figure 2.3).

We use the signal object to represent scalar logic signals, in the form of buses or bi-

nary numbers. A scalar signal takes two possible values ’0’ or ’1’. An example of a 4-bit

encoded bus signal is "1001". Integers can also be specified in decimal without using

quotes.

Figure 2.2: Signal: scalar and bus.
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signal objects can be declared in the entity declaration, in the declarative section of an

architecture and in the declarative section of a package. A signal must be declared with

an associated type, as follows:

1 signal nom_signal : type_signal ;
2 -- type_signal peut etre:
3 bit , bit_vector ,
4 std_logic , std_logic_vector ,
5 signed , unsigned , integer .

Figure 2.3: Predefined types in VHDL.

The type bit and bit_vector are predefined in the STD library. In reality, the bit type is

just an enumeration of two values (’0’, ’1’).

1 signal x: bit;
2 signal y: bit_vector (1 to 4);
3 signal z: bit_vector (7 downto 0);

Figure 2.4: Two possible ways to represent a bus object: little endian (downto) and big

endian (to).

The std_logic type was added to the VHDL standard in IEEE 1164. It offers more capa-

bility than the bit type. To use this type, we must include the following two declarations:

1 library IEEE;
2 use IEEE. std_logic_1164 .all;
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In reality, the std_logic type is also a enumeration of nine values allowing to consider

other electrical levels:

1 library ieee;
2 use ieee. std_logic_1164 .all;
3 type std_ulogic is (
4 ’U’, -- Uninitialized
5 ’X’, -- Forcing Unknown
6 ’0’, -- Forcing zero
7 ’1’, -- Forcing one
8 ’Z’, -- High Impedance
9 ’W’, -- Weak Unknown

10 ’L’, -- Weak zero
11 ’H’, -- Weak one
12 ’-’ -- Don ’t care
13 );

It is possible to include more options in the declaration of a signal such as the delays

defined during a transaction as shown in the following listing:

1 --syntaxe :
2 signal nom_signal : type_signal ;
3 nom_signal <= forme_signal | valeur [after expression_delai ];
4 expression_delai :
5 delai | unaffected
6

7 --exemple
8 y <= not x after 5 ns; -- une transaction
9 z <= ’1’ after T_p , ’0’ after 2* T_p; -- deux transactions

10

11 -- unaffected == null
12 if u = 0 then
13 w1 <= w1 + ’1’;
14 w2 <= unaffected ;
15 else
16 w1 := unaffected ;
17 w2 <= ’1’;
18 end if;

Packages std_logic_signed and std_logic_unsigned use another package named std_logic_arith.

This latter define signed and unsigned types which are equivalent to the std_logic_vector

type. The type unsigned allows to work with unsigned numbers or Natural numbers N.

The type signed allows to consider signed number Z codded in two-complement.

Constant allows to give to an object a value wich cannot be modified. Unlike a signal, a

constant does not represent a physical resource so this object cannot be synthesized on

FPGA. The purpose of a constant is to improve the readability of the code.

1 --syntaxe :
2 constant identifier : indication_type [:= expression ]
3

4 --exemples
5 constant nombre_octet : integer := 4;
6 constant nombre_bits : integer := 8 * nombre_octet ;
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7 constant e : real := 2.718281828;
8 constant delai : time := 3 ns;
9 constant size_limit : integer := 255;

Like a constant, a variable cannot also be synthesized on FPGA. They are sometimes

used to hold calculation results and for use in loops.

1 --syntaxe :
2 variable identifier : indication_type [:= expression ]
3 --exemples
4 variable index : integer := 0;
5 variable start , finish : time := 0 ns;
6 variable sum , average , largest : real;

5 New types

5.1 Syntaxe

In some situations, it makes sense to create new types from a basic types. The new

types do not affect the synthesis of the circuit. On the other hand, they are very useful

for improving and speeding up coding. The new type can be used in port declaration of

an entity or in the declarative part of an architecture.

You can create almost any new type from the base type integer as follows:

1 -- syntaxe :
2 type identifier is type_indication ;
3 --indication :
4 range simple_expression (to| downto ) simple_expression ;
5

6 --exemple
7 type apples is range 0 to 100;
8 type oranges is range 0 to 100;
9 type day_of_month is range 0 to 31;

10 type set_index_range is range 21 downto 11;
11 variable set_index : set_index_range ;

Also new types for handling physical quantities as follows:

1 -- Types physiques , syntaxe :
2 type identifier is type_indication
3 units
4 identifier ;
5 identifier = physical_literal ;
6 end units;
7

8 --exemple
9 type resistance is range 0 to 1E9

10 units
11 ohm;
12 kohm = 1000 ohm;
13 Mohm = 1000 kohm;
14 end units resistance ;
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Also a new type from base type enumeration as follows:

1 --Enumerations , syntaxe :
2 type identifier is ( enumeration_set )
3

4 --exemple
5 type alu_function is (disable , pass , add , subtract , multiply , divide

);
6 type octal_digit is (’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’);
7 variable alu_op : alu_function ;
8 variable last_digit : octal_digit := ’0’;
9 alu_op := subtract ;

10 last_digit := ’7’;
11

12 --exemple surcharge enumeration : overloading
13 type logic_level is (unknown , low , undriven , high);
14 variable control : logic_level ;
15 type water_level is ( dangerously_low , low , ok); --"low" est

surcharge
16 variable water_sensor : water_level ;
17 control := low;
18 water_sensor := low;

Example of creating a new type to be used as a port type:

1 package int_types is
2 type small_int is range 0 to 255;
3 end package int_types ;
4

5 use work. int_types .all;
6 entity small_adder is
7 port ( a, b : in small_int ; s : out small_int );
8 end entity small_adder ;

5.2 Qualification of type

e can apply some attribute on a type to recover some usefull informations. A qualified

expression is an expression whose type is explicitly specified. Example: shared member

of an enumerations.

1 --Qualification syntaxe :
2 type_name ’( expression )
3

4 --exemple de qualification
5 type logic_level is (unknown , low , undriven , high);
6 type system_state is (unknown , ready , busy);
7 logic_level ’( unknown )
8 system_state ’( unknown )
9

10 --exemple de qualification
11 subtype valid_level is logic_level range low to high;
12 logic_level ’( high)
13 valid_level ’( high)
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5.3 Subtype

Useful for restricting the scope of a base type. All the operators applicable on a base type

are also applicable for a subtype. The results are of basic type and not of subtypes.

1 --subtype syntaxe
2 subtype identifier is type_base subtype_indication
3 --exemple
4 subtype small_int is integer range -128 to 127;
5 variable deviation : small_int ;
6 variable adjustment : integer ;
7 deviation := deviation + adjustment ;

There are predefined subtypes in VHDL:

1. Natural: N

2. Positive: N∗

3. Delay_length: time.

1 subtype natural is integer range 0 to highest_integer ;
2 subtype positive is integer range 1 to highest_integer ;
3 subtype delay_length is time range 0 ns to highest_time ;

5.4 Attributes

Attributes provide useful information about the characteristics of a type or an object.

VHDL includes predefined attributes, but you can also define new ones. The predefined

attributes are divided into five classes: value, function, signal, type and range of values.

1 type resistance is range 0 to 1E9
2 units
3 ohm;
4 kohm = 1000 ohm;
5 Mohm = 1000 kohm;
6 end units resistance ;
7

8 resistance ’left -- leftmost value , 0 ohm
9 resistance ’right -- rightmost value , 1E9 ohm

10 resistance ’low -- least value , 0 ohm
11 resistance ’high -- greatest value , 1E9 ohm
12 resistance ’ ascending -- ascending range? true
13 resistance ’image (2 kohm) -- 2000 ohm
14 resistance ’value("5 Mohm") -- 5 _000_000 ohm

1 type logic_level is (unknown , low , undriven , high);
2 logic_level ’pos( unknown ) -- position of unknown , 0
3 logic_level ’val (3) -- value at position 3, high
4 logic_level ’succ( unknown ) -- value at position of unknown + 1, low
5 logic_level ’pred( undriven ) -- value at position of unknown - 1, low
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1 -- if there is an event on clk and if the value of clk just before
2 -- the last event on clk
3 if clk ’event and clk = ’1’ and clk ’ last_value = ’0’ then
4 assert d’ last_event >= 2ns
5 -- The time interval since the last event on d.
6 report " Timing error: d changed within setup time of clk";
7 end if;
8

9 -- test the pulse width of the clock
10 assert not clk ’event or clk ’delayed ’ last_event >= Tpw_clk
11 report "Clock frequency too high";

6 Arrays

An array is a set of values of the same type. The position of each element is given by an

index.

6.1 Constrained array

In constrained array, the limits of an index are established when the array type is de-

fined.

1 -- syntaxe
2 type identifier is array ( index_ranges ) of

element_subtype_indication
3 index_ranges :
4 discrete_subtype_indication | simple_expression (to| downto )

simple_expression
5 element_subtype_indication :
6 type_base [range simple_expression (to| downto ) simple_expression ]
7

8 -- 1D array with one index range do not have to be numeric
9 type word is array (31 downto 0) of bit;

10

11 -- Example 2: index_ranges
12 type controller_state is (initial , idle , active , error);
13 type state_counts is array (idle to error) of natural ;
14 type state_counts is array ( controller_state range idle to error) of

natural ;
15

16 -- Example 3:
17 subtype ram_address is integer range 0 to 63;
18 type coeff_ram_address is array ( ram_address ) of real;
19

20 -- Example 4:
21 type RAM is array (0 to 31) of integer range 0 to 255;
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6.2 Unconstrained array

A definition of type array can be unconstrained, that is, of index undefined length. the

bit_vector and std_logic_vector types are defined in this way. An object of type uncon-

strained array must have its range of index types defined when it is declared.

1 --syntaxe
2 type identifier is array ( type_base range <>) of

element_subtype_indication
3 element_subtype_indication :
4 type_base [ discrete_range ]
5

6 --exemple
7 type int_vector is array ( integer range <>) of integer ;
8 variable int_table : int_vector (0 to 9);

6.3 Aggregates

Objects of type array can also be assigned using concatenation operator (&) or aggre-

gates. By default, the assignment is made by taking the position into account.

1 -- association par position
2 type point is array (1 to 3) of real;
3 constant origin : point := (0.0 , 0.0, 0.0);
4 variable view_point : point := (10.0 , 20.0 , 0.0);
5

6 -- association par nom
7 variable view_point : point := (1 => 10.0 , 2 => 20.0 , 3 => 0.0);
8

9 -- association par nom
10 type coeff_array is array ( coeff_ram_address ) of real;
11 variable coeff : coeff_array := (0 => 1.6, 1 => 2.3, 2 => 1.6, 3 to

63 => 0.0);
12 variable coeff : coeff_array := (0 => 1.6, 1 => 2.3, 2 => 1.6,

others => 0.0);
13 variable coeff : coeff_array := (0 | 2 => 1.6, 1 => 2.3, others =>

0.0);
14

15 -- Pas de melange
16 variable coeff : coeff_array := (1.6 , 2.3, 2 => 1.6, others => 0.0);

-- illegal

6.4 Array attributes

1 type A is array (1 to 4, 31 downto 0) of boolean ;
2 A’left (1) -- 1
3 A’low (1) -- 1
4 A’right (2) -- 0
5 A’high (2) -- 31
6 A’range (1) -- 1 to 4
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7 A’ reverse_range (2) -- 0 to 31
8 A’ length (1) -- 4
9 A’ length (2) -- 32

10 A’ ascending (1) -- true
11 A’ ascending (2) -- false
12 A’ element -- boolean
13

14 --example
15 count := 0;
16 for index in A’range (2) loop
17 if A(index) then count := count + 1;
18 end if;
19 end loop;

7 Code reuse

Speed up design and share code: Package, Component, Procedure, Function.

7.1 package

A package is a collection of declarations that serves as a repository. It is used to contain

general purpose VHDL code like type, subtype, constant, signals, functions and others.

The package can be included for use in a VHDL description. It allows you to separate

declarations from implementations. Like an architecture, a package can have two main

parts, the declaration and the body which is optional. The general form of a package

declaration is shown as follows:

1 -- package_declaration :
2 package identifier is
3 { package_declarative_item }
4 end [ package ] [ identifier ] ;
5

6 --example declaration
7 -- constantes and types to model a CPU:
8 package cpu_types is
9 constant word_size : positive := 16;

10 constant address_size : positive := 24;
11 subtype word is bit_vector ( word_size - 1 downto 0);
12 subtype address is bit_vector ( address_size - 1 downto 0);
13 type status_value is ( halted , idle , fetch , mem_read , mem_write ,

io_read , io_write , int_ack );
14 end package cpu_types ;
15

16 --example : modeling an address decoder
17 entity address_decoder is
18 port (addr : in work. cpu_types . address ;
19 status : in work. cpu_types . status_value ;
20 mem_sel , int_sel , io_sel : out bit );
21 end entity address_decoder ;
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22

23 architecture functional of address_decoder is
24 begin
25 mem_sel <= ’1’ when
26 (work. cpu_types ."=" (status , work. cpu_types .fetch)
27 or work. cpu_types ."="(status , work. cpu_types . mem_read )
28 or work. cpu_types ."="(status , work. cpu_types . mem_write )

)
29 else ’0’;
30 end architecture functional ;

1 -- by using the clause use
2 use work. cpu_types .all
3

4 entity address_decoder is
5 port (addr : in address ;
6 status : in status_value ;
7 mem_sel , int_sel , io_sel : out bit );
8 end entity address_decoder ;
9

10 architecture functional of address_decoder is
11 begin
12 mem_sel <= ’1’ when status = (fetch or mem_read or mem_write ) else

’0’;
13 end architecture functional ;

7.2 Procedures

A procedure is a subroutine with a list of parameters. Parameters can have modes in,

out and inout. A procedure accepts input values and returns results, but it can also

modify parameters passed to it. A procedural call is considered as a concurrent state-

ment. Finally, the procedures can be overloaded, that is, two procedures can have the

same identifier but a list of different parameters. Procedures are most useful for writing

part of code that is used repeatedly in a VHDL description.

1 procedure identifier [ ( parameter_interface_list ) ] is
2 { subprogram_declarative_part }
3 begin
4 { sequential_statement }
5 end [ procedure ] [ identifier ];
6

7 --exemple : averaging an array of data
8 procedure average_samples is
9 variable total : real := 0.0;

10 begin
11 assert samples ’ length > 0 severity failure ; -- message d’ erreur
12 for index in samples ’range loop
13 total := total + samples (index);
14 end loop;
15 average := total / real(samples ’ length );
16 end procedure average_samples ;
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17

18 -- procedure call statement
19 average_samples ;

1 -- exemple : memory read procedure
2 process is
3 variable mem_address_reg , mem_data_reg , prog_counter , instr_reg ,

accumulator , index_reg : word;
4 ...
5 procedure read_memory is
6 begin
7 address_bus <= mem_address_reg ;
8 mem_read <= ’1’;
9 mem_request <= ’1’;

10 wait until mem_ready or reset;
11 if reset then return ;
12 end if;
13 mem_data_reg := data_bus_in ;
14 mem_request <= ’0’;
15 wait until not mem_ready
16 end procedure read_memory ;
17

18 begin
19 -- initialization
20 loop
21 mem_address_reg := prog_counter ; -- fetch next instruction
22 read_memory ; -- call procedure
23 instr_reg := mem_data_reg ;
24 ...
25 case opcode is
26 ...
27 when load_mem =>
28 mem_address_reg := index_reg + displacement ;
29 read_memory ; -- call procedure
30 accumulator := mem_data_reg ;
31 ...
32 end case;
33 end loop;
34 end process ;

1 procedure identifier [ ( parameter_interface_list ) ] is
2 { subprogram_declarative_part }
3 begin
4 { sequential_statement }
5 end [ procedure ] [ identifier ];
6

7 parameter_interface_list :
8 ( [ constant | variable | signal ] identifier { ,...} :
9 [ mode ] subtype_indication [:= static_expression ] ) { ; ... }

10

11 mode : in | out | inout
12
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13 --exemple
14 procedure do_arith_op ( op : in func_code ) is
15 variable result : integer ;
16 begin
17 case op is
18 when add => result := op1 + op2;
19 when subtract => result := op1 - op2;
20 end case;
21 dest <= result after Tpd;
22 Z_flag <= result = 0 after Tpd;
23 end procedure do_arith_op ;
24

25 -- procedure call
26 do_arith_op (add);

7.3 Function

A function is a form of a generalized operator. It is a subroutine that returns a single

result. A function can accept parameters as input. These parameters cannot be changed

by the function. We use a function call in an expression.

1 [pure | impure ] function identifier [ ( parameter_interface_list ) ]
return type_mark is

2 { subprogram_declarative_item }
3 begin
4 { sequential_statement }
5 end [ function ] [ identifier ] ;
6

7 --exemple : whether a value is within given bounds ?
8 function limit (value ,min ,max : integer ) return integer is
9 begin

10 if value > max then return max;
11 elsif value < min then return min;
12 else return value;
13 end if;
14 end function limit;
15

16 -- A call to this function might be included in a variable
assignment statement

17 new_temperature := limit ( current_temperature + increment ,10 ,100);
18

19 -- A call to this function might be used in further computation
20 new_motor_speed := old_motor_speed + scale_factor * limit (error

, -10 ,+10);



Chapter 3

Datapath and FSM

1 Datapath and Control path

Designing a circuit to perform simple operations on simple data, such as an adder, can

be done through a combinatorial approach. However, when the data and/or the opera-

tions become complex, for example the computation of a series on numbers of several

bits, the design of the circuit involves several steps. Therefore, a design based on an

algorithm-based sequential approach is more relevant.

1 --algorithm
2 size = 4; sum = 0;
3 for i in (0 to size -1) do
4 sum = sum + a(i);
5 q = sum /8;
6 r = sum mod 8;
7 if (r > 3)
8 q = q+1;
9 outp = p;

Listing 3.1: Algorithme

Figure 3.1 shows an example of the design of a sequential system corresponding to the

algorithm in listing 3.1 with a description data flow. To add four numbers, a data flow

description sets up three concurrent adders. Consequently, this description requires as

many adder as number of elements in a, hence an overuse of the resources of the FPGA.

Figure 3.1: Design of a sequential system with a description dataflow.

A sequential description, with a single adder and an accumulator register, to store the

49
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intermediate additions would have been sufficient to design the circuit of the algorithm

regardless of the number of elements. This description adopts the same architecture as

micro-controllers using a datapath as in figure 3.2.

Figure 3.2: Design of a sequential system with a description sequential.

For the datapath to behave correctly, all of the elementary blocks must be perfectly syn-

chronized and controlled. Therefore, an additional circuit is needed to generate these

control signals. An example of the most basic control signal is the select signal for mul-

tiplexers, read/write enable signals for registers, address lines for register banks and the

enable signal for three states logic gates. Thus, the operation mode of the datapath is

determined by which control signals are active or not at a given time. In a microproces-

sor or micro-controller, these control signals are generated by the control unit based on

a finite state machine FSM.

This introduction gives us some elements for the implementation of an algorithm on

an FPGA. The Register Transfer RT methodology introduces hardware resources to syn-

thesize variables and sequential expressions which are the characteristic elements of an

algorithm. This methodology uses registers to model symbolic variables, a datapath to

implement operations and an FSM to specify the order of operations.

2 Sequential circuits

These are circuits where the notion of state plays a primordial role. There are two types

of sequential circuit: synchronous and asynchronous. Let recall some basic sequential

elements.

2.1 Latch and flip-flop

Figure 3.3 shows the simplest memory element consisting of a loop with two inverters.

If we assume that A = 0, then B = 1 and the circuit will hold these values indefinitely. We

say that the circuit is in the state defined by these values. If we assume that A = 1, then B

= 0, and the circuit will remain in this second state indefinitely. Thus, the circuit has two

possible states. However, it is not possible to change the state of this circuit by external

inputs.
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Figure 3.3: The simplest memory element.

Latch

Figure 3.4 presents a memory element constructed with NOR gates. Its inputs, Set and

Reset allow to change the state, Q, of the circuit. This circuit is called latch or basic lock.

Figure 3.4: RS Latch with NOR gates and its truth table.

The basic RS latch can serve as a memory element in which, we can change the mem-

orized state from inputs. State changes occur when changes in the input signals occur.

The modified circuit of figure 3.5 includes two AND gates which provide control of the

latch via an external signal clk. The resulting circuit is usually referred gated latch.

Figure 3.5: Gated latch = RS LATCH with a control signal clk.

Figure 3.6 shows a D-latch based on the SR-lock with a single data entry D . State changes

only occur when C l k = 1.

Figure 3.6: D-latch with a control signal clk.



52 CHAPTER 3. DATAPATH AND FSM

Flip-flop

For latchs, the state’s change is sensitive to the level of the input signals, level-sensitive.

But, there was a need for a storage elements which can only change state once during a

clock cycle, these are flip-flops.

The term flip-flop designates a storage element which changes its output at the edge of

a control clock signal. One example is the circuit in figure 3.7, which consists of two

D-latches. The first, called master, changes state as long as clk = 1, while the second,

called slave, changes state as long as clk = 0. Therefore, when the clock is at logic high

level, the master follows the input signal D and the slave does not change and when the

clock signal is at the level logic low, the slave follows the output of the master. Thus,

the master-slave circuit changes state on the falling edge of the clock regardless of the

number of changes in input D during one clock cycle.

Figure 3.7: Master-slave D-flipflop.

Figure 3.8: Comparison between D-latch and D-flipflop.

Registers

A flip-flop stores one bit of information. When a set of n flip-flops are used to store n

bits of information we call this set a register. A common clock is used for each flip-flop

in a register. Figure ?? shows an example of a right shift register.
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Figure 3.9: Right shift register.

Counters

Counting circuits are used in digital systems for many purposes. They can count the

number of occurrences of certain events, generate time intervals for controlling various

tasks in a system, track the time elapsed between specific events, etc. Counters can be

implemented using a combinatorial circuit and flip-flops.

There are two types of counters: asynchronous and synchronous. Asynchronous coun-

ters are simple, but not very fast because of the delays caused by the cascade synchro-

nization scheme.

Figure 3.10: Comparison between asynchronous and synchronous modulo-8 counter.

2.2 Synchronous sequential circuits

As shown in figure 3.11, synchronous sequential circuits are realized using combinato-

rial logic and one or more flip-flops. Synchronization is generally performed by a clock

signal clock.

The circuit has a set of primary inputs, W , and produces a set of outputs, Z . The outputs

of the flip-flops are called the state Q of the circuit. Under the control of the clock signal,

the outputs of the flip-flops change state according to the function determined by the

combinatorial logic. Thus, the circuit passes from one state to another. To ensure that

only one transition from one state to another occurs during one clock cycle, the flip-

flops must be of the edge triggered type. They can be triggered by either a rising edge or

a falling edge.
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Figure 3.11: General diagram of a synchronous sequential circuit.

The figure indicates that the outputs of the sequential circuit are generated by another

combinational circuit, so that the outputs are a function of the present state of the flip-

flops and the primary inputs. Although the results always depend on the present state,

they do not necessarily have to depend directly on the primary inputs. To distinguish

these two possibilities, it is customary to say that the sequential circuits whose outputs

depend only on the state of the circuit are of type Moore, while those whose outputs

depend on both the state and the state of the circuit. primary entries are of type Mealy.

The diagram of figure 3.11 changes to the diagram of figure 3.12.

Figure 3.12: Synchronous sequential circuit: the state register block represents the flip-

flops which keep the present state.

A Mealy type machine has some advantages and disadvantages:

• uses less state because dependence on input signals allows multiple output values

in the same state,

• faster,

• transparent to bugs, it passes them directly to the outputs.

• preferable for event signals (edge sensitive)

A Moore machine is rather preferable for level signals (level sensitive).

Sequential circuits are also called finite state machines, FSM. This name comes from

the fact that the functional behavior of these circuits can be represented using a finite

number of states. There are also other names like automata.
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The simplest example of a synchronous sequential circuit is the D-flipflop. The output

Q takes the input D present at each rising edge of the clock. For the rest of the time Q

keeps the information in memory until the next rising edge.

Figure 3.13: Timing of a D-flipflop.

2.3 State diagram

A digital system can involve complex tasks or algorithms that can be expressed as a se-

quence of actions based on the state of the system and the input signals. Therefore, the

design of an FSM starts with a description of all the tasks to determine the number of

states required as well as the possible transitions between states. This description can

be transcribed in abstract graphical form, or in the form of an FSM state diagram or in

the form of a ASM (algorithmic state machine).

Figure 3.14: FSM diagram of consecutive ’1’ detector circuit.

Lets take an example of a detector of a binary sequence of figure 3.14. The output z = 1

if, for two immediately preceding clock cycles, the input w = 1, otherwise, the value of

z = 0. So the circuit can detect two consecutive ’1’.

• The first state is always a starting state. This is the state that the circuit should

enter when it is powered or when a reset signal is applied. This state is often called

idle state. As long as the input w = 0, the circuit remains in its starting state.
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• The next state arrives as soon as the input w = 1. This transition takes place on

the next active clock edge. In state B , as in state A, the circuit must hold the value

from the output z to 0.

• When a second ’1’ on the input w is detected, the circuit goes to another state C ,

in which the output of the circuit z is equal to ’1’.

• However, when in state B , the input w = 0, the circuit returns again to state A.

• At all times, when reset signal is active, the circuit goes to the starting state.

As shown in figure 3.15, an FSM diagram is used to model a state machine in the form

of nodes and arcs.

• A node represents a single state.

• An arc represents a transition from one state to another. An arc is labeled with a

condition.

• An output from a Moore automaton is shown inside the state circle.

• An output of a Mealy automaton is placed on the arc with the transition condition.

Figure 3.15: Modeling an FSM diagram as set of circles and arcs.

2.4 State table

Although the state diagram provides a description of the behavior of a sequential circuit,

to proceed with the implementation, it is convenient to translate the state diagram into

a state table form as shown in the figure 3.16. The table shows all the transitions from

the present state to the next state for different values of the input signal.

Figure 3.16: Transition state of the FSM of figure 3.14.



2. SEQUENTIAL CIRCUITS 57

When implemented in a logic circuit, each state A, B and C is represented by a particular

assignment where each each two state variable can be implemented by one flip-flop. In

the example of figure 3.16, we need two flip-flops to encode the three states, and hence,

each of these states is coded on two bits Q1Q0. This encoding is carried out in a table

called transition table, in which we also introduce the flip-flop transitions chosen for

the design to achieve the transition from the present state Q to the next state Q+.

Figure 3.17: Transition table or state assignment table for the sequential circuit.

2.5 Example: serial adder

We consider two unsigned numbers A = an−1 · · ·a0 and B = bn−1 · · ·b0. Adding A and B

gives a sum S = Sn−1 · · ·S0. We try to design a circuit that will perform the addition in a

serial way, bit by bit. The process begins by adding the bits a0 and b0. In the next clock

cycle, the bits a1 and b1 are added, including a possible carry. Figure 3.18 shows the RTL

level of this circuit.

Figure 3.18: RTL level of serial adder.

Even if the addition is a combinatorial operation, this circuit cannot be a combinatorial

circuit because different actions will have to be performed depending on the value of

the carry of the previous addition. Two states are therefore necessary S1 where the carry

is ’0’ and S2 or it is ’1’, respectively.
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Figure 3.19: FSM of the Mealy machine: the s output depends on both the present state

and the value of a and b inputs. Each transition is labeled using the notation ab/s,

which indicates the value of s for a given pair ab.

Figure 3.20: Circuit for the serial adder, we need one flipflop for the two states S1 and S2.

Figure 3.21: FSM of the Moore machine: output s depend only on the present state.
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Figure 3.22: Circuit for the serial adder, we need two flipflop for the four states G0, G1,

H0 and H1.

3 ASM

3.1 Description

State diagrams FSM are useful for describing the behavior of sequential machine that

have only a few inputs and outputs. For more complex systems, designers often use a

different form of representation, called a ASM, Algorithmic State Machine diagram. An

ASM graph is a type of flowchart that can be used to represent state transitions and the

generated outputs. The three types of elements used in ASM charts:

Figure 3.23: Basic Elements used in ASM flowchart.

• state box: the state is represented by a rectanglar box. The name of the state is

shown outside of the box in the upper left corner. Outputs of type Moore are listed

in the box. It is customary to write only the name of the signal to be asserted. So,

it suffices to write z rather than z = 1.

• decision box: a diamond box indicates that the specified condition expression

should be tested and the output path should be chosen accordingly.

• Conditional output box: an oval box indicates the output signals of type Mealy.
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Figure 3.24: Example of the interconnection of elements of an ASM.

ASM flowcharts are similar to flowchart diagrams but unlike a flowchart, the ASM in-

cludes synchronization.

3.2 Examples

Figure 3.25: Example 1.
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Figure 3.26: Example 2.

Figure 3.27: Example 3.
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Figure 3.28: Example 4.

Basic rules

• For a given input combination, there is a unique output path.

• An output path of an ASM block must always lead to a states box or a conditional

output box.

Figure 3.29: Incorrect ASM interconnections: (left): two exit paths from a state box.

(right): no exit path when a=’0’, the path ’T’ must goes to another state box or a con-

ditional output box.

4 FSM/ASM and VHDL

4.1 VHDL description

There are two styles to describe an FSM or an ASM in VHDL:

1. Multi-Segment: one VHDL code segment for each block,
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2. Two-Segment: combine next states and output logic into a single segment of

VHDL code.

1 entity mem_ctrl is
2 port (clk , reset , mem , rw , burst: in std_logic ;
3 oe , we , we_me : out std_logic );
4 end mem_ctrl ;
5

6 architecture multi_seg_arch of mem_ctrl is
7 type states is (idle , read1 , read2 , read3 , read4 , write);
8 signal state_reg , state_next : states ;
9 begin

10 --state register
11 process (clk ,reset)
12 begin
13 if (reset = ’1’) then state_reg <= idle;
14 elsif (clk ’event and clk = ’1’) then state_reg <= state_next ;
15 end if;
16 end process ;
17 -- next -state logic
18 process (state_reg ,mem ,rw ,burst)
19 begin
20 case state_reg is
21 when idle =>
22 if (mem = ’1’) then
23 if (rw = ’1’) then state_next <= read1;
24 else state_next <= write;
25 end if;
26 else
27 state_next <= idle;
28 end if;
29 when write => state_next <= idle;
30 when read1 =>
31 if (burst = ’1’) then state_next <= read2;
32 else state_next <= idle;
33 end if;
34 ...
35 end case;
36 end process ;
37

38 -- Moore output logic
39 process ( state_reg )
40 begin
41 we <= ’0’; oe <= ’0’; -- default values
42 case state_reg is
43 when idle =>
44 when write => we <= ’1’;
45 when read1 => oe <= ’1’;
46 ...
47 end case;
48 end process ;
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49

50 -- Mealy output logic
51 process (state_reg ,mem ,rw)
52 begin
53 we_me <= ’0’; -- default values
54 case state_reg is
55 when idle =>
56 if (mem = ’1’) and (rw = ’0’) then we_mem <=’1’;
57 end if;
58 when write =>
59 when read1 =>
60 ...
61 end case;
62 end process ;
63 end mult_seg_arch ;
64

65 -- next -state logic and output logic
66 process (state_reg ,mem ,rw ,burst)
67 begin
68 oe <= ’0’; we <= ’0’; we_me <= ’0’; -- default value
69 case state_reg is
70 when idle =>
71 if (mem = ’1’) then
72 if (rw = ’1’) then state_next <= read1;
73 else state_next <= write; we_me <= ’1’;
74 end if;
75 else
76 state_next <= idle;
77 end if;
78 when write =>
79 state_next <= idle; we <= ’1’;
80 when read1 =>
81 if (burst = ’1’) then state_next <= read2;
82 else state_next <= idle;
83 end if;
84 oe <= ’1’;
85 ....
86 end case;
87 end process ;
88 end two_seg_arch ;

4.2 State assignment

Some binary assignments can reduce the complexity of logic blocks. Tables show some

coding rule to assign a binary code to a given state.
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Figure 3.30: Assignment representation: binary, Gray, one-hot, almost one-hot.

We can impose one assignment in a VHDL description in two manners:

1. implicitly: we use the attribute directive. The standard 1076.6 défines the attribut

enum_encoding.

2. Explicitly: in the declarative section of states.

1 --implicit assignment
2

3 type state is (idle , write , read1 , read2 , read3 , read4);
4 attribute enum_encoding : string ;
5 attribute enum_encoding of state: type is "0000 0100 1000 1001 1010

1011";
6

7 --explicit assignment
8

9 constant idle: std_logic_vector (3 downto 0):="0000";
10 constant write: std_logic_vector (3 downto 0):="0100";

5 Register Transfer Methodology

Designing a complex digital system based on state machines is difficult, because the

number of states to be managed and controlled would be substantial. To overcome this

difficulty, digital systems are designed using a modular approach. The system is divided

into subsystems performing a given function. Modules are built from simple digital cir-

cuits such as registers, decoders, multiplexers, arithmetic elements. The different mod-

ules are interconnected to build a datapath.

The functionalities of a digital system are best represented in the form of algorithms.

These algorithms define a set of registers and the operations performed on the binary

information stored in them as shown in figure 3.31. Examples of registry operations are

shift, count, clear, and load. The registers are supposed to be the basic components

of the digital system. The flow of information and processing performed on the data

stored in registers are called register transfer operations. A control unit, FSM, defines

the sequencing and scheduling of the various operations.
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Figure 3.31: General datapath architecture.

RTL methodology, Register Transfer Level, is a design process in the form of a sequential

sequence of operations and read/write in registers. The designer specifies the proces-

sor registers, the data transfers between these registers, the operations to be performed

and the control signals to manage these tasks. Each register transfer operation must

complete within a clock cycle, which is equivalent to a state of the FSM.

5.1 Micro-operation

A micro-operation is an elementary operation performed on data. A micro-operation

specifies the transfer of information from one register to another. This transfer is desig-

nated in symbolic form by the operator f as in the following statement:

rdest ← f (rsrc,1,rsrc,2, · · · )
In this form, there are two main types of micro-operations:

1. the arithmetic and logical micro-operations modeled by a generic function f .

2. the transfer of the contents of the source registers rsrc, i to the destination register

rdest,

Example 1:

We consider the instruction r1 ← r1 + r2. This instruction is converted into two micro-

operations as follows:

1 r1_next <= r1_reg + r2_reg
2 r1_reg <= r1_next -- on the next rising edge of clk

In figure 3.32, the two registers are controlled by a clock signal clk. At instant t = t0,

each register contains the present value ri ,reg. At the next rising edge of the clock, the

register r1 receives new data on its input port d , which is the result calculated by the

adder. At the next rising edge of the clock, the result of the addition is available on the

output port q of the register r1. Therefore, micro-operations only take effect during an

active transition of the datapath clock signal.
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Figure 3.32: Transfer and timing of example 1.

Example 2:

• Since r1 is the destination register for multiple operations, a MUX is used.

• To derive the control signals, we use an FSM.

5.2 Specific datapath

The goal of designing a dedicated or specific datapath is to create a tailor-made circuit

to deploy a specific algorithm. Each instruction of the algorithm is broken down into

micro-instructions to determine register transfers. In this design process, we have to

answer some questions:

• how many registers to use and what types, storage, offset or bank of registers?

• what are the functional units to use: adders, multiplexers, decoders, comparators

and others?

• what are the functional units that should be shared between two or more opera-

tions?
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Registers

Consider the assignment statement A ← A + c where c is a constant. This instruction

takes the value that is stored in the variable A and adds the constant c to it to obtain

the result of storing the same variable A (a simple accumulation operation). So in this

example the datapath must have a register to store the variable A and an adder. The

constant c can be wired into the circuit as a binary value.

As we saw at the beginning of this chapter, the value stored in the register is Areg. The

result of the addition presents the value to be stored in the register Anext as shown in fig-

ure 3.33. Storing the result Anext in the register is accomplished by activating the control

signal LoadA, defined by the FSM machine, at the next cycle clock.

Figure 3.33: Example of a transfer register A ← A+ c in a dedicated datapath.

we now consider the assignment statement A ← B +C where B and C are two variables.

Since we have three variables, we need three registers as shown in figure 3.34.

During the current clock cycle, the adder performs the addition B +C , and the result of

the adder Anext must be available before the end of the current cycle clock. At the next

clock edge, Areg is updated by Anext.

Figure 3.34: Example of a transfer register A ← B +C in a dedicated datapath.

Multiplexer

We consider subsequently, the two combined transfers A ← B+C and then A ← A+c. In

these transfers we have three variables (A, B , C ) requiring three registers and a constant
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c which can be directly wired into the FPGA. We combine the two figures 3.33 and 3.34,

we obtain the figure 3.35.

Figure 3.35: Example of two transfer register A ← B +C and A ← A + c in a dedicated

datapath.

The datapath in the figure 3.35 shows an error in register A wiring. Indeed, a register has

only one data input, but the register A requires to switch between two results, that of first

transfer A ← B+C and another of second transfer A ← A+c. To achieve this, the simplest

solution is to use a multiplexer as shown in figure 3.36. Here also, the multiplexer has

a selection input that must be controlled. Note that these two instructions cannot be

executed in the same clock cycle since they share the same register.

Figure 3.36: Using a multiplexer to resolve the conflict at the register input A.
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Exercice

Synthesize a specific datapath for the two transfers A ← B +C and A ← A + c by using a

single adder.

Three-state buffer

Another case study in which several sources and destinations share the same data bus.

In this case, only one source can use the bus at a time. In order to manage access to the

bus, Three-state buffers are used to guarantee access to a single source to the bus, as

shown in figure 3.37. The other buffers will be deactivated, so the connection will be in

high impedance (’Z’). In addition, with the use of a Three-state buffer, several sources

can share a bidirectional bus. Note also that the data input and output of a register

can both be connected to the same Three-state bus; while the input and output of a

functional unit (such as adder or ALU) cannot be connected to the same Three-state

bus.

Figure 3.37: Use of three-state buffer for access to the data bus.

Status signal

Although the FSM is responsible for controlling the datapath, the last one must provide

conditional test results for the FSM. These results allow the FSM machine to determine

its future state corresponding to the next micro-instruction to be executed. The condi-

tional test signals are called status signals and they are generally generated by compara-

tors (figure 3.38.a).

Figure 3.38: Comparator for the generation of datapath status signals to be sent to the

FSM machine.
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Conditional tests are generally of type IF (A = 0) THEN. In this test, the value of the reg-

ister A is compared with the constant 0 and the comparator output is TRUE when the

condition (A = 0) is true. This comparator can be implemented by a simple NOR gate as

in figure 3.38.b).

5.3 Generic Datapath

A generic datapath is not reserved for a specific algorithm. It can be used to deploy

various algorithms, as long as it has all required functional units. The idea of using a

generic datapath comes from the architecture of micro-controllers and microproces-

sors. However, compared to a specific datapath, a general data path may contain more

functionality than necessary. Therefore, it not only increases the size of the circuit, but

also the power consumption.

As shown in figure 3.39, a generic datapath includes an ALU, an n-bit register for data

storage, a multiplexer, and a three-state buffer. The input of the operand A of the ALU

can come through the multiplexer, either from an external data input, or from a constant

(c). The ALU operand B always comes from the contents of the register.

Figure 3.39: Generic Datapath.

The operation of the ALU is determined by the three command lines ALU(2:0), where

their combination defines the operation to be performed. The register contains two

inputs, load for loading and clear to reset it to 0 asynchronously. The output of the

register can be sent to the external data bus by activating the OE control signal of the

three-state buffer.
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ALU (2:0) operation

000 Pass through ALU

001 A and B

010 A or B

011 A not B

100 A + B

101 A - B

110 A + 1

111 A - 1

The various control signals for controlling the operation of the datapath form a control

word. For example, to load a value from the external data input into the register, we

would define the control word as follows:

sel ALU (2:0) load clear oe

1 000 1 0 0

We consider the example of calculating the sum
9∑

i=1
i . The corresponding algorithm is

very simple:

1 --initialisation
2 i = 0
3 --operation
4 while (i < 10) {
5 i = i + 1
6 }
7 --result
8 output i

We generate a control word to control the datapath for each of the three instructions

above.

control word instruction sel ALU (2:0) load clear oe

1 i = 0 x xxx 0 1 0

2 i = i +1 0 100 1 0 0

3 output i x xxx 0 0 1

• Control word 1: initializes i to 0 by activating the clear signal of the register. The

lines sel and ALU (2:0) have no impact, and therefore set to state ’X’ (don’t care). The

load = 0 signal since there is no need to save a value in the register when exiting

the ALU. The same remark for the oe signal.

• Control word 2: corresponds to the operation i = i + 1. The operation code is

ALU (2:0) = 100, and sel = 0 to perform the addition i = i +1.

• Command word 3: is used to output the result via the 3-state buffer by setting oe

= 1.
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• Finally, the datapath must supply the condition signal (i <10) to the FSM machine

by adding a comparator.

5.4 Generic datapath with register file

We consider the following algorithm of the series
N∑

n=0
n:

1 sum = 0
2 input n
3 while (n != 0) {
4 sum = sum + n
5 n = n - 1
6 }
7 output sum

This algorithm requires the use of two variables n to track the current iteration num-

ber and sum to save the intermediate sum. In this case, the datapath in figure 3.39 is

upgraded to include one or more additional registers. The simplest solution is to use a

register bank (register file) like micro-controller and micro-processor architectures.
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Figure 3.40: Generic datapath with register file (RF).

As shown in figure 3.40, the register file has one write port and two read ports. To access

a particular port, the activation line for that port must be confirmed and the location

address set. The read ports A and B can be read simultaneously and they are connected

to the two input operands A and B of the ALU, respectively. Also, the result of the ALU is

passed through a shift register which allows more complex operations to be carried out.

SH (1:0) operation

00 Pass

01 shift left

10 shift right

11 rotate right

The following control words can be used to sequence the operation of the datapath for

the previous algorithm (here the address Add signal represents the address of the 3 reg-

isters).

ontrol word instruction sel WE RE Add ALU (2:0) SH (1:0) oe

1 sum = 0 0 1 1 00 00 00 000 00 0

2 input n 1 1 0 01 xx xx xxx xx 0

3 sum = sum +n 0 1 1 01 00 01 100 00 0

4 n = n −1 0 1 1 01 01 xx 111 00 0

5 output sum x x 1 xx 00 xx 000 00 1



6. FSMD/ASMD 75

6 FSMD/ASMD

FSMD and ASMD are FSM/ASM with datapath. These diagrams were developed to clar-

ify the information inclosed in FSM/ASM diagram. This versions provide an efficient

tool for designing a control unit, FSM, for a particular datapath.

An ASMD diagram differs from an ASM diagram in two important ways:

1. an ASMD diagram lists register transfers in a status box,

2. Conditional output box can also includes register transfers,

Figure 3.41: The new value of r1 is available when the FSM exits state s1

Figure 3.42: Block diagram of an FSMD. The datapath performs all Register Transfer

operations: (1) data registers, (2) operations, (3) routing. The control path: an FSM

which sequences the logic of the transitions between states and defines the logic of the

output signals.
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Chapter 4

Exercises

1 VHDL

1.1 Circuit description

Write a VHDL code for the following circuits:

• half-adder, full-adder, 4-bit adder and its generic version n-bit

• D flip-flops, shift register, counter.

1.2 Types

Write a package containing type declarations for:

• short 8-bit non-negative integers,

• real numbers between -1.0 and +1.0,

• electric current with the units of nA, µA, mA and A,

• traffic light colors.

1.3 Type attributs

Consider the following subtype declarations:

1 subtype pulse_range is time range 1 ms to 100 ms;
2 subtype word_index is integer range 31 downto 0;

What are the values returned by the followxing attributes ’left, ’right, ’low, ’high et ’as-

cending?

Consider the following statement:

1 type state is (off , standby , active1 , active2 );

What are the values returned by the followxing attributes

77
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1 state ’pos( standby )
2 state ’val (2)
3 state ’succ( active2 )
4 state ’pred( active1 )
5 state ’ leftof (off)
6 state ’ rightof (off)

1.4 Arrays

1. Create a new type named interval from the unconstrained array type whose ele-

ments are of type time_vector, indexed by positive values.

• Declare a sample1 variable of this type to save 100 elements of 20 values.

• Creat a subtype, named interval_4, representing an array of 4 elements with-

out constraint starting from the base type interval.

• Declare a variable sample2 using the previous subtype where each element

has 10 sub-elements.

2. Write a ROM entity modeled at an RTL abstraction level. The ROM has an input

address of type address_index, which is a 16-bit integer. The output data is of type

std_logic_vector of 7 bits. Initialize the content with numbers of your choice.

3. Herein some array decelration, analyze them:

• Set 1:

1 type t_Memory is array (0 to 127) of std_logic_vector (7
downto 0);

2 signal r_Mem : t_Memory ;
3

4 type t_Integer_Array is array ( integer range <>) of integer
;

5 variable r_Integers : t_Integer_Array (0 to 15);
6

7 type t_Data is array (0 to 3) of std_logic ;
8 signal r_Data : t_Data := (Bit1 , Bit2 , Bit3 , Bit4);
9

10 type t_Multiplier is array (0 to 2) of real;
11 signal r_Multiplier : t_Multiplier := (0.25 , 0.5, 0.75);
12

13 type t_Five is array (0 to 4) of bit_vector (15 downto 0);
14 signal r_Calc : t_Five := ( others => ( others => ’0’));
15

16 type t_Row_Col is array (0 to 3, 0 to 2) of integer range 0
to 9;

17 signal r_Number : t_Row_Col ;
18 r_Choice <= r_Number (0, 1);
19 r_Number (3, 2) <= 9;
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2 FSM and datapath

2.1 Rising edge detector

It is a circuit which generates a short pulse of one clock cycle when the input signal goes

from ’0’ to ’1’.

• Machine Moore:

– Draw the FSM diagram of this circuit using a Moore type machine.

– Convert the FSM diagram to an algorithmic diagram ASM.

– Draw the timing diagram.

• Repeat the same question for a Mealy-type machine.

• Compare the two machines.

• Write the VHDL code for the two types of machine.

2.2 Fibonacci sequence

It is the sequence of numbers 0, 1, 1, 2, 3, 5, 8, 13, 21, ...., given by the following equation:

f (i ) =


0 if i = 0

1 if i = 1

f (i −1)+ f (i −2) if i > 1

The calculation of this sequence is done iteratively. This approach requires two registers

r eg1 and r eg2 to store the last two calculated values, f (i − 1) and f (i − 2) as well as

an index register r egn to follow the number i of iterations. In addition to the input i

and output f signals, the system has a control signal st ar t , which signifies the start

of the calculation, and two status signals r ead y (ready to calculate) and done (end of

calculation).

Draw the FSM and ASM diagrams.

2.3 Homework

Manchester encoding is a baseband encoding technique for transmission in local area

networks. In this coding, a ’0’ bit is represented by a rising edge transition of the signal

to be transmitted. A ’1’ bit is represented by a falling edge transition of the signal to be

transmitted. The figure below shows an example of coding.

Figure 4.1: Exemple de codage Manchester.
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Suggest an FSM diagram and the corresponding VHDL description.

2.4 Unsigned multiplication

By using a specific datapath, implement the multiplication of two unsigned numbers A

and B . Find the control signals corresponding to this datapath. Below, you are given the

multiplication algorithm.

1 prod = 0
2 INPUT A
3 INPUT B
4 while (B != 0){
5 prod = prod + A
6 B = B - 1
7 }
8 OUTPUT prod

2.5 Greatest Common Divisor

Propose a specific datapath with its control signals to solve the GCD problem (Greatest

Common Divisor). Below, we give you the algorithm.

1 while (X != Y){
2 if (X < Y) then Y = Y - X;
3 else X = X - Y;
4 end if
5 }

2.6 Unsigned multiplication

By using a specific datapath, implement the multiplication of two unsigned numbers A

and B . Find the control signals corresponding to this datapath.
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1 P = 0
2 for i=0 to n-1 do
3 if bi=1 then
4 P=P+A
5 end if
6 Left -shift A
7 end for

2.7 Mean value

Implement a circuit that computes the mean value M of a n-bit k numbers loaded into

registers R0, · · · ,Rk−1. For each iteration, compute the cumulative sum Sum and imple-

ment a division to get the mean value M = Sum/k.

1 Sum = 0
2 for i=k-1 downto 0 do
3 Sum=Sum+Ri
4 end for
5 M=Sum -k

2.8 Sorting

Let given k unsigned number of n-bit loaded into registers R0, · · · ,Rk−1. We look for

implementing a circuit for sorting in ascending order. The algorithm is based on the

sliding window where we search the most small number in a given window, and the

result is saved in register Ri for i = 1,2, · · · ,k −2.

1 for i=0 to k-2 do
2 A=Ri
3 for j=i+1 to k-1 do
4 B=Rj
5 if B<A then
6 Ri=B
7 Rj=A
8 A=Ri
9 end if

10 end for
11 end for

2.9 Parity

Implement a circuit by using an 8-bit specific datapath for the following algorithm. Use

only on adder and substracter.

1 w = 0, x = 0, y = 0
2 INPUT z
3 while (z != 0) {
4 w = w - 2
5 if (z est impair ) then x = x + 2
6 else y = y + 1
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7 end if
8 z = z - 1
9 }
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