

Master 2 Pharmacotechnie et Biopharmacie

Nano et microparticles: formulation strategies (UE 3)

Micro and nanotechnologies

Timeline of first reports

Micro and nanotechnologies

FDA-approved

Micro and nanotechnologies

Material-based classification

Material selection

Biodegradable

Biocompatible

- They must have the capability to be eliminated by the body
- They should not induce toxic and/or inflammatory reaction

Natural Polymers

Synthetic Polymers

Only a limited number of materials satisfy these needs

Material selection_natural polymers

Polysaccharides

- Chitosan
- Hyaluronic acid
- Alginic acid
- Dextran

Proteins

- Albumin
- Gelatin

Nanoparticle albumin-bound (nab) technology

Taxol

- Ethanol/Cremophor-EL
- Allergic, and anaphylactic reactions
- Peripheral neuropathy
- Drug sequestration by cremophor micelles
- 3h infusion
- Non-linear, less-predictable PK

Human MTD 175 mg/m²

Abraxane

- No premedication
- Cremophor free
- Shorter infusion time (30 min)
- Linear, predictable PK

Human MTD 300 mg/m²

Material selection_synthetic polymers

Polyesters

- Poly(lactic acid) (PLA)
- Poly(lactic-co-glycolic acid) (PLGA)
- Poly(caprolactone) (PCL)

Poly(aminoacid)s

Poly(benzylglutamate) (PBLG)

Acrylates

Poly(cyano acrylate d'alkyle) (PACA)

Poly(ether)

Poly(ethylene glycol) (PEG)

Material selection_chose the role

Structural

- Carrier formulation
- Carrier morphology
- Drug loading
- Controlled release

Functional

- Coating
 - Stabilization/adhesion
- Functionalization
 - Target recognition
- Control interactions with biological medium
 - Stealth features

Material selection functional role

Control interactions with biological medium

Stealth features

Functionalization

Target recognition

Hydrophilic polymer

Structure

Nanocapsules

- Polymer shell
- Liqui core (oil / water)

Nanosphere

Solid polymer matrix

Formulation approaches

Formulation approaches_a simplified version

Preformed polymers

- Emulsification solvent evaporation
- Emulsification solvent diffusion
- Salting-out
- Nanoprecipitation

Dialysis

Supercritical fluid technology

Two-step procedures based on emulsification

One-step procedures

Two-step procedures

Emulsion

- External phase = dispersing phase = continuous phase
- Internal phase = dispersed phase = discontinuous phase

Oil-in-water emulsion

oil is the dispersed phase/ water is the continuous phase

Water-in-oil emulsion

water is the dispersed phase/oil is the continuous phase

Multiple emulsions

• water-in-oil-in-water emulsion

Microemulsions

- size < µm</p>
- thermodynamically stable
- high amounts of TA

Nanoemulsions

- nanometric size
- thermodynamically unstable
- Iow amounts of TA

Two-step procedures_preformed polymers

Formulation approaches_ solvent miscibility

Two-step procedures_Emulsification-solvent evaporation

Polymer solution

- Volatile organic solvent
- Water immiscible

Emulsification

- aqueous phase containing a surfactant
- high-speed homogenization and/or ultrasonication
- Nanodroplets formation

Solvent removal

- Magnetic stirring
- Under vacuum

Two-step procedures_Emulsification-solvent diffusion

Polymer solution

- Volatile organic solvent partially water miscible
- Saturation with water

Emulsification

Dilution with water

- Gentle solvent diffusion from dispersed droplets into external phase
- Formation of particles

Solvent removal

- Evaporation
- Filtration

Mainly nanospheres

Small amount of oil in the organic phase: nanocapsules

Two-step procedures_Emulsification-solvent diffusion

Pros

- Particle Size
 - Controlled
 - Reproducible

Solvent

- Reduced volume
- Ease removal

Overall process

■Mild

- Versatile
- Ease Scaling-Up

Critical

- Aqueous phase
- High volume to remove
- Leakage of water soluble drugs during emulsification

Two-step procedures_Emulsification-reverse salting-out

Polymer solution

- Volatile organic solvent water miscible
- Saturation with water

Emulsification

- aqueous phase containing a surfactant & a salting out agent
- Exploits the Ouzo effect

Dilution with water

- Solvent diffusion in the aqueous phase
- Polymer precipitation

Solvent & salting out agent removal

Cross-flow filtration

Two-step procedures_Emulsification-reverse salting-out

Pros

- Safety
 - No chlorinated solvents
- Drug
 - Suitable for lipophilic moieties

Critical

- Drug
 - Only lipophilic moieties
- Purification
 - Extensive
 - Challenging

Formulation approaches_a simplified version

Preformed polymers

- Emulsification solvent evaporation
- Emulsification solvent diffusion
- Salting-out
- Nanoprecipitation

Dialysis

Supercritical fluid technology

Two-step procedures based on emulsification

One-step procedures

One step procedures_Nanoprecipitation (solvent displacement)

Polymer solution

Volatile organic solvent water miscible

Addition to the aqueous phase

- Under stirring
 - in one shot
 - Stepwise
 - Dropwise
 - by controlled addition rate

Nanoparticle formation

- Solvent diffusion in the aqueous phase
- Polymer precipitation

Solvent removal

Under vacuum

Well defined size and narrow distribution

Surfactants are not essential

One step procedures_dialysis

Polymer solution

organic solvent water miscible

Addition to the aqueous phase

- Organic solution inside the dialysis membrane
- Outside: polymer non solvent

Nanoparticle formation

- Displacement of the solvent inside the membrane
- Polymer precipitation

Narrow size distribution

Risk of premature drug release during the process

One-step procedures_Supercritical fluid technology

Rapid expansion of supercritical solution (RESS)

Mainly microparticles

Rapid expansion of supercritical solution into liquid solvent (RESOLV)

Mainly nanoparticles

High pressure equipment Supercritical fluid soluble polymers

One-step procedures_Ionic Gelation

Polymer solution (polysaccharides)

Aqueous solution

Addition to the aqueous phase

Solution of oppositely charged species

Nanoparticle formation

- Complexation
- Physical crosslinking

Nanoparticle collection

- Filtration
- Washing step

Formulation approaches_a simplified version_Starting from monomers

Polymerization of monomers

Emulsion

Mini Emulsion

Micro Emulsion

Controlled/Living radical

Two-step procedures based on emulsification

One-step procedures

Formulation approaches_Starting from monomers

Formulation approaches_Conventional Emulsion Polymerization

Formulation approaches_Conventional vs Surfactant free Emulsion Polymerization

Monomers

- Methyl Methacrylate
- Butyl acrylate
- Styrene

Surfactants

- SDS (Sodium Dodecyl Sulfate)
- CTAB (cetyltrimethylammonium bromide)
- AMA-80 (sodium dihexyl sulfosuccinate)
- DMMA-PS3-(N,N-dimethylmyristylammonio)
- Propanosulfonate (zwitterionic salt)

Formulation approaches_Conventional vs Surfactant free Emulsion Polymerization

Monomers

- Methyl Methacrylate
- Butyl acrylate
- Styrene

Surfactants

- SDS (Sodium Dodecyl Sulfate)
- CTAB (cetyltrimethylammonium bromide)
- AMA-80 (sodium dihexyl sulfosuccinate)
- DMMA-PS3-(N,N-dimethylmyristylammonio)
- Propanosulfonate (zwitterionic salt)

Monomers

- Methyl Methacrylate
- Hydroxylethyl methacrylate
- Styrene

Surfactants

Not Applicable

Stabilizers

- Laponite
- Poly vinyl alcohol
- 4-styrenesulfonic acid sodium salt hydrate

Wide size distribution

Formulation approaches_micro emulsion Polymerization

Radical polymerization in very highly concentrated surfactant/co-surfactant solution

Formation of ultrasmall nanoparticles

Formulation approaches_interfacial Polymerization

Polymerization

- Reactive monomers in two phases (continuous and dispersed)
- At the liquid/liquid interface

Hollow Polymer Particles

- Oily core
- Aqueous core

Formulation approaches_interfacial Polymerization_oil in water emulsion

Why Size Matters

Route of administration

- oral; pulmonar; tissular
- Depot formulation

Biological barriers

- injected into tissues tend to stay in place
- resist clearance by the kidney
- Less important cellular penetration
- Taken up by phagocytic cells

Single and double emulsion

single emulsion system

encapsulating hydrophobic drugs

Single and double emulsion

Microfluidic

T-junction devices

flow-focusing nozzle devices

- Precise control over fluid flow rates
- Continuous, reproducible, and scalable
- Precise compositions, structures, and polydispersities

Microfluidic

Coacervation phase separation

Exploits changes in polymer solubility

- homogeneous polymer solution that separates into
 - polymer rich phase (coacervate)
 - polymer poor phase (coacervation medium)
- Separation of a liquid phase of coating material
- Coating of the suspended particles

Suitable for temperature sensitive drugs

high loading efficiency

Spray drying

Dispersion in a solvent system

Spraying through a fine nozzle into a chamber

• Temperature control

Solvent evaporation in the chamber Microparticle formation (1 -100 µm)

High drug loading, no external phase for drug leakage

Mass loss due to aggregation and chamber wall adhesion

Process parameters

- solution viscosity
- nozzle characteristics
- air/solvent flow rate
- pressure.

Particle Stern + + +Size Distribution by Intensity Morphology + Size and polydispersity 10 100 1000 10000 Size (d.nm) Surface charge Size Distribution by Intensity 0.1 100 1000 10000 Zeta Potential Size (d.nm) Record 67: 2020.03.05 PLGA 30 mg/mL - non drug (n=1) Record 68: 2020.03.05 PLGA 30 mg/mL - non drug (n=1) 2 Record 69: 2020.03.05 PLGA 30 mg/mL - non drug (n=1) 5.0 KV X10

Bulk Fluid

Laver

Slipping

Plane

Negatively Charged

Formulation & Characterization

Formulation Kit NanoFabTx

Formulation Kit NanoFabTx

Materials

Materials supplied

Merck

Each NanoFabTx[™] PLGA-Nano kit is supplied as follows:

Catalog Number	Quantity
<u>907782</u>	PLGA-Nano (500mg)
<u>907766</u>	Stabilizer-Nano (5g)

Materials

Materials supplied

Merck

Each NanoFabTx[™] PLGA-Nano kit is supplied as follows:

Catalog Number	Quantity
<u>907782</u>	PLGA-Nano (500mg)
<u>907766</u>	Stabilizer-Nano (5g)

Q&A