Évaluation du jeudi 5 octobre 2023 (extraits)

Exercice 1 (). Questions de cours

- 1. Soit X une variable aléatoire de loi $\mathcal{N}(0;1)$. F_X désignant la fonction de répartition de X, exprimer les calculs suivants par l'utilisation de F_X :
 - (a) $\mathbb{P}(X \le 1, 63)$
 - (b) $\mathbb{P}(X \ge 0, 53)$
 - (c) $\mathbb{P}(X \leq -1, 14)$
- 2. Soit X une variable aléatoire de loi $\mathcal{N}(0;1)$. Expliquer comment obtenir les deux nombres suivants à l'aide des quantiles de X:
 - (a) le plus petit réel u tel que $\mathbb{P}(X \leq u) \geq 90\%$.
 - (b) le plus petit réel u tel que $\mathbb{P}(-u \le X \le u) \ge 87\%$.
- 3. Soit X une variable aléatoire de loi normale $\mathcal{N}(178;4)$. Exprimer $\mathbb{P}(X \geq 180)$ à l'aide de la fonction de répartition F de la loi $\mathcal{N}(0,1)$
- 4. Soit $X \sim \mathcal{N}(1;4)$ et $Y \sim \mathcal{N}(1;2)$ indépendantes.
 - (a) Quelle est la loi de -Y?
 - (b) Quelle est la loi de X Y?

Exercice 2 ().

Soit la fonction f définie sur \mathbb{R} par

$$f(x) = \begin{cases} e^x & \text{si } x < 0\\ 0 & \text{sinon} \end{cases}$$

- 1. Montrer que f est une densité de probabilité. On notera dans la suite X une variable aléatoire admettant cette densité.
- 2. Justifier que la fonction de répartition de X est :

$$F_X(t) = \begin{cases} e^t & \text{si } t < 0\\ 1 & \text{si } t \ge 0 \end{cases}$$

- 3. Montrer que X admet une espérance et la calculer.
- 4. On pose Y = 2X + 1. Déterminer la fonction de répartition de Y ainsi que sa densité.
- 5. On pose $Y = X^2$. Déterminer la fonction de répartition de Y ainsi que sa densité.

Exercice 3 ().

Soit X une variable aléatoire positive admettant une densité f continue.

On suppose que X admet une espérance.

On note F la fonction de répartition de X. À l'aide d'une intégration par parties bien choisie, démontrer que

$$E[X] = \int_0^{+\infty} \mathbb{P}(X > x) \, \mathrm{d}x$$