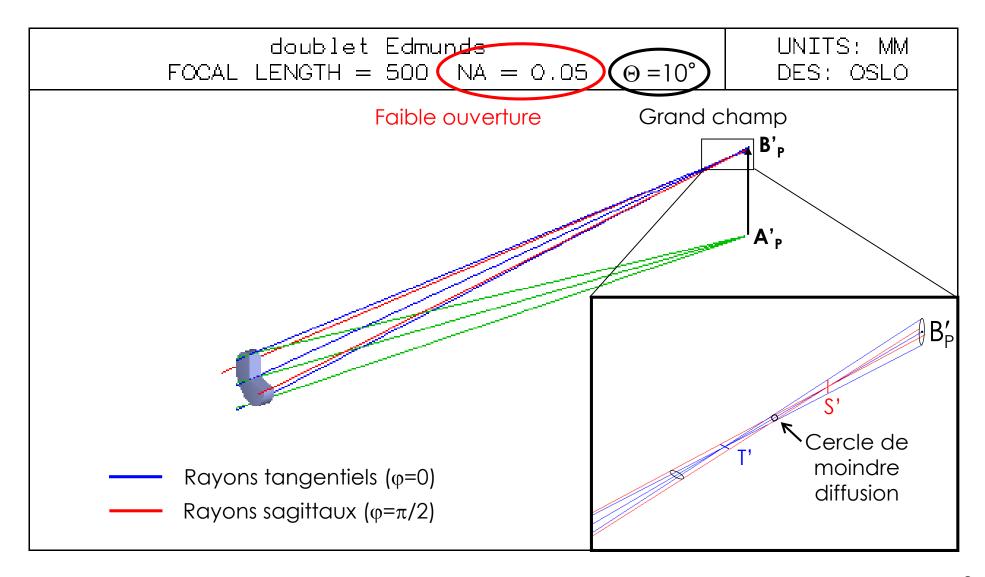


# **Chapitre 5**

L'astigmatisme & la courbure de champ



# Etude expérimentale





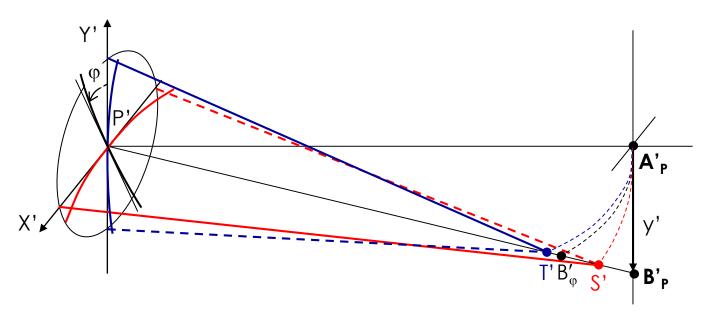
# Relations générales

Ecart normal:  $\Delta(y', \alpha', \varphi) \propto \begin{cases} \alpha'^2 y'^{2q+2} \cos 2\varphi & (q \ge 0) \\ \alpha'^2 y'^{2q} & (q \ge 1) \end{cases}$ centrée en B'<sub>P</sub>

$$\begin{cases} \alpha'^2 y'^{2q+2} \cos 2\phi & (q) \\ \alpha'^2 y'^{2q} & (q) \end{cases}$$

Astigmatisme

Courbure de champ



Courbure d'une méridienne du front d'onde, d'angle φ

$$C_{\varphi} = C_{Y} \cos^{2} \varphi + C_{X} \sin^{2} \varphi$$



#### Courbures du front d'onde

Front d'onde : 
$$z = f(X,Y)$$
  $f$  : fonction deux fois dérivable en  $(X,Y) = (0,0)$  avec  $\left(\frac{\partial f}{\partial X}\right)_{X=Y=0} = \left(\frac{\partial f}{\partial Y}\right)_{X=Y=0} = 0$ 

Courbure  $C_{\omega}$ ?

$$C_{\varphi} = \frac{\partial^2 f}{\partial^2 h} = \frac{\partial^2 f}{\partial^2 Y} \left(\frac{\partial Y}{\partial h}\right)^2 + 2\frac{\partial^2 f}{\partial X \partial Y} \frac{\partial X}{\partial h} \frac{\partial Y}{\partial h} + \frac{\partial^2 f}{\partial^2 X} \left(\frac{\partial X}{\partial h}\right)^2$$

Or  $Y = h \cos \varphi$  et  $X = h \sin \varphi$ 

$$C_{\varphi} = C_Y(\cos\varphi)^2 + 2C_{XY}\cos\varphi\sin\varphi + C_X(\sin\varphi)^2$$

Or  $C_{\varphi}=C_{-\varphi}$  par symétrie du système , donc  $C_{XY}=0$ .

Donc 
$$C_{\varphi} = C_Y(\cos \varphi)^2 + C_X(\sin \varphi)^2$$

 $C_Y$  est atteinte pour  $\varphi = 0$  (plan tangentiel)

 $C_X$  est atteinte pour  $\varphi = \pi/2$  (plan sagittal)

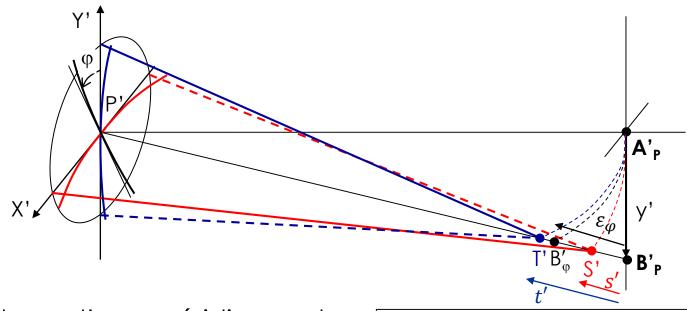


# Relations générales

champ

centrée en B'<sub>P</sub>

Ecart normal : 
$$\Delta(y',\alpha',\phi) \propto \begin{cases} \alpha'^2 y'^{2q+2} \cos 2\phi & (q \geq 0) \\ \alpha'^2 y'^{2q} & (q \geq 1) \end{cases}$$
 Courbure de



Courbure d'une méridienne du front d'onde, d'angle  $\varphi$ 

$$C_{\varphi} = C_{Y} \cos^{2} \varphi + C_{X} \sin^{2} \varphi$$

Courbures des surfaces focales :  $C'_{T}$  (tangentielle) et  $C'_{S}$  (sagittale)

$$C' = (C'_S + C'_T)/2$$

Courbure de champ:  $C' = (C'_S + C'_T)/2$  | Astigmatisme:  $A' = (C'_S - C'_T)/2$ 



Ecart normal par rapport à la sphère S<sub>P</sub> centrée en B'<sub>P</sub>

$$\Delta = -\frac{y'^2 \alpha'^2}{4} \left( C_T' \cos^2 \phi + C_S' \sin^2 \phi \right)$$

Preuve : 
$$\Delta = -\frac{1}{2} \varepsilon_{\varphi} \alpha'^2$$

Cas particuliers: 
$$\varphi = 0$$
,  $t' = C'_T \frac{y'^2}{2}$ ,  $\Delta = -\frac{1}{2}t'\alpha'^2 = -\frac{1}{2}t'\frac{Y'^2}{\overline{P'T'}^2}$  
$$\varphi = \frac{\pi}{2}, s' = C'_S \frac{y'^2}{2}, \Delta = -\frac{1}{2}s'\alpha'^2 = -\frac{1}{2}s'\frac{X'^2}{\overline{P'S'}^2}$$

Cas général : 
$$\Delta = \frac{h^2}{2}(C_{\varphi} - C_p)$$
, où  $C_p$  est la courbure de  $S_P$ .

$$\Delta = \frac{h^2}{2} \left( C_Y(\cos \varphi)^2 + C_X(\sin \varphi)^2 - C_p(\cos \varphi)^2 - C_p(\sin \varphi)^2 \right)$$



Ecart normal par rapport à la sphère S<sub>P</sub> centrée en B'<sub>P</sub>

$$\Delta = -\frac{y'^2 \alpha'^2}{4} \left( C_T' \cos^2 \varphi + C_S' \sin^2 \varphi \right)$$

Preuve : 
$$\Delta = -\frac{1}{2} \varepsilon_{\varphi} \alpha'^2$$

Cas particuliers: 
$$\varphi = 0$$
,  $t' = C'_T \frac{y'^2}{2}$ ,  $\Delta = -\frac{1}{2}t'\alpha'^2 = -\frac{1}{2}t'\frac{Y'^2}{\overline{P'T'}^2}$  
$$\varphi = \frac{\pi}{2}, s' = C'_S \frac{y'^2}{2}, \Delta = -\frac{1}{2}s'\alpha'^2 = -\frac{1}{2}s'\frac{X'^2}{\overline{P'S'}^2}$$

Cas général : 
$$\Delta = \frac{h^2}{2} (C_{\varphi} - C_p)$$
, où  $C_p$  est la courbure de  $S_p$ .

$$\Delta = \frac{h^2}{2} \Big( (C_Y - C_p)(\cos \varphi)^2 + (C_X - C_p)(\sin \varphi)^2 \Big)$$

Par identification: 
$$(C_Y - C_p) = -\frac{t'}{\overline{P'T'}^2}$$
 et  $(C_X - C_p) = -\frac{s'}{\overline{P'S'}^2}$ 



Ecart normal par rapport à la sphère  $S_P$ centrée en B'<sub>P</sub>

$$\Delta = -\frac{y'^2 \alpha'^2}{4} \left( C_T' \cos^2 \phi + C_S' \sin^2 \phi \right)$$

Preuve : 
$$\Delta = -\frac{1}{2} \varepsilon_{\varphi} \alpha'^2$$

Cas particuliers: 
$$\varphi = 0$$
,  $t' = C'_T \frac{y'^2}{2}$ ,  $\Delta = -\frac{1}{2}t'\alpha'^2 = -\frac{1}{2}t'\frac{Y'^2}{\overline{P'T'}^2}$ 

$$\varphi = \frac{\pi}{2}, s' = C'_S \frac{y'^2}{2}, \Delta = -\frac{1}{2}s'\alpha'^2 = -\frac{1}{2}s'\frac{X'^2}{\overline{P'S'}^2}$$

Cas général : 
$$\Delta = \frac{h^2}{2} \left( C_{\varphi} - C_{p} \right)$$
, où  $C_{p}$  est la courbure de  $S_{P}$ .
$$\Delta = \frac{h^2}{2} \left( -\frac{t'}{\overline{p'T'}^2} (\cos \varphi)^2 - \frac{s'}{\overline{p'S'}^2} (\sin \varphi)^2 \right)$$



Ecart normal par rapport à la sphère S<sub>P</sub> centrée en B'<sub>P</sub>

$$\Delta = -\frac{y'^2 \alpha'^2}{4} \left( C_T' \cos^2 \varphi + C_S' \sin^2 \varphi \right)$$

Preuve : 
$$\Delta = -\frac{1}{2} \varepsilon_{\varphi} \alpha'^2$$

Cas particuliers: 
$$\varphi = 0$$
,  $t' = C'_T \frac{y'^2}{2}$ ,  $\Delta = -\frac{1}{2}t'\alpha'^2 = -\frac{1}{2}t'\frac{Y'^2}{\overline{P'T'}^2}$  
$$\varphi = \frac{\pi}{2}, s' = C'_S \frac{y'^2}{2}, \Delta = -\frac{1}{2}s'\alpha'^2 = -\frac{1}{2}s'\frac{X'^2}{\overline{P'S'}^2}$$

Cas général : 
$$\Delta = \frac{h^2}{2} (C_{\varphi} - C_p)$$
, où  $C_p$  est la courbure de  $S_P$ .

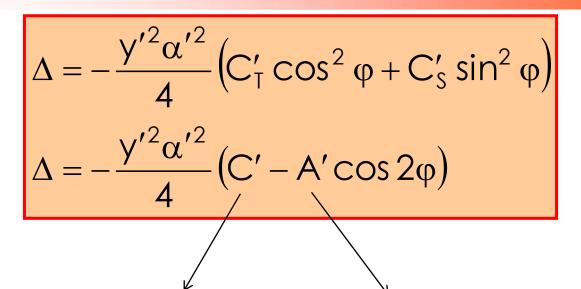
$$\Delta = \frac{h^2}{2} \left( -\frac{t'}{P'T'^2} (\cos \varphi)^2 - \frac{s'}{P'S'^2} (\sin \varphi)^2 \right)$$

$$\Delta = -\frac{y'^2 \alpha'^2}{4} (C'_T (\cos \varphi)^2 + C'_S (\sin \varphi)^2)$$



#### Ecart normal

par rapport à la sphère  $S_P$  centrée en  $B'_P$ 



Courbure de champ

$$C' = (C'_S + C'_T)/2$$

Courbure d'astigmatisme

$$A' = (C'_S - C'_T)/2$$



## Courbure de champ du 3<sup>e</sup> ordre

#### Courbure de champ pure :

Position du meilleur foyer :

cercle de moindre diffusion dans le plan paraxial diamètre = C' y' $^{2}\alpha'$ 

$$C' = C'_{S} = C'_{T} \neq 0$$

$$s' = t' = C' \frac{y'^{2}}{2}$$

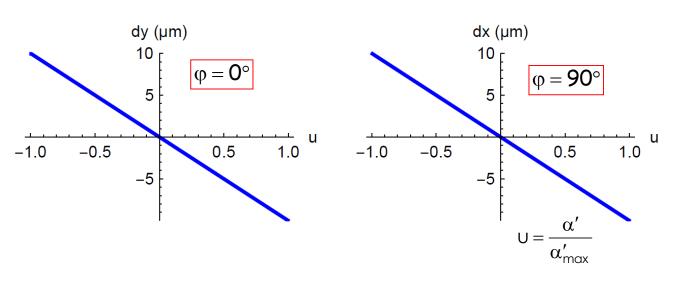
$$\int dy' = -s' \alpha' \cos \varphi$$

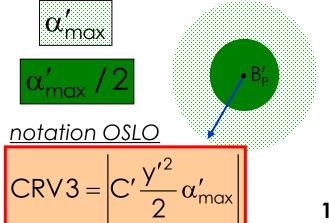
$$dx' = -s' \alpha' \sin \varphi$$

au 3e ordre

Les surfaces images tangentielles et sagittales sont confondues, et courbées; leur courbure est C'

 $\rightarrow$  defocus  $\propto y'^2$ 

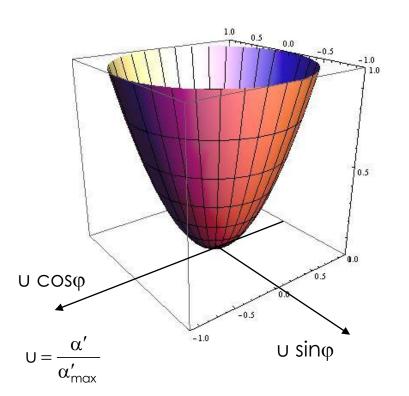






## Courbure de champ du 3<sup>e</sup> ordre

#### Courbure de champ pure :



Position du meilleur foyer : 
$$C' = C'_{S} = C'_{T} \neq 0$$
Position du meilleur foyer : 
$$S' = t' = C' \frac{y'^{2}}{2} \implies \text{defocus } \propto y'^{2}$$

$$\begin{cases} dy' = -s' \alpha' \cos \varphi & \text{dans le plan} \\ dx' = -s' \alpha' \sin \varphi \end{cases}$$

$$\Delta = -\frac{1}{2}s' \alpha'^{2} = -C' \frac{y'^{2}\alpha'^{2}}{2} \implies defocus \propto y'^{2}$$

$$\Delta = -\frac{1}{2} s' \alpha'^2 = -C' \frac{y'^2 \alpha'^2}{4} / S_P$$

au 3<sup>e</sup> ordre



## Astigmatisme du 3<sup>e</sup> ordre

#### Astigmastisme pur:

$$A' = C'_{S} = -C'_{T} \neq 0$$

$$S' = A' \frac{y'^{2}}{2}; \quad t' = -A' \frac{y'^{2}}{2}$$

Les surfaces images tangentielles et sagittales sont courbées, et de courbures opposées; leur demidifférence est A'

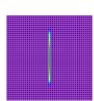
 $\rightarrow$  defocus variant en y'<sup>2</sup> et cos 2 $\varphi$ 



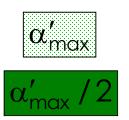
## Astigmatisme du 3<sup>e</sup> ordre

#### Astigmastisme pur:

focale sagittale longueur :  $2A'y'^2\alpha'$ 



cercle de moindre diffusion dans le plan paraxial diamètre = A' y' $^{2}\alpha$ '





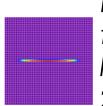
$$AST3 = \left| A' \frac{y'^2}{2} \alpha'_{max} \right|$$

$$A' = C'_S = -C'_T \neq 0$$

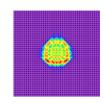
$$s' = A' \frac{y'^2}{2}; \quad t' = -A' \frac{y'^2}{2}$$

$$\int dy' = A' \frac{y'^2}{2} \alpha' \cos \varphi$$

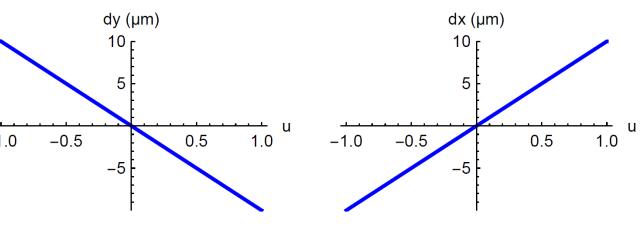
$$dx' = -A' \frac{y'^2}{2} \alpha' \sin \varphi$$



focale tangentielle longueur: 2A'y'<sup>2</sup>α'



au 3<sup>e</sup> ordre

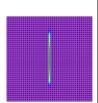




# Astigmatisme du 3<sup>e</sup> ordre

#### Astigmastisme pur :

focale sagittale longueur :  $2A'y'^2\alpha'$ 



$$A' = C'_S = -C'_T \neq 0$$

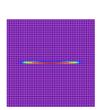
$$s' = A' \frac{{y'}^2}{2}; \quad t' = -A' \frac{{y'}^2}{2}$$

$$\begin{cases} dy' = A' \frac{y'^2}{2} \alpha' \cos \varphi \\ dx' = -A' \frac{y'^2}{2} \alpha' \sin \varphi \end{cases}$$

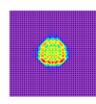
$$dx' = -A' \frac{y'^2}{2} \alpha' \sin \varphi$$

$$\Delta = A' \frac{y'^2 \alpha'^2}{4} \cos 2\phi / S_P \Rightarrow \text{ defocus variant en } y'^2$$
et cos  $2\phi$ 

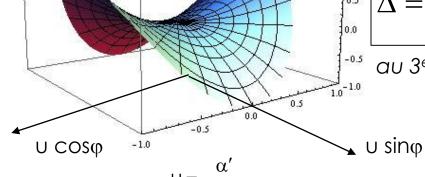
au 3e ordre



focale tangentielle longueur:  $2A'y'^2\alpha'$ 



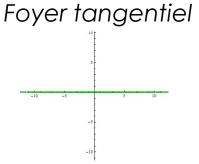
et cos  $2\varphi$ 





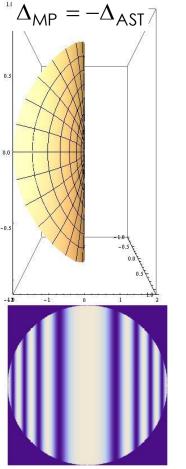
#### Astigmatisme : déformation du front d'onde

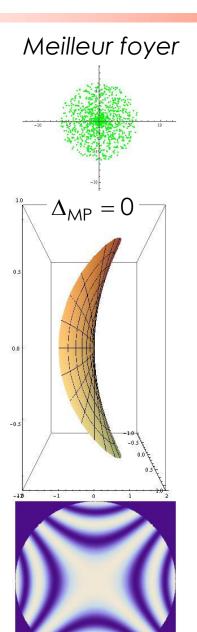
Spot diagramme

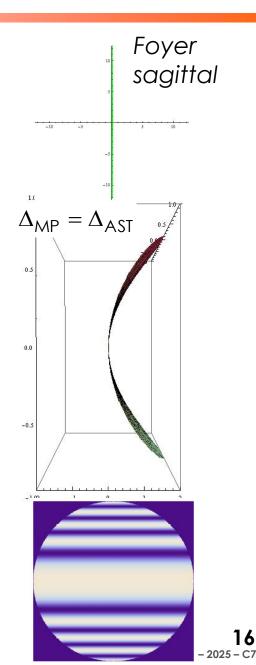


$$\Delta_1 = \begin{cases} \Delta_{\text{AST}} \, \text{U}^2 \, \cos 2\phi \\ + \, \Delta_{\text{MP}} \, \text{U}^2 \end{cases}$$

interférogramme



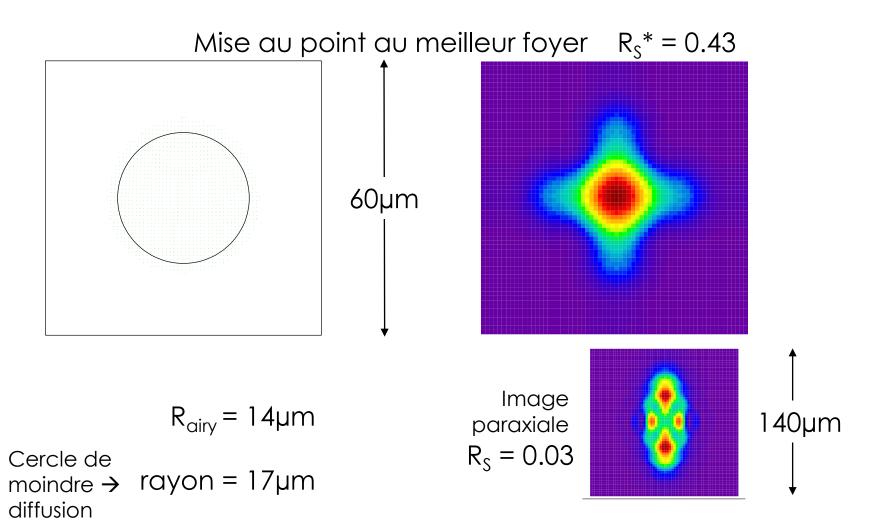






# Approche ondulatoire

#### Exemple : doublet Edmunds f'=500mm, ON=0.025, $\theta$ = 3°



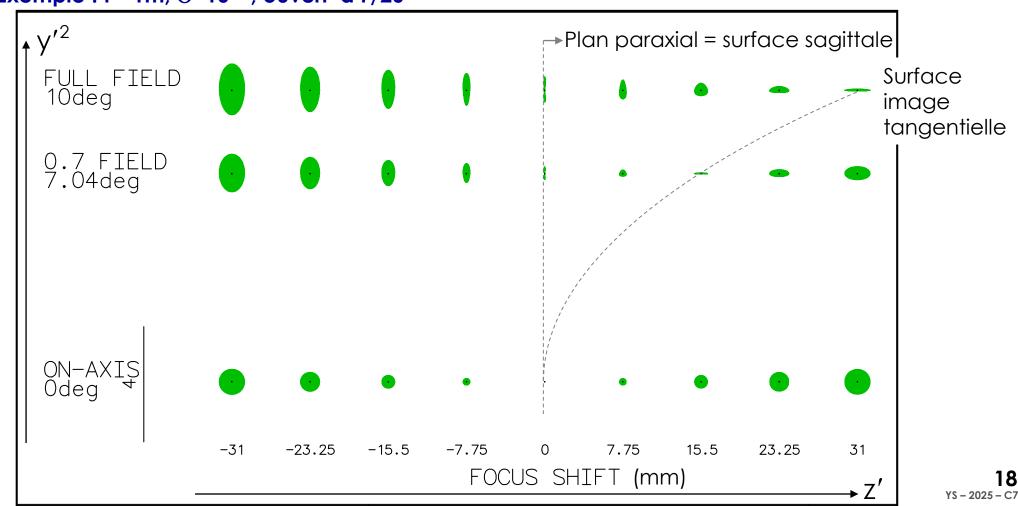


# Astigm. & Courbure de champ 3<sup>e</sup> du Miroir sphérique $\infty \rightarrow F'$

Lorsque le miroir porte la pupille :  $C'_s = 0$ ;  $C'_T = -4/R$ 

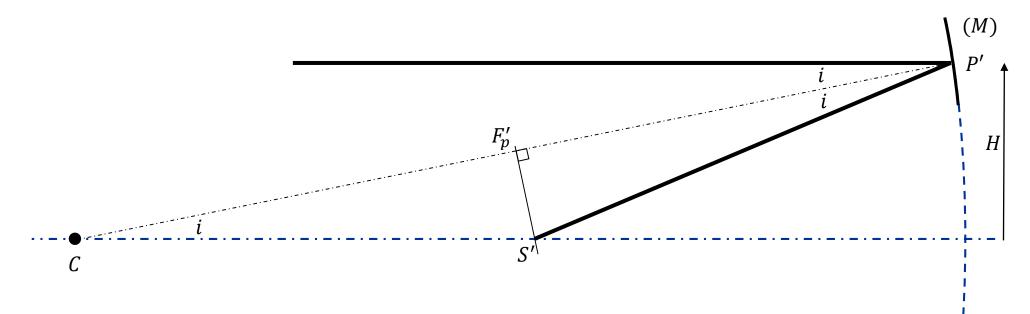
$$C'_{S} = 0$$
;  $C'_{T} = -4/R$ 

Exemple: F'=1m,  $\Theta=10^{\circ}$ , ouvert à F/20





# Courbure sagittale du miroir sphérique ∞ → F'

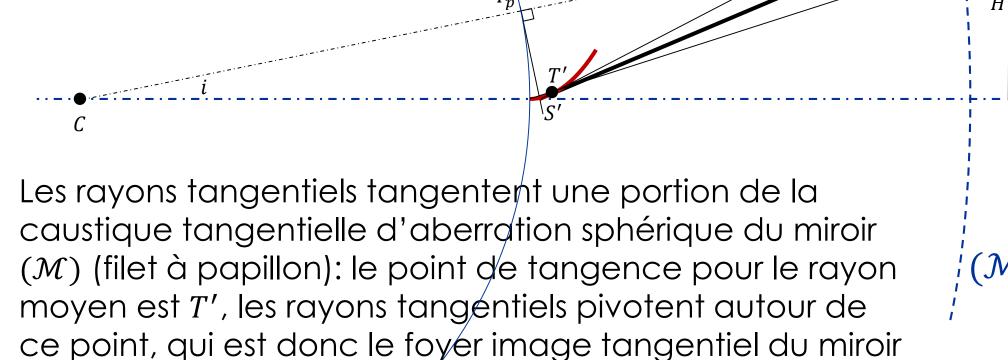


Les rayons sagittaux frappent le miroir (M) à la même hauteur H au-dessus de l'axe du miroir  $(\mathcal{M})$ : ils se focalisent tous en S', qui est sur la caustique sagittale d'aberration sphérique de  $\mathcal{M}$ 

S' est dans le plan image contenant  $F_p'$ . Donc  $C_S' = 0$ .



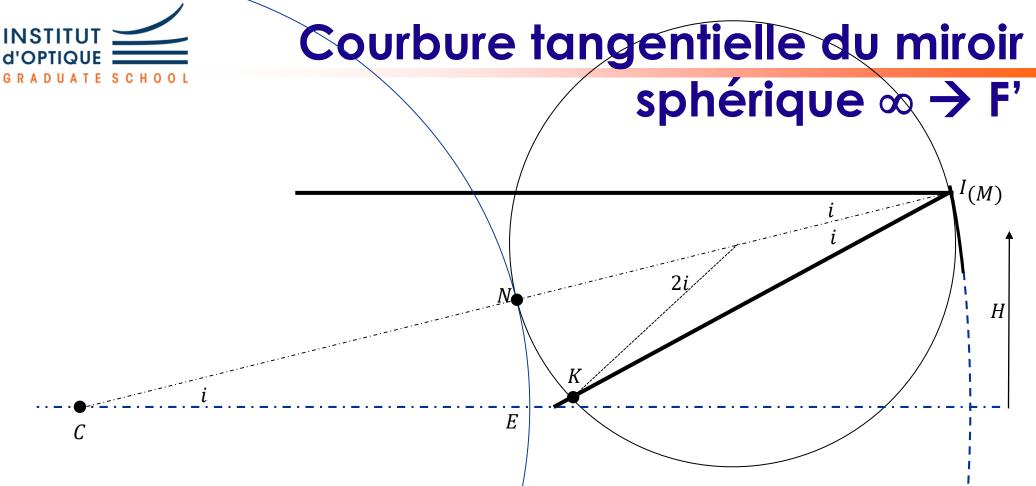
# Courbure tangentielle du miroir sphérique $\infty \rightarrow F'$



(M). Comment trouve-t-on T' géométriquement ?

20

(M)



K: le point où un rayon tangentiel intercepte le cercle (noir) de rayon R/4  $\widetilde{NE} = \widetilde{NK}$ : le cercle (noir) de rayon R/4 roule sans glisser sur le cercle (bleu) de rayon R/2

N : centre instantané de rotation  $\rightarrow$  K se déplace perpendiculairement à lK : K décrit l'enveloppe du rayon réfléchi

D'où 
$$C_T' = -4/R$$



#### Ce qu'il faut retenir ...

- Astigmatisme & Courbure de champ sont deux défauts qui apparaissent dans le champ, même pour des systèmes peu ouverts
- L'astigmatisme naît d'un défaut de symétrie de révolution du front d'onde, de type « cylindre ». Rayons tangentiels et rayons sagittaux se focalisent en deux points distants, qui définissent un « segment de netteté » le long du rayon moyen. La tache de diffusion est minimale au milieu de ce segment. L'image d'un objet de grandeur y n'est jamais nette. Les images tangentielles et sagittales se forment sur deux surfaces courbes, qui s'écartent l'une de l'autre comme  $y'^2$ .
- La courbure de champ naît d'un défaut de courbure global du front d'onde  $\rightarrow$  L'image d'un objet plan est nette mais sur une surface image courbée, qui s'écarte du plan image paraxial comme  $y'^2$ .
- Astigmatisme & Courbure de champ conduisent tous deux à des taches de diffusion qui croissent comme  $y'^2\alpha'$
- Ecart normal d'astigmatisme : selle de cheval, d'amplitude croissant comme  $y'^2\alpha'^2$
- Ecart normal de courbure de champ : comme un « defocus », mais d'amplitude croissante comme  $y'^2\alpha'^2$
- Pour un miroir sphérique portant la pupille, en conjugaison  $\infty \to F'$ ,  $C_S = 0$  (la surface image sagittale est plane), et  $C_T = -4/R$



# Exercice : Astigmatisme & Courbure de champ d'un miroir sphérique

On souhaite observer une étoile dans le domaine visible à l'aide d'un télescope constitué d'un miroir primaire sphérique et d'un miroir secondaire plan. Le télescope a une focale de 1m et est ouvert à F/20. L'étoile est à 10° de l'axe du télescope. **Evaluer, dans le plan image paraxial,** 

- 1. le rayon de la tache d'aberration sphérique;
- 2. la plus grande dimension de l'aigrette de coma (on admettra que la coma est la même que pour un miroir parabolique).
- 3. En supposant l'aberration sphérique et la coma négligeables, de combien et dans quel sens doit-on déplacer le plan du détecteur, par rapport au plan paraxial, pour obtenir une tache de diffusion la plus petite possible ?
- 4. Quelles sont alors la forme et la dimension de cette tache ? Le système estil limité par la diffraction ? L'aberration sphérique et la coma peuvent-elles effectivement être négligées ?
- 5. A quoi ressemble approximativement la tache de diffusion si on maintient le détecteur dans le plan paraxial (décrire sa forme, son orientation, et sa dimension) ?