

Conception de systèmes optiques

Plan des cours 4 à 10

```
Cours 4 : Développement polynomial de l'écart normal
         Aberrations chromatiques paraxiales
Cours 5: Aberration sphérique
Cours 6: Coma
Cours 7 : Astigmatisme & courbure de champ
Cours 8: Distorsion
         Variations des aberrations avec la position de la pupille
Cours 9 : Etude de systèmes simples
              dioptre sphérique (ou non)
              lame à faces //
              miroirs
Cours 10: Lentilles minces
```

Transparents de cours disponibles sur <u>eCampus</u>

Télescopes à deux miroirs

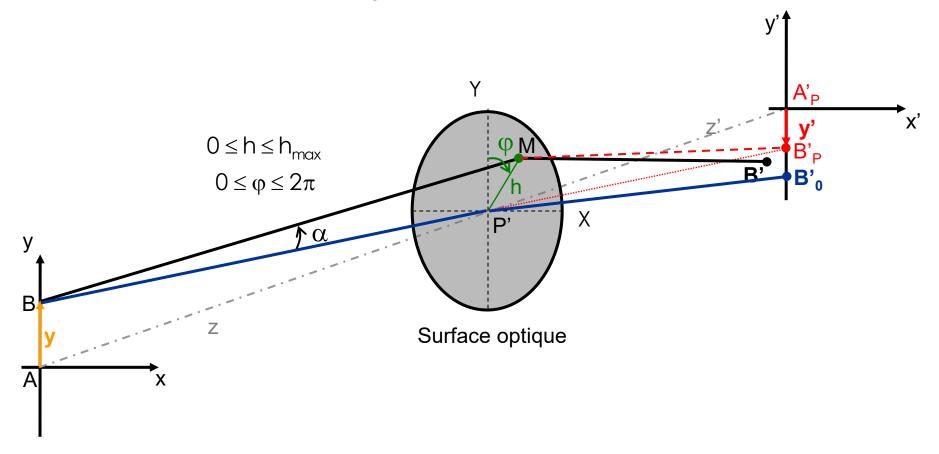
Bilan des cours 1 à 3

L'écart normal est une grandeur utile ...

- Elle quantifie la **déformation du front d'onde** à travers un système optique, par rapport à une sphère de référence
- Elle est « additive » : $(n'\Delta)_{syst\`{e}me} = \sum_{sous-syst\`{e}mes} (n'_i\Delta_i)$
- Elle est facilement calculable par un logiciel de tracé de rayons : $\mathbf{n'}\Delta = \mathbf{L_0} \mathbf{L}$

L: chemin optique (BMB') le long du rayon réel

L₀: chemin optique (BP'B'₀) le long du rayon réel



Bilan des cours 1 à 3

L'écart normal est une grandeur utile ...

- Elle quantifie la **déformation du front d'onde** à travers un système optique, par rapport à une sphère de référence
- Elle est « additive » : $(n'\Delta)_{système} = \sum_{sous-systèmes} (n'_i\Delta_i)$
- Elle est facilement calculable par un logiciel de tracé de rayons : $\mathbf{n'}\Delta = \mathbf{L_0} \mathbf{L}$
- son **amplitude** est directement liée aux dimensions transverses du spot-diagramme (dy', dx') → formules de Nijboer

$$dy' = \frac{\cos\varphi}{\cos\alpha'} \frac{\partial\Delta}{\partial\alpha'} - \frac{\sin\varphi}{\sin\alpha'} \frac{\partial\Delta}{\partial\varphi}$$
$$dx' = \frac{\sin\varphi}{\cos\alpha'} \frac{\partial\Delta}{\partial\alpha'} + \frac{\cos\varphi}{\sin\alpha'} \frac{\partial\Delta}{\partial\varphi}$$

Bilan des cours 1 à 3

L'écart normal est une grandeur utile ...

- Elle quantifie la **déformation du front d'onde** à travers un système optique, par rapport à une sphère de référence
- Elle est « additive » : $(n'\Delta)_{syst\`{e}me} = \sum_{sous-syst\`{e}mes} (n'_i\Delta_i)$
- Elle est facilement calculable par un logiciel de tracé de rayons : $\mathbf{n'}\Delta = \mathbf{L_0} \mathbf{L}$
- son **amplitude** est directement liée aux dimensions transverses du spot-diagramme (dy', dx') → formules de Nijboer
- sa variance est directement liée (pour un système peu aberrant) à l'éclairement au centre de la sphère de référence
 - ightharpoonup rapport de Strehl $R_S pprox \exp[-rac{4\pi^2}{
 ho_\Delta^2}\sigma_\Delta^2]$

Chapitre 1

Développement polynomial de l'écart normal

Plan du Chapitre 1

I. Développement de Δ sur les polynômes de Seidel

- Ils décrivent de manière intuitive les différentes aberrations
- Mais ... ils ne sont pas orthogonaux entre eux

II. Développement de Δ sur les polynômes de Zernike

- Combinaisons linéaires des polynômes de Seidel
- Base orthonormée de polynômes sur une pupille « disque circulaire »
- Utiles pour la correction des défauts de front d'onde (optique adaptive ...)

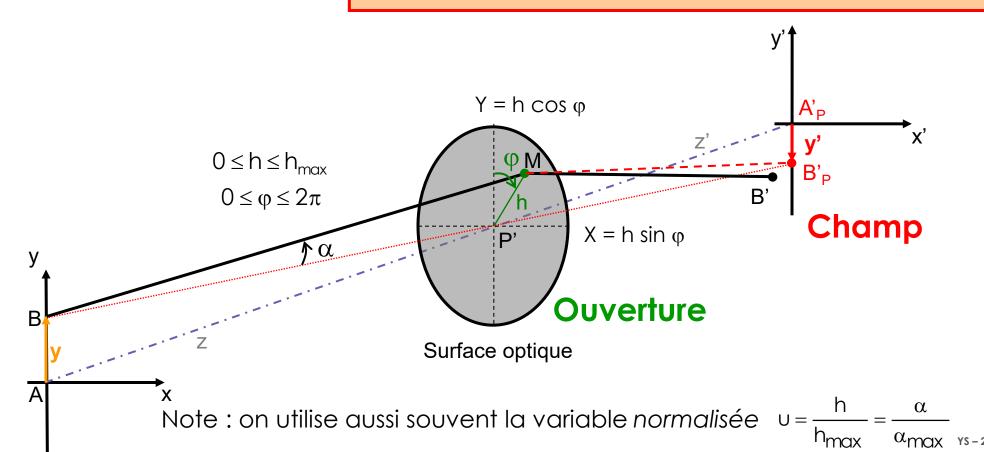
Le développement de Seidel

 $\Delta(h, \varphi, y)$: écart normal par rapport à une sphère de référence

Développement de $\Delta(h,\phi,y)$ en série entière de h^2 , y^2 , $h.y.cos\phi$

Pour un système centré :

$$\Delta (h, \varphi, y) = \sum_{(p,q,m) \in \mathbb{N}^3} \sum_{p \in \mathbb{N}^3} a_{pqm} h^{2p+m} y^{2q+m} \cos(m\varphi)$$



La classification de Seidel

Système centré :
$$\Delta$$
 (h, φ ,y) = $\sum_{(p,q,m)\in \mathbb{N}^3} \sum_{\mathbf{N}^3} a_{pqm} h^{2p+m} y^{2q+m} \cos(m\varphi)$

Termes $\langle 2p+2q+2m=2 \rangle$

р	q	m		
	0	0	h ²	défaut de mise au point (defocus)
0	0	1	h y $\cos(\varphi)$	basculement selon y (tilt $\beta \propto y$)
0	1	0	y^2	piston

Aberrations d'ordre 3 : « 2p+2q+2m = 4 »

р	q	m	
2	0	0	h⁴ ab. sphérique
1	0	1	h³ y cos(φ) coma
1	1	0	h² y² courbure de champ
0	0	2	h² y² cos(2φ)astigmatisme
0	1	1	h $y^3 \cos(\varphi)$ distorsion
0	2	0	y ⁴ piston

Défaut de mise au point (defocus)

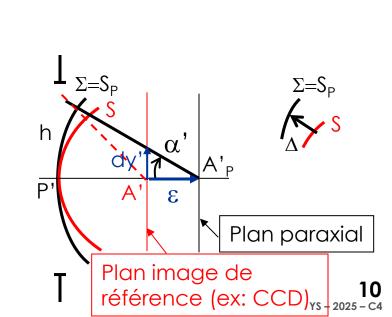
Terme en « h^2 » \rightarrow **défaut de courbure par rapport à la sphère de**

référence

$$dy' = -\epsilon \alpha'$$

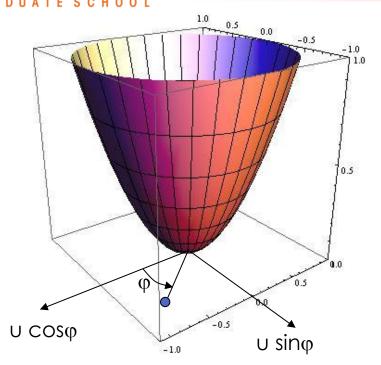
$$\Delta = -\frac{1}{2} \epsilon \alpha'^2 \approx -\epsilon \frac{h^2}{2R^2}$$

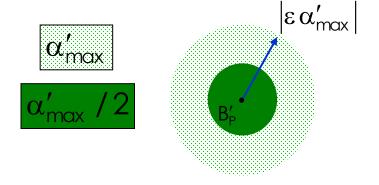
aussi appelé « défaut de mise au point » « defocus »



R

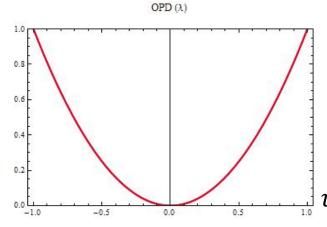
Défaut de mise au point (defocus)





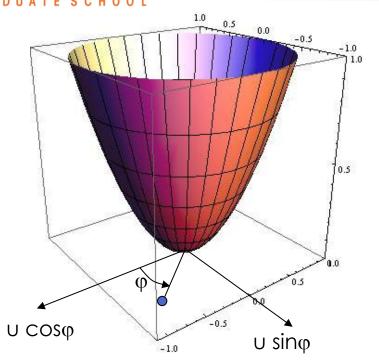
Spot diagramme

Defocus
$$\Delta(U, \varphi) = \Delta_{max}U^2$$

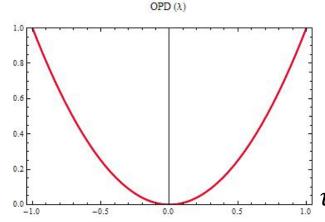


$$u = \frac{h}{h_{max}} = \frac{\alpha'}{\alpha'_{max}}$$

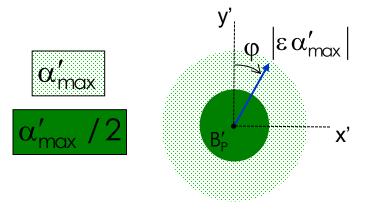
Défaut de mise au point (defocus)



Defocus $\Delta(U, \varphi) = \Delta_{max}U^2$



$$u = \frac{h}{h_{max}} = \frac{\alpha'}{\alpha'_{max}}$$



Spot diagramme

$$\Delta = -\frac{1}{2} \epsilon \alpha'^{2}$$

$$dy' = -\epsilon \alpha' \cos \varphi$$

$$dx' = -\epsilon \alpha' \sin \varphi$$
Nijboer

La classification de Seidel

Système centré :
$$\Delta$$
 (h, ϕ ,y) = $\sum_{(p,q,m)\in \mathbb{N}^3} \sum_{\mathbf{N}^3} a_{pqm} h^{2p+m} y^{2q+m} \cos(m\phi)$

Termes $\langle 2p+2q+2m=2 \rangle$

```
p q m

1 0 0 h^2 défaut de mise au point (defocus)

0 0 1 h y cos(\varphi) basculement selon y (tilt \beta \propto y)

0 1 0 y^2 piston
```

Aberrations d'ordre 3 : « 2p+2q+2m = 4 »

```
p q m

2 0 0 h<sup>4</sup> ab. sphérique

1 0 1 h<sup>3</sup> y cos(\varphi) coma

1 1 0 h<sup>2</sup> y<sup>2</sup> courbure de champ

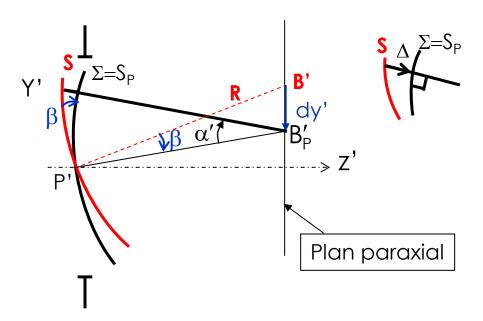
0 0 2 h<sup>2</sup> y<sup>2</sup> cos(2\varphi) astigmatisme

0 1 1 h y<sup>3</sup> cos(\varphi) distorsion

0 2 0 y<sup>4</sup> piston
```


Basculement (tilt)

Terme en « β .h.cos ϕ » \rightarrow tilt de la sphère de référence S (angle β)



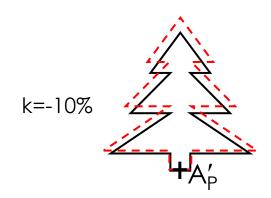
$$\Delta = -\beta Y'$$

$$\Delta = -\beta \cdot h \cos \varphi$$

$$\beta = \frac{dy'}{R} \qquad h = -F$$

$$\Delta = dy' \cdot \alpha' \cos \varphi$$

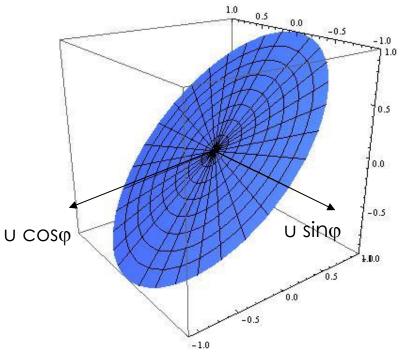
Cas d'un tilt <u>linéaire</u> ($\beta \propto y'$) \rightarrow défaut de grandissement transversal



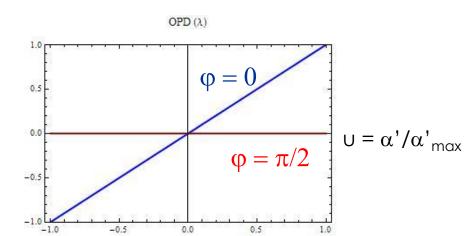
$$dy' = k \cdot y'$$

$$\Delta = k \, y' \cdot \alpha' \cos \varphi$$

Basculement (tilt)



Tilt
$$\Delta(U, \phi) = \Delta_{max} U \cos \phi$$



$$B' \int_{B'_{P}} |k y'|$$

Spot diagramme

$$\Delta = -\beta \cdot h \cos \varphi = k y' \cdot \alpha' \cos \varphi$$

$$\begin{cases} dy' = k y' \\ dx' = 0 \end{cases}$$

La classification de Seidel

Système centré :
$$\Delta$$
 (h, ϕ ,y) = $\sum_{(p,q,m)\in \mathbb{N}^3} \sum_{p,q,m} \sum_{p,q} \sum_{p,$

```
Termes « 2p+2q+2m=2 »

p q m

1 0 0 h<sup>2</sup> défaut de mise au point (defocus)

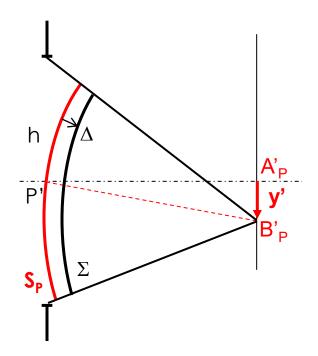
0 0 1 h y cos(\varphi) basculement selon y (tilt \beta \propto y)

1 0 y<sup>2</sup> piston
```

Aberrations d'ordre 3 : « 2p+2q+2m = 4 »

р	q	m		
2	0	0	h ⁴	ab. sphérique
1	0	1	h³ y cos(φ)	coma
1	1	0	$h^2 y^2$	courbure de champ
0	0	2	$h^2 y^2 \cos(2\varphi)$)astigmatisme
0	1	1	h $y^3 \cos(\varphi)$	distorsion
0	2	\cap	V ⁴	piston

Termes indépendants de h (2p+m=0) $\rightarrow \Delta$ constant sur la pupille



Le piston n'est pas un défaut du système

- → Déphasage uniforme du front d'onde sur la pupille, sans déformation
- \rightarrow Ex : système dénué d'aberrations, rayon de courbure de la sphère de référence verrouillé sur tout le champ (y') : Δ varie en y^{2q}

La classification de Seidel

Système centré :
$$\Delta$$
 (h, ϕ ,y) = $\sum_{(p,q,m)\in \mathbb{N}^3} \sum_{\mathbf{N}^3} a_{pqm} h^{2p+m} y^{2q+m} \cos(m\phi)$

Termes (
$$2p+2q+2m=2$$
) p q m 1 0 0 h² défaut de mise au point (defocus) 0 1 h y cos(φ) basculement selon y (tilt $\beta \propto y$) 0 1 0 y² piston

Aberrations d'ordre 3 : « 2p+2q+2m = 4 »

р	q	m			
2	0	0	h ⁴	ab. sphérique	lépend de « h » seulement
1	0	1	h^3 y $cos(\varphi)$	coma	tilt $\beta \propto h^2.y$
1	1	0	$h^2 y^2$	courbure de cho	defocus $\epsilon \propto y^2$
0	0	2	$h^2 y^2 \cos(2\varphi)$)astigmatisme	defocus $\varepsilon \propto y^2 \cos(2\varphi)$
0	1	1	h $y^3 \cos(\varphi)$	distorsion	tilt $\beta \propto y^3$
0	2	0	y^4	piston	18 YS - 2025 - C

Développement sur la pupille

Système centré :
$$\Delta$$
 (U, ϕ ,y) = $\sum_{(p,m)\in \mathbb{N}^2} \sum_{\mathbf{N}^2} \Delta_{pm}(y)$ U^{2p+m} cos(m ϕ) y fixé

$$u = \frac{h}{h_{max}}$$

Aberrations « classiques » jusqu'au 5e ordre : « 2p+2m ≤ 6 »

coma

 $U^4 \cos(2\varphi)$

 $U^3 \cos(3\varphi)$

```
defocus (courb. de champ) 1er ordre tilt (distortion)
U \cos(\varphi)
                aberration sphérique
U^3 \cos(\varphi)
                                                        3e ordre
                coma
U^2 \cos(2\varphi)
                astigmatisme
                aberration sphérique
U^5 COS(\varphi)
```

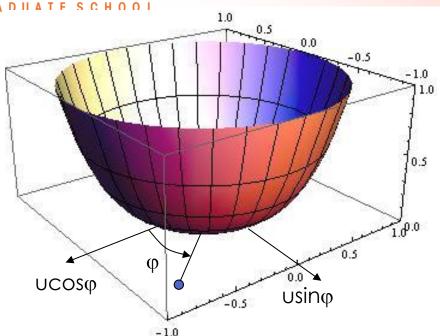
astigmatisme

trèfle (à 3 feuilles)

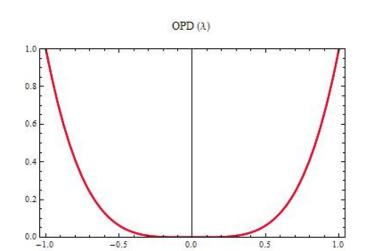
5^e ordre

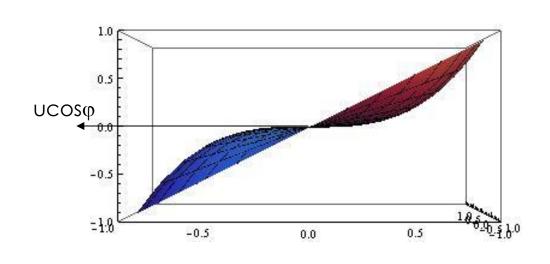
YS - 2025 - C4

Aberrations classiques du 3e ordre



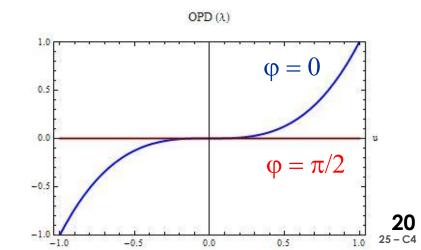
ab. sphérique 3e ordre $\Delta(U) = \Delta_{max} U^4$





Coma 3^e ordre

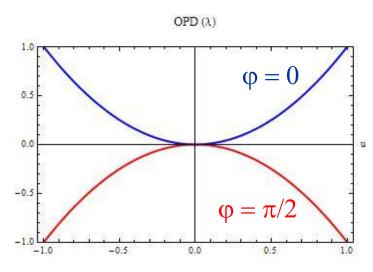
$$\Delta(U,\phi) = \Delta_{max} U^3 \cos \phi$$



Aberrations classiques du 3e ordre



astigmatisme 3° ordre $\Delta(U, \varphi) = \Delta_{max} U^2 \cos 2\varphi$



Prix Nobel de Physique 1953, « pour la démonstration de la méthode de contraste de phase, particulièrement pour son invention du microscope à contraste de phase. »

Le développement de Zernike

•Système centré :
$$\Delta \left(U, \varphi, y \right) = \sum_{\substack{(n,m) \in \mathbb{N}^2 \\ n-m \text{ pair } \geq 0}} \sum_{n \in \mathbb{N}^2} c_{nm}(y) \, Z_n^m(U, \varphi)$$

Définition des polynômes de Zernike sur pupille disque (0 ailleurs)

$$Z_n^m(\textbf{U},\phi) = \sqrt{\frac{2(n+1)}{1+\delta_m^0}} \left(R_n^m(\textbf{U}) \cos(m\phi)\right) \qquad (n,m) \in \textbf{N}^2, \ n-m \ pair \geq 0$$

Fonction radiale de Zernike : polynôme en u, de degré n, contenant les termes uⁿ, uⁿ⁻², ..., u^m, et défini par :

$$R_{n}^{m}(u) = \sum_{s=0}^{(n-m)/2} (-1)^{s} \frac{(n-s)!}{s! \left(\frac{n+m}{2}-s\right)! \left(\frac{n-m}{2}-s\right)!} u^{n-2s}$$

Exemple:

$$R_7^3(U) = 210^7 - 300^5 + 100^3 \Rightarrow Z_7^3(U, \varphi) = \sqrt{16} (210^7 - 300^5 + 100^3) \cos 3\varphi$$

Propriétés des polynômes de Zernike (1)

- $R_n^n(U) = U^n$
- $\forall (n,m), R_n^m(1) = 1$ et $|R_n^m(u)| \le 1$ $(0 \le u \le 1)$
- $\forall |U| \leq 1$, $Z_0^0(U) = 1$ (piston)
- •Lorsque la symétrie $\varphi \rightarrow -\varphi$ est brisée, il faut compléter par :

$$Z_n^{-m}(U, \varphi) = \sqrt{2(n+1)} R_n^m(U) \sin(m\varphi)$$
 (m > 0)

afin de former une base orthonormale de polynômes

- ➤ Vrai pour un système centré où l'objet n'est pas selon y
- ➤ Vrai pour une turbulence atmosphérique (syst. non centré!)

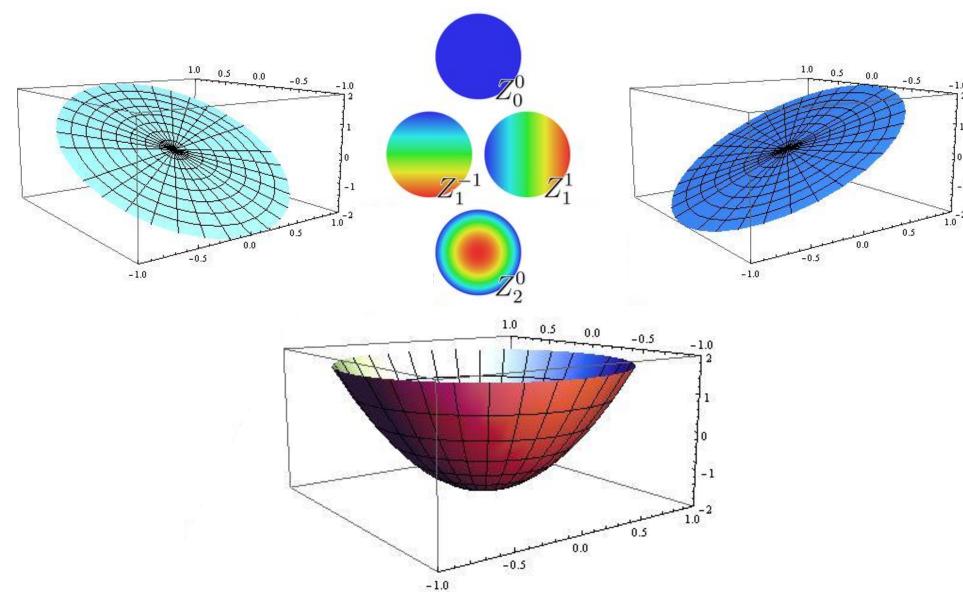
INSTITUT Propriétés des polynômes de Zernike (2)

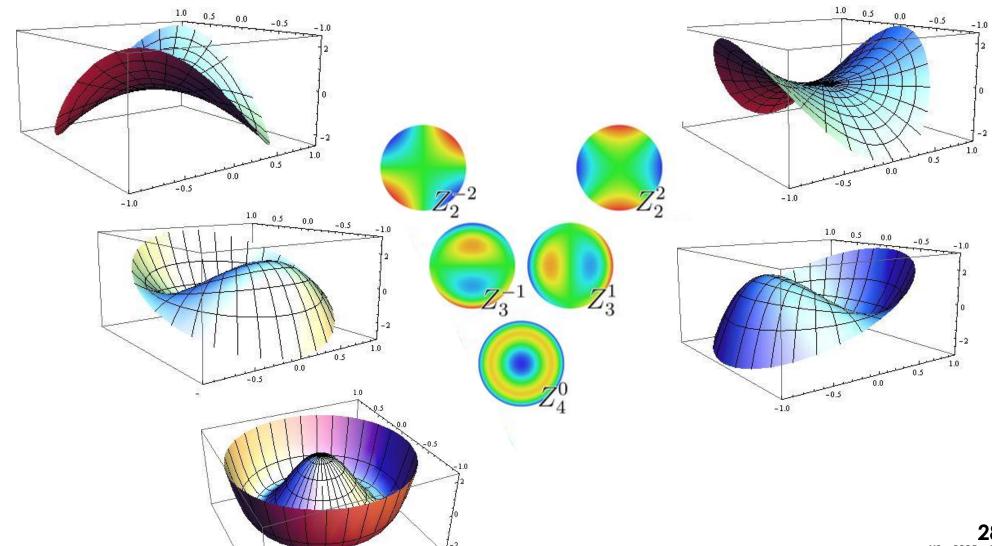
Condition d'orthogonalité
$$\frac{1}{\pi} \int_{u=0}^{1} \int_{\phi=0}^{2\pi} Z_n^m(u,\phi) Z_{n'}^{m'}(u,\phi) u \, du \, d\phi = \delta_n^{n'} \delta_m^{m'}$$

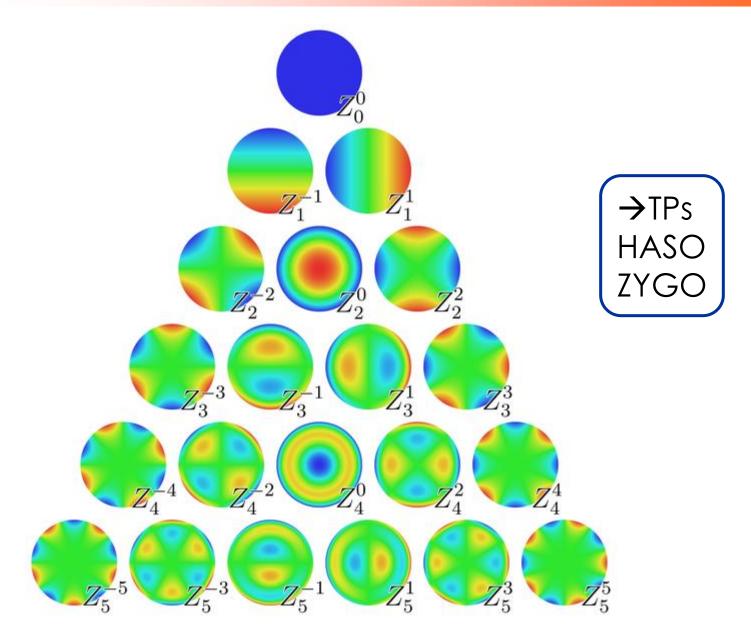
- En particulier, $\forall (n,m) \neq (0,0)$, $Z_n^m \perp Z_0^0 \Rightarrow \overline{Z_n^m(\upsilon,\phi)}^{pupille} = 0$ Les Z_n sont de moyenne nulle sur la pupille (sauf le piston)
- Chaque polynôme de Zernike est combinaison linéaire d'aberrations classiques (« balanced polynomials ») avec des coefficients tels que les Z_n^m sont normés et orthogonaux 2 à 2

Ex : coma
$$3^e$$
 ordre de Zernike $Z_3^1(u,\phi) = \sqrt{8} \ (3u^3 - 2u) \cos \phi$ Coma 3^e Seidel Tilt Seidel

i	n m	$Z_i \cap U_n^m(u,\varphi)$	Dénomination
0	0 0	1	Piston
1	1 1	2υ cos φ	Tilt à 0°
2	1 -1	2υ sin φ	Tilt à 90°
3	2 0	$\sqrt{3}(20^2-1)$	Defocus (+ courbure de champ)
4	2 2	$\sqrt{6} \cup^2 \cos 2\phi$	Astigmatisme à 0°
5	2 -2	$\sqrt{6} \cup^2 \sin 2\phi$	Astigmatisme à 45° Coma à 0°
6	3 1	$\sqrt{8}$ (30 ³ - 20) cos φ	Coma à 0°
7	3 -1	$\sqrt{8}$ (30 ³ - 20) sin φ	Coma à 90°
8	4 0	$\sqrt{5}$ (60 ⁴ - 60 ² + 1)	Aberration sphérique
9	3 3	$\sqrt{8} \cup^3 \cos 3\phi$	Trèfle à 0°
10	3 -3	$\sqrt{8} \cup 3 \sin 3\phi$	Trèfle à 30°
11	4 2	$\sqrt{10} (40^4 - 30^2) \cos 2\phi$	Astigmatisme à 0° Astigmatisme à 45°
12	4 -2	$\sqrt{10} (40^4 - 30^2) \sin 2\phi$	
13	5 1	$\sqrt{12}$ (1005 - 1203 + 30) cos φ	Coma à 0°
14	5 -1	$\sqrt{12}$ (1005 - 1203 + 30) sin φ	Coma à 90°
15	6 0	$\sqrt{7}$ (200 ⁶ - 300 ⁴ + 120 ² - 1)	Aberration sphérique





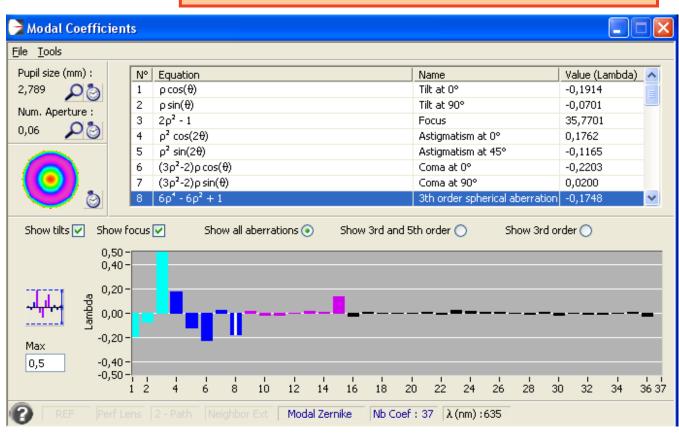


- 1. Nom et ordre de l'aberration associée au polynôme de Zernike $Z_7^3(u,\varphi)$?
- 2. Polynôme de Zernike associé au defocus
 - a. De quels monômes de Seidel \mathbb{Z}_2^0 est-il combinaison linéaire ?
 - b. Calculez les coefficients de cette combinaison linéaire en utilisant les relations d'orthogonalité des polynômes de Zernike.
 - c. Retrouvez directement ces coefficients à partir de la définition des fonctions radiales $R_n^m(u)$.

Propriétés des polynômes de Zernike (3)

 Corollaire très important de la condition d'orthogonalité:

$$\sigma_{\Delta}^{2} = \overline{\Delta^{2}} - (\overline{\Delta})^{2} = \sum_{(n,m) \neq (0,0)} \sum_{(n,m) \neq (0,0)} c_{nm}^{2}$$



 Application : correction des défauts de front d'onde à l'aide d'un miroir déformable
 →TP Optique Adaptative

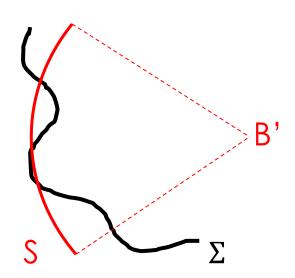
Recherche du meilleur foyer

Δ calculé par rapport à la sphère S de centre B' quelconque

Rapport de Strehl:
$$R_{S}(B') = \frac{I(B')}{I_{max,abs}} \approx \exp(-\frac{4\pi^{2}}{\lambda^{2}}\sigma_{\Delta}^{2}) = \exp(-\frac{4\pi^{2}}{\lambda^{2}}\sum_{(n,m)\neq(0,0)}\sum_{(0,0)}c_{nm}^{2})$$

 $\underline{\mathbf{Q}}$: quels tilts et defocus faut-il appliquer à S pour minimiser σ_{Λ}^{2} ?

R:S \rightarrow S*, B' \rightarrow B'*: meilleur foyer, tel que $c_{11}=0$, $c_{1-1}=0$, $c_{20}=0$



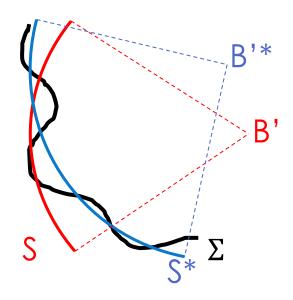
Recherche du meilleur foyer

Δ calculé par rapport à la sphère S de centre B' quelconque

Rapport de Strehl:
$$R_{S}(B') = \frac{I(B')}{I_{max,abs}} \approx exp(-\frac{4\pi^2}{\lambda^2}\sigma_{\Delta}^2) = exp(-\frac{4\pi^2}{\lambda^2}\sum_{(n,m)\neq(0,0)}\sum_{(0,0)}c_{nm}^2)$$

 $\underline{\mathbf{Q}}$: quels tilts et defocus faut-il appliquer à S pour minimiser σ_{Λ}^{2} ?

R:S \rightarrow S*, B' \rightarrow B'*: meilleur foyer, tel que $c_{11}=0$, $c_{1-1}=0$, $c_{20}=0$



Recherche du meilleur foyer

Δ calculé par rapport à la sphère S de centre B' quelconque

Rapport de Strehl:
$$R_{S}(B') = \frac{I(B')}{I_{max,abs}} \approx exp(-\frac{4\pi^{2}}{\lambda^{2}}\sigma_{\Delta}^{2}) = exp(-\frac{4\pi^{2}}{\lambda^{2}}\sum_{(n,m)\neq(0,0)}c_{nm}^{2})$$

 \underline{Q} : quels tilts et defocus faut-il appliquer à S pour minimiser σ_{Λ}^{2} ?

 $R: S \rightarrow S^*$, $B' \rightarrow B'^*$: meilleur foyer, tel que $c_{11}=0$, $c_{1-1}=0$, $c_{20}=0$

 Δ calculé par rapport à la sphère S* de centre B'* qui approxime au mieux le front d'onde Σ au sens des moindres carrés $\rightarrow \sigma_{\Lambda}^2$ minimal, éclairement maximal

$$R_S^* = R_S(B^{**}) \approx \exp(-\frac{4\pi^2}{\lambda^2} \times \sum_{(n,|m|) \notin ((0,0),(1,1),(2,0))} c_{nm}^2)$$

Résultats de l'analyse du front d'onde émergent d'une lentille déformable à la longueur d'onde $\lambda=800$ nm. La spécification du fabricant pour la lentille est $\sigma_{\Delta}<0.25\lambda$ pour une mise au point au meilleur foyer.

- 1. L'analyse a-t-elle été faite au meilleur foyer ?
- 2. Les résultats de l'analyse sont-ils compatibles avec la spécification du fabricant ?
- 3. Déduire de l'analyse l'amplitude de l'écart normal d'aberration sphérique du 3^e ordre, en bord de pupille, pour une mise au point paraxiale.

Tolérances sur l'écart normal d'aberration

Critère de Maréchal pour qu'un système soit « limité par la diffraction » :

$$R_s(B') \approx \exp(-4\pi^2 \left(\frac{\sigma_{\Delta}}{\lambda}\right)^2) \ge 80\% \quad \Leftrightarrow \quad \sigma_{\Delta} \le \frac{\lambda}{14}$$

Combien d'aberration peut-on tolérer?

Sphère S centrée en B'_{Paraxial} Sphère S centrée au meilleur foyer B'*

aberration (3e ordre)	Aberration classique	$\Delta_{\sf max}$	$\Delta_{\sf max}$
Aberration sphérique	$ \Delta_{P}(h) = \Delta_{max} \left(\frac{h}{h_{m}}\right)^{4} $	0.24 λ	0.95 λ
Coma	$ \Delta_{P}(h, \varphi) = \Delta_{max} \left(\frac{h}{h_{m}}\right)^{3} \cos \varphi $	0.20 λ	0.60 λ
Astigmatisme	$ \Delta_{P}(h, \varphi) = \Delta_{max} \left(\frac{h}{h_{m}}\right)^{2} \cos 2\varphi $	0.17 λ	0.17 λ
Courbure de champ (defocus)	$ \Delta_{P}(h) = \Delta_{max} \left(\frac{h}{h_{m}}\right)^{2} $	0.25 λ	
Distorsion (tilt)	$\Delta_{P}(h, \varphi) = \Delta_{max}\left(\frac{h}{h_{m}}\right) \cos \varphi$	0.14 λ	

Note: «y» est fixé

Ce qu'il faut retenir ...

- Ecart normal associé à un « defocus » : $\Delta = -\frac{1}{2}\varepsilon\alpha'^2$
- Lois d'échelle (variation avec h, φ, y) des aberrations de Seidel d'ordre ≤ 5 (cf. transparent 9) et des aberrations classiques (transparent 19)
- Forme de la déformation du front d'onde pour les aberrations classiques d'ordre ≤ 3
- Propriété d'orthonormalité des polynômes de Zernike sur une pupille disque circulaire
- Expression de σ_{Δ}^2 en fonction des coefficients de la décomposition sur la base de Zernike :
 - au centre de la sphère de référence
 - au meilleur foyer
- Lien entre σ_{Λ}^2 et le rapport de Strehl
- Critère de Maréchal

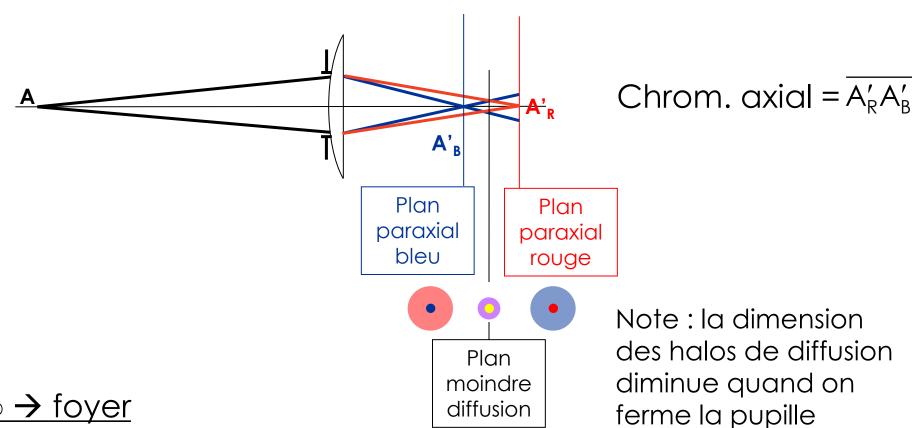
Chapitre 2

Les aberrations chromatiques paraxiales

- Chromatisme axial
- Chromatisme latéral

Chromatisme axial (ou longitudinal)

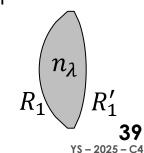
La position de l'image paraxiale <u>le long de l'axe</u> dépend de λ.



 $Cas \infty \rightarrow foyer$

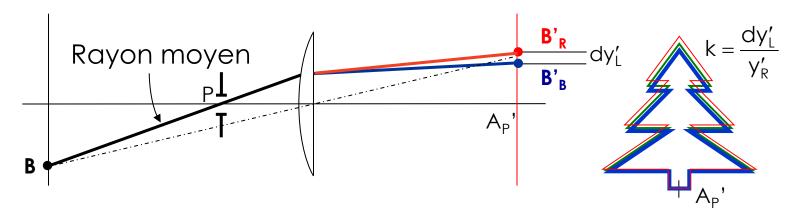
Convergence $C_{\lambda} = \frac{1}{f_{\lambda}'} = (n_{\lambda} - 1)(\frac{1}{R_1} - \frac{1}{R_1'})$ (lentille mince)

Chromatisme axial = $F'_RF'_B$



Chromatisme latéral (grandeur apparente)

L'image paraxiale a <u>une grandeur apparente</u> qui dépend de λ, dans le plan image de référence.



Le chromatisme latéral traduit la déviation du **rayon moyen**, différente selon λ .

S'il existe, le chromatisme latéral subsiste même lorsqu'on ferme le diaphragme d'ouverture.

Le chromatisme latéral peut exister indépendamment du chromatisme axial.

Chromatisme primaire, secondaire ...

Chromatisme primaire (PAC, PLC)

on suppose que n_{λ} varie de manière linéaire avec λ

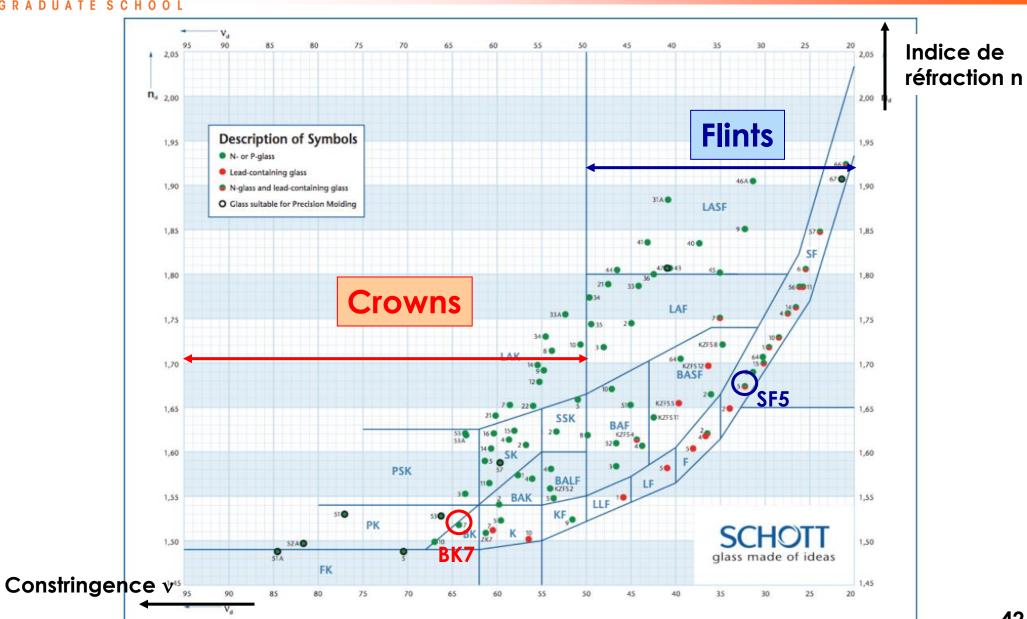
1 seul paramètre caractéristique :
$$v = \frac{n_J - 1}{n_B - n_R} = \frac{\overline{n} - 1}{\Delta(n-1)}$$
 (constringence)

Chromatisme secondaire (SAC, SLC)

lié à la variation quadratique de n_{λ} avec λ

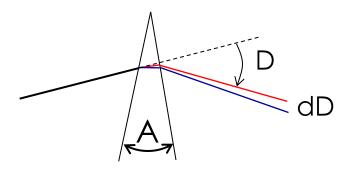


Verres Schott



Déviation chromatique

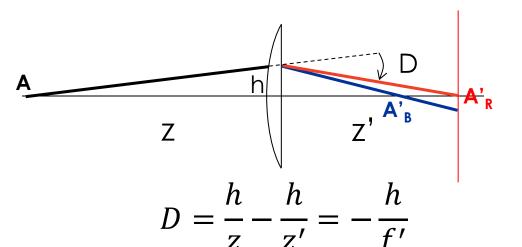
Déviation angulaire induite par un prisme de petit angle A



$$D = (n - 1)A$$

$$\frac{dD}{D} = \frac{1}{v}$$

Pour une lentille mince de convergence C = 1/f'



$$D = -hC$$

indépendant de z, z'

$$dC = \frac{C}{v} \qquad df' = -\frac{f'}{v}$$

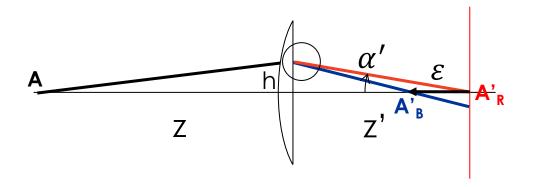
Ecart normal de PAC

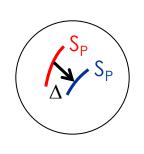
PAC: Chromatisme Axial Primaire

Pour une lentille mince (focale f', verre (n, v)), l'écart normal du front d'onde bleu par rapport au front d'onde rouge s'écrit :

$$\Delta = \frac{h^2}{2f'\nu}$$

indépendant de z, z'





$$\frac{1}{z'} - \frac{1}{z} = \frac{1}{f'}$$

$$\varepsilon = dz' = \frac{z'^2}{f'^2} df'$$

$$\alpha' = -h/z'$$

Preuve :
$$\Delta = -\frac{1}{2}\varepsilon\alpha'^2 = -\frac{1}{2}\frac{z'^2}{f'^2}\left(-\frac{f'}{\nu}\right)\left(-\frac{h}{z'}\right)^2$$

Ce qu'il faut retenir ...

- Notions de chromatisme axial & chromatisme latéral
- Notions de chromatisme primaire & chromatisme secondaire
- Définition de la constringence ν d'un verre sur un intervalle spectral
- Pour une lentille mince, $df' = -\frac{f'}{\nu}$ et $\Delta = \frac{h^2}{2f'\nu}$ (indépendant de z, z')

Exercice 1 (chromatisme axial)

Chromatisme axial d'une lentille mince en BK7 (v=64), f' = 150mm, éclairée par un faisceau collimaté de lumière blanche de diamètre 6mm

- 1. Chromatisme axial $\varepsilon = \overline{A'_R A'_B}$?
- Rayon de la tache de diffusion dans le plan de l'image paraxiale rouge ?
 Comparer à la limite de diffraction.
- 3. Ecart normal (en unités de λ = 656nm) associé au chromatisme axial, en bord de pupille et pour une mise au point sur l'image paraxiale rouge ?
- 4. Comment vos réponses sont-elles modifiées si la lentille est maintenant en SF5 (v=32) ?

Exercice 2 (chromatisme latéral)

Chromatisme latéral d'une lentille mince en BK7 (v=64), f' = 150mm, éclairée sous un angle de 1° par un faisceau collimaté de lumière blanche de diamètre 6mm (diamètre de la pupille)

- 1. Où placer la pupille d'entrée pour annuler le chromatisme latéral?
- 2. Dans la suite on place la pupille au foyer objet de la lentille. Evaluez :
 - a. La hauteur d'impact h_0 , sur la lentille, du rayon moyen.
 - b. Le chromatisme latéral primaire.
 - c. Le rapport entre les grandeurs apparentes des deux images bleue et rouge. Laquelle des deux images est la plus petite ?
 - d. L'écart normal (en unités de λ = 656nm) associé au chromatisme latéral, en bord de pupille et pour une mise au point sur l'image rouge.
 - e. L'écart normal total de chromatisme (axial + latéral), toujours pour la mise au point sur l'image rouge.
- 3. Que deviennent les quantités précédentes si la lentille est maintenant en SF5 (v=32)?