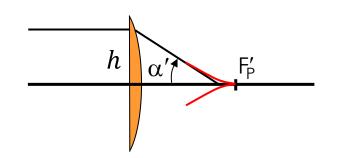


Chapitre 9

Aberrations du 3^e ordre des systèmes simples

- Les lentilles simples -

Lentille mince plan convexe d'indice $N, \infty \to F'$, face plane vers l' ∞



surface 1: plan

surface 2 : rayon R, ellipticité ε

Rappel: pour une lentille mince de rayons de courbure R_1 (surface 1) et R_2 (surface 2): $\frac{1}{f'} = (N-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$

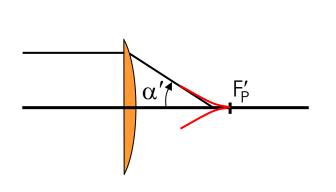
On en déduit : R = -f'(N-1)

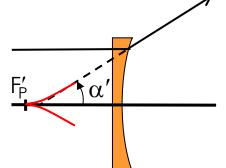
Dioptre 1 : $Q_{z1} = 0$, donc $N\Delta_1 = 0$

Dioptre 2: $Q_{z2} = \frac{N}{R}$ et $z_2 = \infty$ et $z_2' = f'$, donc $\Delta_2 = \frac{h^4}{8} \left(\frac{N}{R}\right)^2 \frac{1}{f'} + \varepsilon (1 - N) \frac{h^4}{8R^3}$

$$\text{Bilan: } \Delta = N\Delta_1 + \Delta_2 = \frac{h^4}{8f'^3} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{1}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{1}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{1}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{1}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{1}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{1}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{1}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{1}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{1}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{1}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{1}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{1}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{1}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{1}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{1}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{1}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{1}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{1}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{1}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{1}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{1}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{1}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{1}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{1}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{1}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{1}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{N}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{N}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{N}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{N}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{N}{N-1} \right)^2 \right] \\ \longrightarrow \alpha = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)$$

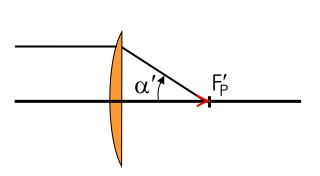
Lentille plan-convexe $\infty \rightarrow F'$

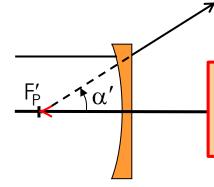




« Mauvais » sens

$$a = -\frac{f'}{2} \left[\left(\frac{N}{N-1} \right)^2 + \varepsilon \left(\frac{1}{N-1} \right)^2 \right]$$





« Bon » sens

$$-a = -\frac{f'}{2} \left[\frac{N^3 - 2N^2 + 2}{N(N-1)^2} + \varepsilon \left(\frac{1}{N-1} \right)^2 \right]$$

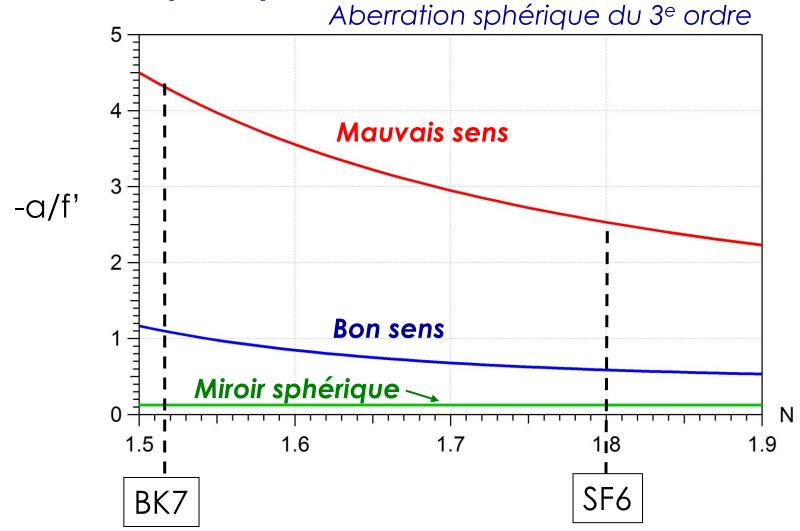
Exemple :
$$N = 1.5$$
, $\varepsilon = 0$

$$a_{bon sens} = -1.2 f'$$

Miroir sphérique $\infty \rightarrow \mathbf{F}'$

$$a_{\text{miroir sph.}} = -R/16 = -f'/8$$

Lentille plan-convexe sphérique $\infty \rightarrow F'$

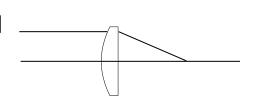


> à O.N. donnée, préférer les lentilles de <u>haut indice</u>, et de <u>courte focale</u>! préférer les miroirs aux lentilles! YS - 2025 - C10

Lentille plan-convexe $\infty \rightarrow F'$

> Annulation de SA3 : possible avec une lentille asphérique

- Exemple 1: lentille plan-hyperbolique, ε = -N²
 rigoureusement stigmatique sur l'axe (SA3 = SA5 = SA7 =...= 0)
 très sensible aux désalignements (coma) → très faible champ
- Exemple 2 : lentille **elliptique-plan**, $\varepsilon = -(N^3 2N^2 + 2)/N$ SA3 = 0 mais ... SA5 limite rapidement



- > Correction globale de SA3, SA5, SA7 ...
 - → asphérisation multi-paramètres

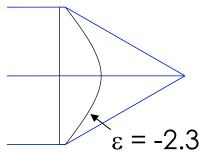
$$z = \frac{h^2 / R}{1 + \sqrt{1 - (1 + \varepsilon)h^2 / R^2}} + K_4 h^4 + K_6 h^6 + K_8 h^8 + \dots$$

Lentilles moulées

- Collimation / Focalisation
 de faisceaux laser
- Coupleurs de fibres optiques
- Lecteurs de CD
- Pinces optiques

Lentille plan-convexe $\infty \rightarrow F'$, ON=0.5, f'=8mm (BK7)

Solution plan-hyperbolique



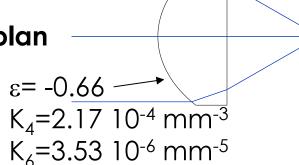
- ➤Stigmatisme rigoureux sur l'axe
- ➤ Champ limite (R_s>80%)

• Solution elliptique-plan

$$\epsilon = -0.53$$

SA3 =0 mais SA5=-39 μ m, SA7=-18 μ m à comparer à R_{Airy}=0.7 μ m! R_s=6% sur l'axe!

• Solution asphérique-plan



- ➤Compensation globale de SA3, SA5, SA7, ... R_s=99.94% sur l'axe!
- >Champ limite (R_s >80%) y'_{max} = 17µm

Coma 3e ordre limitante

Lentille simple

- Paramètres de définition d'une lentille simple :
 - \triangleright Verre: indice N, constringence ν

>Convergence
$$C = \frac{1}{f'} = (N-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

➤ Cambrure « courbure moyenne »

$$X = \left(\frac{1}{R_1} + \frac{1}{R_2}\right) / \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = (N - 1) f' \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$

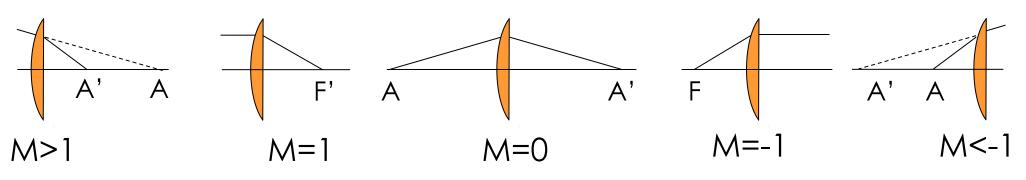
 \triangleright Asphérisation des faces : ε_1 , ε_2

Lentille simple

- Paramètres d'utilisation d'une lentille simple :
 - \triangleright Ouverture numérique α' (ou h)
 - \triangleright Champ y' (ou θ)

Conjugaison
« proximité moyenne »

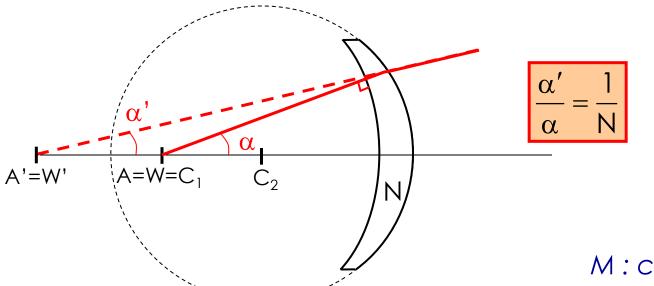
$$M = \left(\frac{1}{z'} + \frac{1}{z}\right) / \left(\frac{1}{z'} - \frac{1}{z}\right) = f'\left(\frac{1}{z'} + \frac{1}{z}\right)$$



➤ Position de la pupille

Lentilles à surfaces sphériques

• Stigmatisme rigoureux possible : le ménisque aplanétique



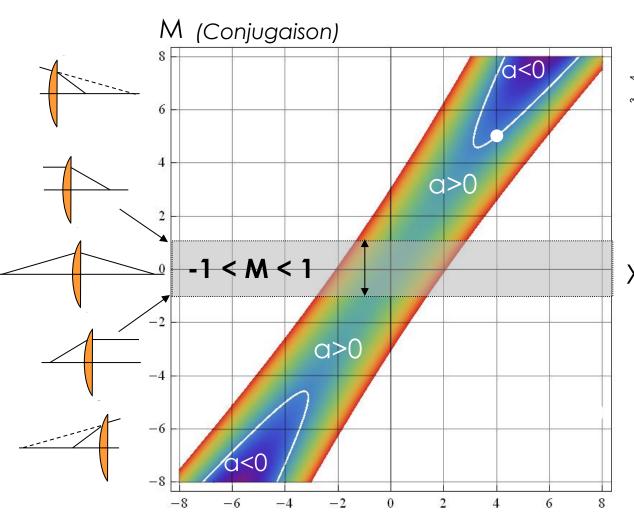
M : conjugaison (z, z') X : forme de la lentille

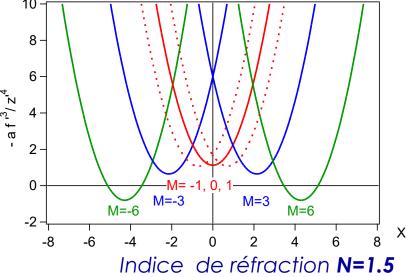
• Cas général :
$$a = -\frac{z'^4}{8 f'^3} \left[\frac{N+2}{N(N-1)^2} X^2 - 4 \frac{N+1}{N(N-1)} MX + \frac{3N+2}{N} M^2 + \left(\frac{N}{N-1} \right)^2 \right]$$

- Impossible d'annuler SA3 si objet & image sont tous deux réels (|M|<1)
- Pour M fixé, trouver X qui minimise SA3 → lentille de meilleure forme

Lentille de meilleure forme

$$-a\frac{f'^3}{z'^4} = \frac{1}{8}Q(X,M)$$
: forme quadratique de X et M





X (forme)

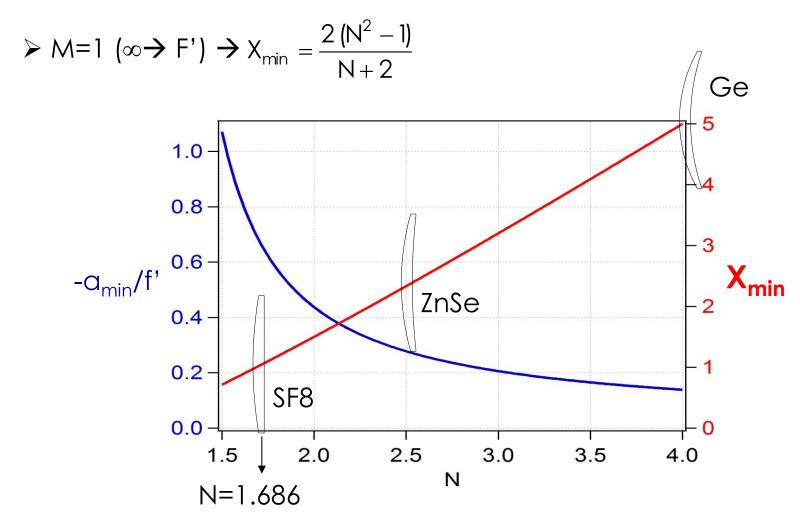
Meilleure forme:

$$X_{min} = M \frac{2(N^2 - 1)}{N + 2}$$

Lentille de meilleure forme

Exemples

 \rightarrow M=0 (conjugaison 2f-2f) \rightarrow X_{min} = 0 : lentille biconvexe symétrique



Lentilles à surfaces asphériques

$$a = -\frac{z'^4}{8f'^3} \left[Q(X, M) + \frac{\epsilon_1(X+1)^3 - \epsilon_2(X-1)^3}{2(N-1)^2} \right]$$

M : conjugaison (z, z')
X : forme de la lentille

 $\varepsilon_{1,\prime}, \varepsilon_{2}$: ellipticités des surfaces

- $\rightarrow \forall (X,M)$, on peut annuler SA3 en asphérisant au moins 1 face
- \triangleright Asphérisation multi-paramètres : ε , K_4 , K_6 , K_8 , ...
 - > correction globale de tous les ordres d'aberration sphérique

IOGS, Nature Physics 2007

Lentille asph. moulée, ON = 0.5, λ = 850nm R_S > 0.9 sur l'axe

 $R_s > 0.8$ jusqu'à 30µm hors d'axe

Pince optique

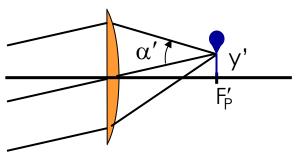
1 Atome piégé

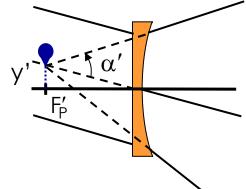
PSF mesurée sur l'axe

Atome dans une pince mobile

10µm ys-2025-c10

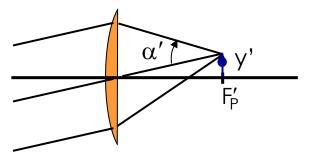
Lentille plan-convexe $\infty \rightarrow F'$, pupille sur la lentille

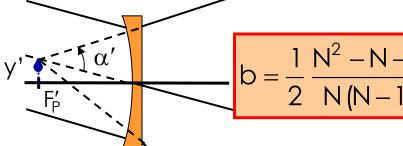




$$b = \frac{1}{2} \frac{N}{N-1}$$

« Bon » sens

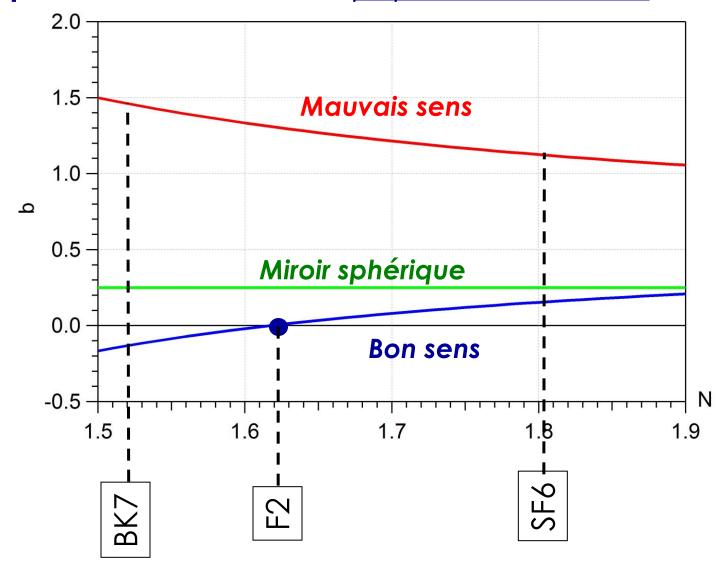




Exemple: N=1.5 \rightarrow b_{mauvais sens}= 3/2 b_{bon sens} = -1/6

Miroir sphérique $\infty \rightarrow F'$ $b_{\text{miroir sph.}} = 1/4 \text{ (pupille sur le miroir)}$

Lentille plan-convexe $\infty \rightarrow F'$, pupille sur la lentille



Lentilles à surfaces sphériques

• Cas général :
$$b = \frac{1}{4} \frac{z'^2}{f'^2} \left[\frac{2N+1}{N} M - \frac{N+1}{N(N-1)} X \right]$$

M : conjugaison (z, z')
X : forme de la lentille
Pupille sur la lentille

• \forall M(z, z'), il existe une forme X_0 de lentille qui annule CMA3

Lentilles asphériques aplanétiques

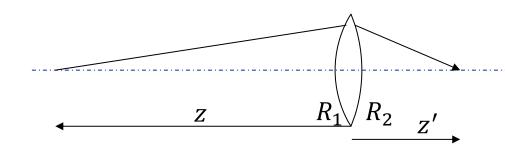
- Choisir la forme X₀ qui annule CMA3
- Asphériser 1 face pour annuler SA3

Astigmatisme & Courbure de champ des lentilles simples

Rappel: pour un dioptre portant la pupille ...

$$\frac{A'}{n'} = \frac{A}{n} + \left(\frac{1}{n'z'} - \frac{1}{nz}\right)$$

$$\frac{C'}{n'} = \frac{C}{n} - 2\left(\frac{1}{n'z'} - \frac{1}{nz}\right) + \frac{1}{R}\left(\frac{1}{n'} - \frac{1}{n}\right)$$



Dioptre 1:
$$\frac{A_{int}}{N} = A + \left(\frac{1}{N z_{int}} - \frac{1}{z}\right)$$

Dioptre 2:
$$A' = \frac{A_{int}}{N} + \left(\frac{1}{z'} - \frac{1}{N z_{int}}\right)$$

$$Bilan: A' = A + \frac{1}{f'}$$

De même :
$$C' = C - \frac{2}{f'} - \frac{1}{N f'}$$

Astigmatisme & Courbure de champ des lentilles simples

Pour une <u>pupille sur la lentille</u> ...

Astigmatisme :

$$A'_{L} = \frac{1}{f'}$$

• Courbure de champ: $C'_{L} = -\frac{2}{f'} - \frac{1}{NI f'}$

$$C'_{L} = -\frac{2}{f'} - \frac{1}{N f'}$$

• Petvallien :

$$P'_{L} = -\frac{1}{N f'}$$

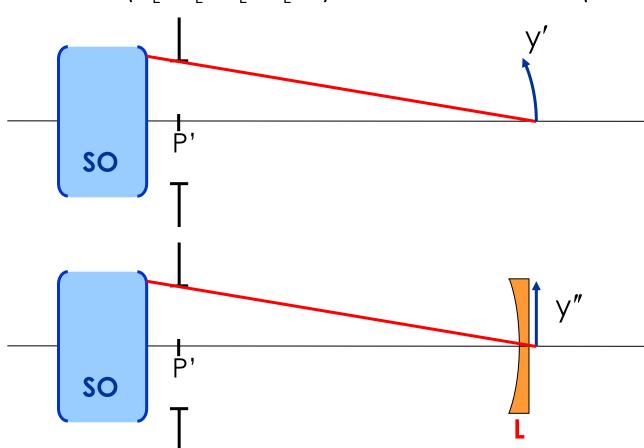
- Indépendants de (z, z')
 - > Indépendants de la forme de la lentille (X)

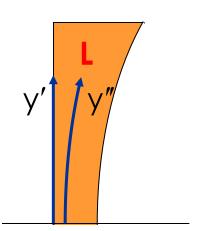
> Aucune forme de lentille ne permet d'annuler A', C', P', ... mais on peut les diminuer en choisissant des verres de haut indice.

La lentille de « champ plan »

Configuration: objet (et image) sont (quasiment) sur la lentille mince

Intérêt : permet de **corriger la courbure de champ** d'un système optique, sans introduire d'autres aberrations géométriques du 3^e ordre $(a_1=b_1=A_1=D_1=0)$ (idée : Smyth, 1873)



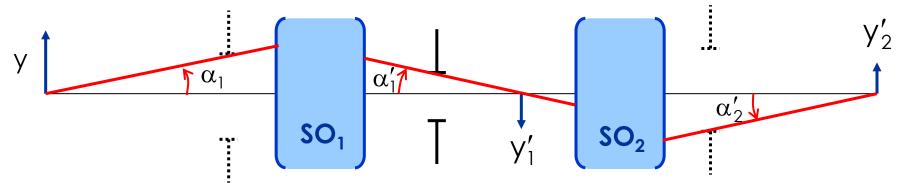


Principe: L se comporte comme une lame d'indice N et d'épaisseur variable

$$C_L = P_L = -\frac{1}{Nf'_L}$$

Association de systèmes optiques

Théorème de Gouy: $n_2' \Delta_{total} = n_2' \Delta_2 + n_1' \Delta_1$ et invariant paraxial: $n_1' y_1' \alpha_1' = n_2' y_2' \alpha_2'$



$$a_{total} = a_2 + a_1 \left(\frac{n_2'}{n_1'}\right)^3 (g_{y,2})^4$$

Attention! Ramener les coefficients b_i, C'_i, A'_i, D_i à une position de pupille commune

$$b_{total} = b_2 + b_1 \left(\frac{n_2'}{n_1'}\right)^2 (g_{y,2})^2$$

$$C'_{total} = C'_2 + C'_1 \left(\frac{n'_2}{n'_1} \right)$$

$$A'_{total} = A'_2 + A'_1 \left(\frac{n'_2}{n'_1} \right)$$

$$D_{\text{total}} = D_2 + D_1 \frac{1}{(g_{v,2})^2}$$

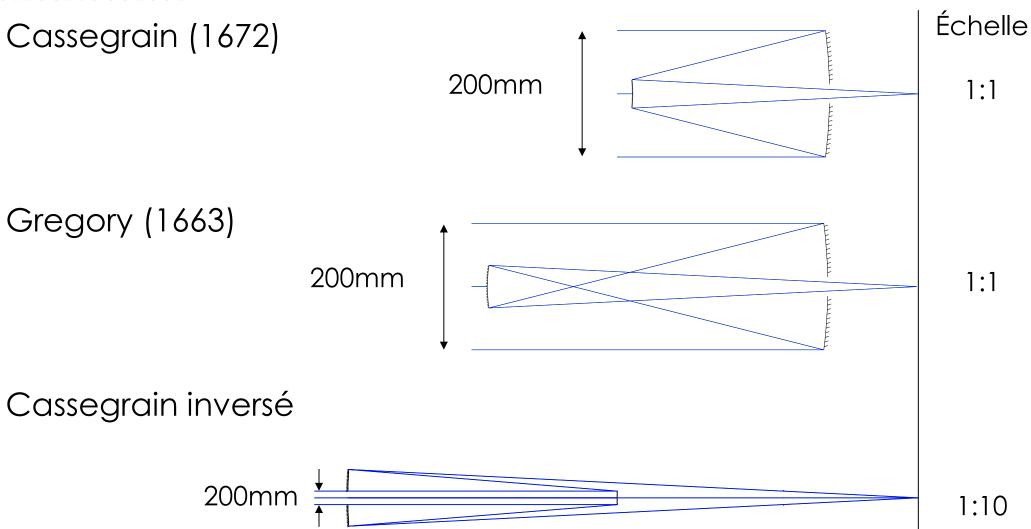
$$\frac{C'_{total}}{n'} = \sum_{i} \frac{C'_{i}}{n'_{i}}$$
$$\frac{A'_{total}}{n'} = \sum_{i} \frac{A'_{i}}{n'_{i}}$$

Chapitre 10

Aberrations du 3^e ordre des systèmes simples

- Les télescopes à 2 miroirs -

Classification par configuration



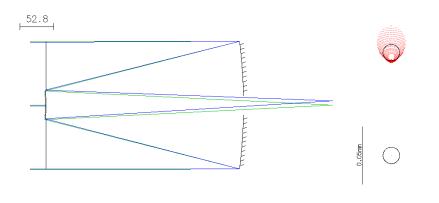
3 configurations pour un télescope de focale 2m, ON=0.05

Classification par aberrations corrigées

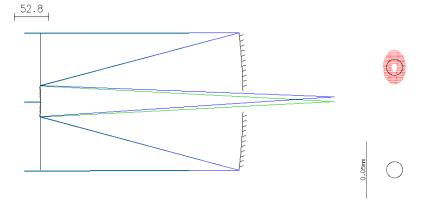
<u></u>		1				Ī
	Caractéristiques	Aberration corrigée				Propriétés
Combinaison	Primaire/Secondaire	SA3	СМАЗ	AST3	CRV3	
Cassegrain classique	Parabole/Hyperbole					
Dall-Kirkham	Ellipse/Sphère					SA5+
Presman-Camichel	Sphère/Asphérique					Forte coma
Ritchey-Chrétien (1910)	2 hyperboles					
Couder (1926)	2 asphériques e= -2.F '					
Schwarzschild (1905)	2 sphères concentriques, $R_1/R_2 = (3-\sqrt{5})/2$, e= -2.F '					Encombrants + Vignettage
Wynne	2 ellipses e=-2.F' R ₁ =R ₂					important

De Cassegrain à Wynne 300 ans d'ingéniosité

Télescope de focale 2m, ON = 0.05



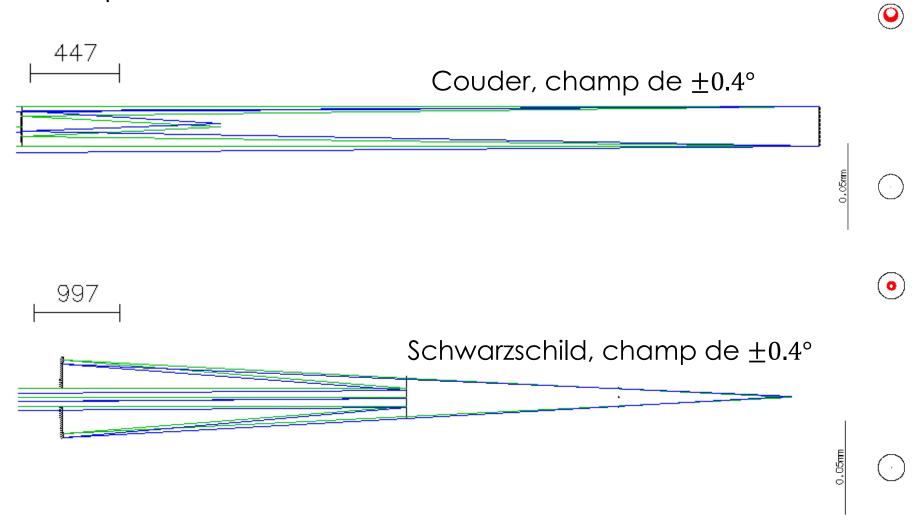
Cassegrain, champ de $\pm 0.2^{\circ}$



Ritchey – Chrétien, champ de ±0.2°

De Cassegrain à Wynne 300 ans d'ingéniosité

Télescope de focale 2m, ON = 0.05



De Cassegrain à Wynne 300 ans d'ingéniosité

Télescope de focale 2m, ON = 0.05

