

Cours de Pharmacocinétique UE 18 Pk – DFGSP3

Pr Angelo PACI
Service de Pharmacologie – Institut Gustave Roussy
Pharmacocinétique – Pharmacie clinique
angelo.paci@universite-paris-sud.fr

Cours 4 Variabilité pharmacocinétique

Enseignements de Pharmacocinétique

DFGSP3

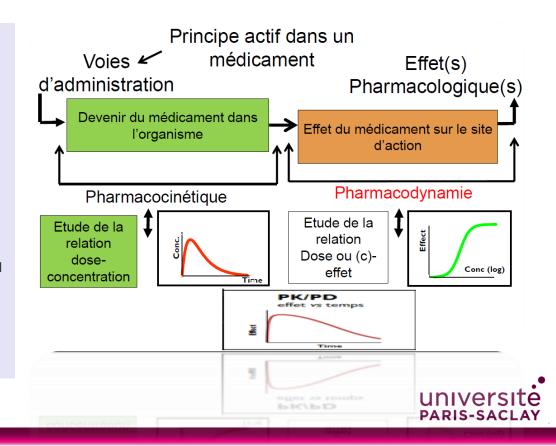
- Cours 1 : Rappels des fondamentaux en Pharmacocinétique
- Cours 2 : Doses réitérées IV bolus
- Cours 3 : Doses réitérées voie orale
- Cours 4 : Variabilité pharmacocinétique
- Cours 5 : Interactions médicamenteuses et suivi thérapeutique
- Cours 6 : Pharmacocinétique non linéaire
- Cours 7 : Protocoles d'études pharmacocinétiques
- Cours 8 : Variabilité métabolique et polymorphisme

DÉFINITIONS ET NOTIONS DE BASE

Relations :

 Relation pharmacocinétique – pharmacodynamique (PK-PD): relation entre la quantité de p.a. (X₀) et l'effet pharmacologique (efficacité ou toxicité).

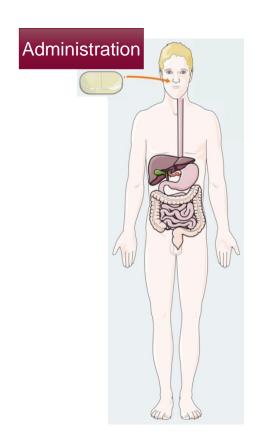
Pharmacocinétique :


Concentration fonction du temps

Pharmacodynamie:

Effet en fonction de la concentration

Relation PK-PD:

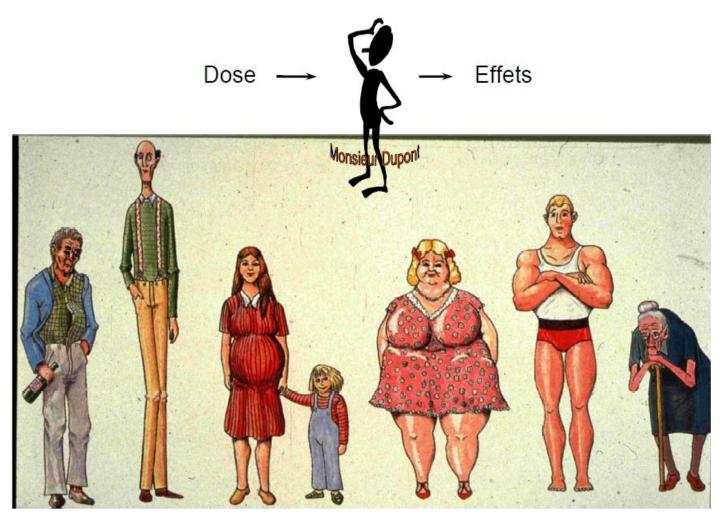

- Effet en fonction du temps
- relation entre la pharmacocinétique du principe actif (p.a.) et l'effet du médicament (efficacité thérapeutique ou toxicité responsable d'effets indésirables) ou pharmacodynamie

DÉFINITIONS ET NOTIONS DE BASE

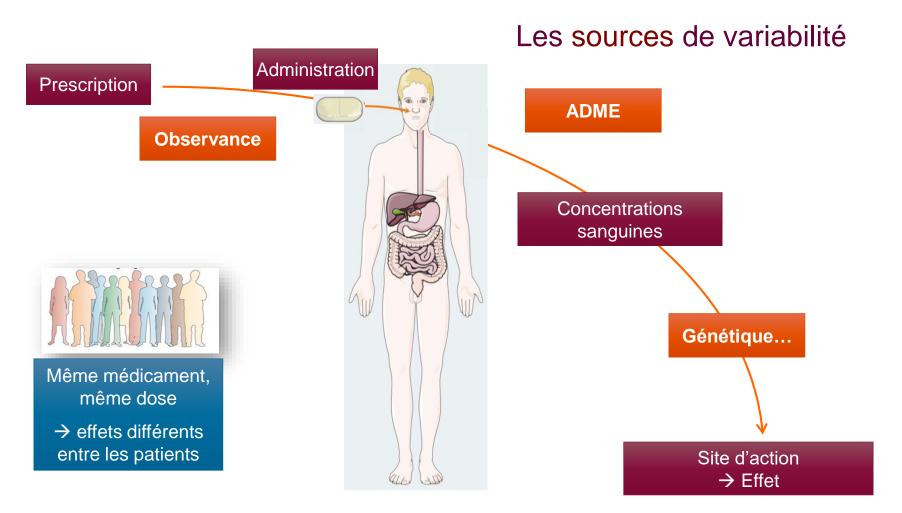
• La Pharmacodynamie : Effet (efficacité ou toxicité)

Ce que le médicament fait sur l'organisme

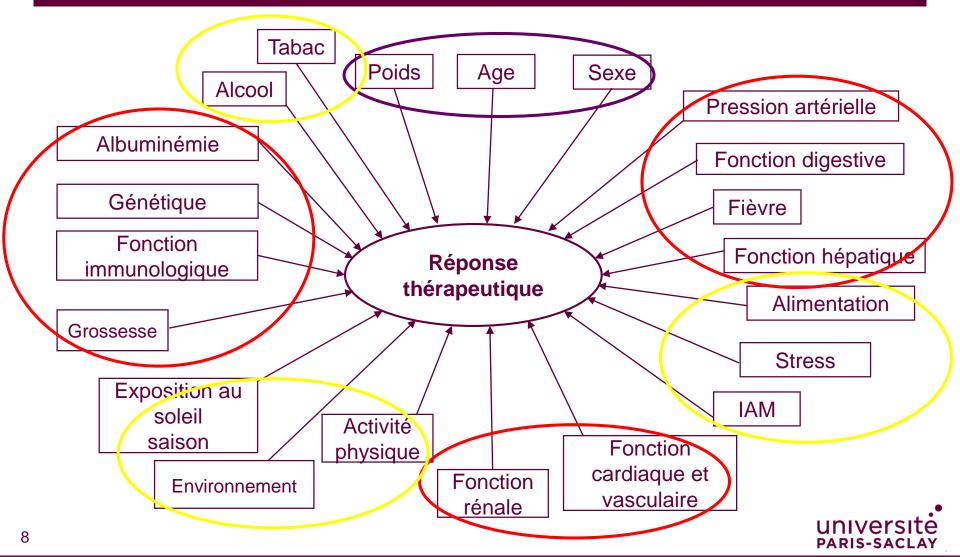
Effets du médicament


- Pas d'effet
- → non efficace
- Effet thérapeutique
- → efficace
- Effets indésirables
- → toxicité

Même médicament, même dose


→ effets différents entre les patients

VARIABILITÉ DE LA RÉPONSE : UNE DOSE POUR TOUS?


VARIABILITÉ DE LA RÉPONSE : QUELLES SOURCES?

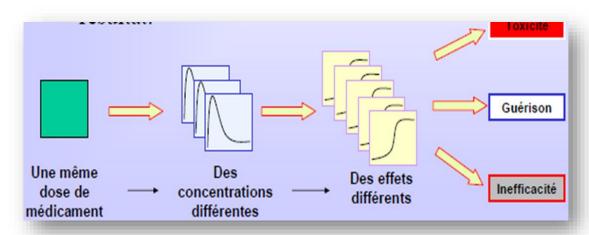
VARIABILITÉ DE LA RÉPONSE

Facteurs susceptibles de modifier la pharmacocinétique des médicaments et la réponse thérapeutique

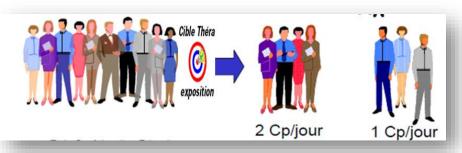
VARIABILITÉ DE LA RÉPONSE

Facteurs susceptibles de modifier la pharmacocinétique des médicaments et la réponse thérapeutique

- Pharmacocinétiques → ADME
 - État physiologique (ethnie, sexe, taille, polymorphisme génétique...)
 - Etat pathologique (IR, IH, ...)
 - Traitements associés (interactions, induction, inhibition...)
 - Facteurs environnementaux (fumeur...)
 - Alimentation (jus de pamplemousse...)
- Pharmacodynamiques
 - Sensibilité des récepteurs
 - Polymorphisme génétique
 - Interactions médicamenteuses


PLAN

- Ce qu'il faut savoir avant
- Quelles variabilités ?
- Estimation de la variabilité pharmacocinétique
- Sources de variabilité
- Ce qu'il faut retenir



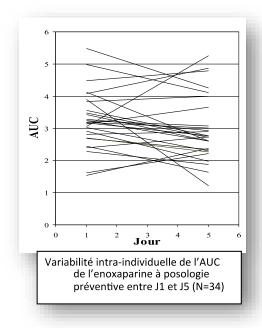
Pourquoi vouloir connaître la variabilité?

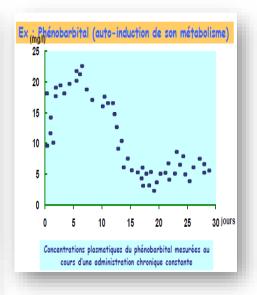
- La variabilité conditionne la réponse à une dose :
 - Inefficacité /efficacité
 - Effets indésirables

- La variabilité conditionne la posologie :
 - Sensibilité des récepteurs
 - Polymorphisme génétique
 - Interactions médicamenteuses

VARIABILITÉ: DÉFINITIONS

Variabilité totale mesurée = Variabilité métrologique + biologique

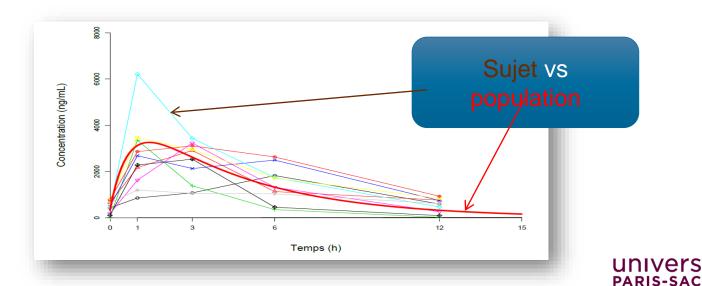

- Variabilité métrologique = variabilité expérimentale + technique
 - Variabilité expérimentale : liée au protocole, à la précision de la dose,...
 - Variabilité technique : mesure à maitriser, validation CV < 15%
- Variabilité biologique = Variabilité inter- + intra-individuelle



VARIABILITÉ : DÉFINITIONS

Variabilité intra-individuelle

- Variation des paramètres pharmacocinétiques chez un même individu entre différentes mesures :
 - · dans un intervalle de prise : repas vs à jeun
 - dans la période de traitement : stationnarité



VARIABILITÉ : DÉFINITIONS

Variabilité inter-individuelle

- Variation des paramètres pharmacocinétiques entre différents individus sur une même période :
 - Démographie, critères d'inclusion
 - Physiopathologie : variabilité globale qui correspond à la ©des variabilités
 - Repas vs à jeun
 - Stationnarité dans la période de traitement : Steady-state ou état d'équilibre

PLAN

- Ce qu'il faut savoir avant
- Quelles variabilités ?
- Estimation de la variabilité pharmacocinétique
- · Sources de variabilité
- Ce qu'il faut retenir

ESTIMATION DE LA VARIABILITÉ PK : PARAMÈTRES

Les paramètres Pk importants sont : F, Cl_T & Vd

$$\begin{array}{ccc} \text{Dose} & \text{CI}_{\text{T}} \\ \hline \tau & \text{F} \end{array}$$

Dose =
$$CI_T$$

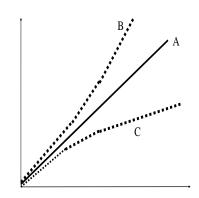
F

- Estimation de la variabilité :
 - par une mesure objective (Concentration systémique) avec une technique simple et validée
 - Par un protocole précis (modalités d'administration contrôlées)
 - Dose mesurée à +/-5%
 - · Heures précises de prise
 - Horaires de prélèvements
 - Extrapolation limitées des paramètres tels que l'AUC et le ke
- Approche à l'aide de cinétiques individuelles riches
- Approche à l'aide de cinétiques de population

ESTIMATION DE LA VARIABILITÉ : CINÉTIQUES RICHES

- Etudes de phase I : population homogène sélectionnée
- Pharmacocinétique complète ou riche
 - Avec + de 6 mesures par temps
 - Temps précis et pertinents :
 - Encadrer le pic
 - Nb suffisant de points → décrire les phases d'élimir
- Modélisation des Pk individuelles
 - Calcul de Cl_T et Vd
 - Calcul de F si contrôle IV associé
- Histogrammes de fréquence

Clinical Trial


- Limited population (n<1 000)
- Highly selected patients
- Smoothed clinical co-variates.
- Age: 18-65 years
- Little, or well-known comorbidities
- Controlled lifestyle

ESTIMATION DE LA VARIABILITÉ : CINÉTIQUES RICHES

Applications: -Etude de linéarité

-Etude de bioéquivalence

A : cinétique linéaire

B et C : cinétiques non linéaires

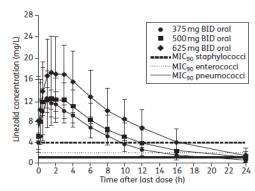


Figure 1. Area under the curve for different doses of linezolid in relation to MICs of Gram-positive pathogens (reproduced from Stalker DJ et al. J Antimicrob Chemother 2003; 51: 1239-46). BID, twice daily.

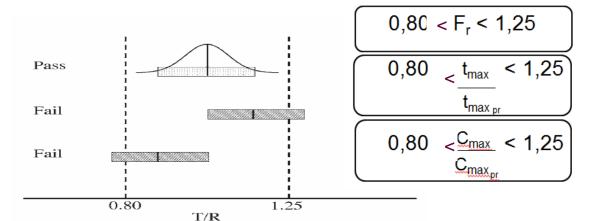
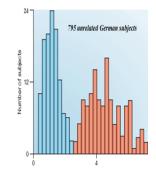


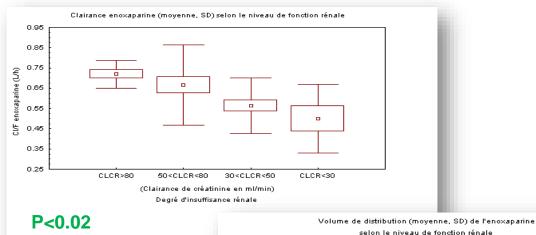
Figure 1. Schematic diagram illustrating possible bioequivalence study outcomes. T/R = test/reference.

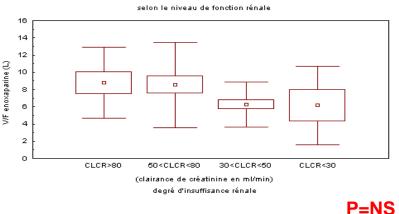

ESTIMATION DE LA VARIABILITÉ : ANOVA

- Test statistiques de comparaison intergroupes ou ANOVA
- Distribution normale ou Log normale :
 - Analyse de variance
 - Hypothèse H0:
 - Toutes les valeurs appartiennent à la même population (Unimodale)
 - Rapport des variances intragroupe et intergroupe
 - Si seuil de significativité du rapport au seuil de sécurité de 95% (99%) est dépassé → H0 est rejetée et les populations sont différentes (Bimodale)

Si répartition binomiale ou CV élevé (> 0,5);

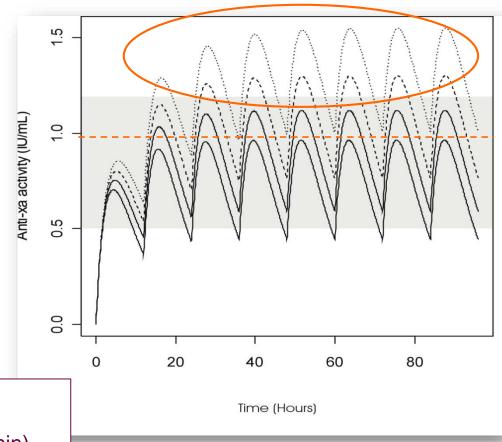
 \Rightarrow plusieurs populations ?


Exemple : bimodale


Unimodale ne veut pas dire qu'il n'y a pas une sous population non visible car en nombre trop faible et en différentiel de valeur trop faible ⇒ analyse en PK population

ESTIMATION DE LA VARIABILITÉ : ENOXAPARINE

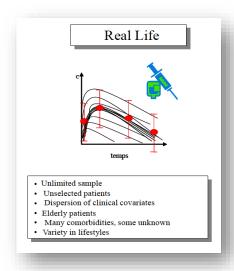
Distribution normale : Cl_t/F

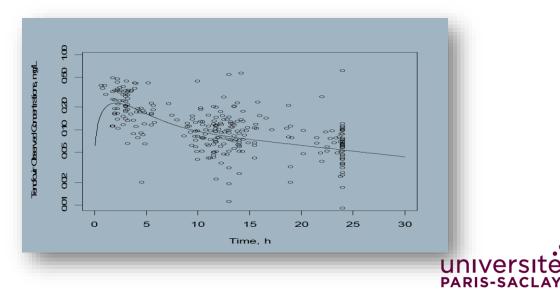


Vd/F

ESTIMATION DE LA VARIABILITÉ : ENOXAPARINE

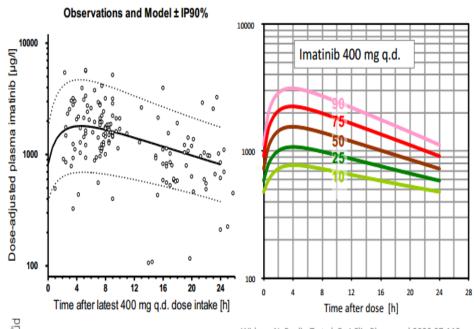
Exemple: énoxaparine conséquences




IR Sévère (CL_{CR}<30 mL/min)

IR modérée (30<CL_{CR}<60 mL/min)

- Cinétiques pauvres (peu de prélèvements), mais n élevé (beaucoup de patients)
- Permet des études **chez des malades** qui étaient exclus : enfants, sujets âgés, sujets de réanimation ; soins intensifs (vraie vie)
- Détermination des paramètres moyens $\pm \sigma$ à partir du modèle structural
- Recherche des facteurs individuels (covariables) qui influeront significativement un paramètre PK
- Etude de leur influence par analyse univariée (modèles multiplicatifs, modèle additifs) puis analyse multivariée



Les inhibiteurs de tyrosine kinase sont un bon exemple de forte variabilité Pk

- Voie orale :
 - Observance
 - Alimentation
 - Biodisponibilité
- Métabolisme et transport
- Interactions
- Elimination (CL)

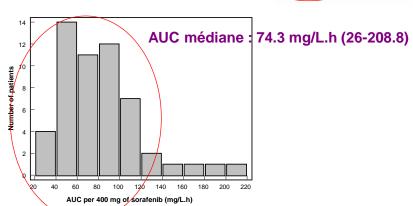
L'imatinib a une forte variabilité PK

Percentiles de l'étude de PK de population lausannoise 2006 (50 patients CML et GIST) :

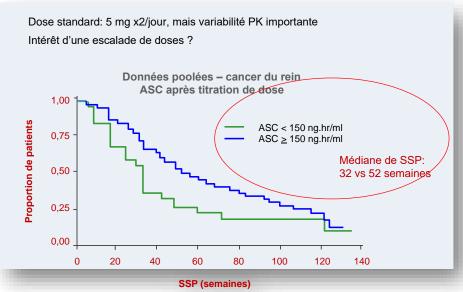
Widmer N, Buclin T et al. Br J Clin Pharmacol 2006;97-112

UIIIVEISITĖ PARIS-SACLAY

pharmacocinétique des ITK...


- Biodisponibilité par voie orale très variable : 15 à 98%
- Effet du bol alimentaire notamment les repas riches en lipides :
- Recommandations de prise à jeun (RCP) pour certains,
 - Erlotinib : △ AUC + 109% Pazopanib : △ AUC + 100%
 - Lapatinib :

 AUC + 80 à 160% Vémurafenib:

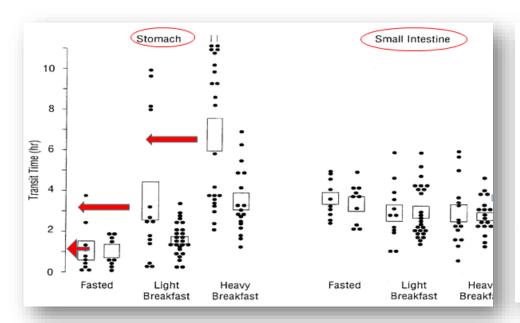

 AUC + 200%
- Recommandations de prise à horaires fixes → limiter la ∆II (CV_{AUC} : 9 à 221%)
- Forte liaison aux protéines plasmatiques (> 93%)
- Rôle important du métabolisme par les CYP450 (CYP3A4, 1A2, 2C19). IAM
- Certains sont eux-mêmes inducteurs ou inhibiteurs → IAM
- Certains métabolites sont actifs
- Elimination majoritairement biliaire → Adaptation en cas d'IH
- Importante variabilité inter- et intra-individuelle justifiant un suivi thérapeutique pharmacologique (STP) avec adaptation posologique

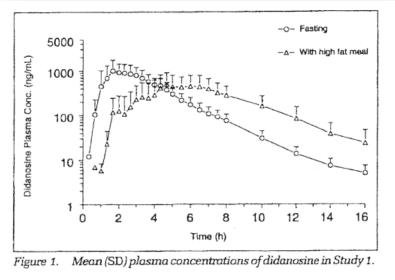
Variabilité de l'exposition plasmatique aux ITK

Drogue	Posologie	CV Cmax	CV AUC
Axitinib	5-10 mg	36-93%	39-94%
Sorafenib	400 mg bid	41-107%	24-91%
Sunitinib	50 mg	46%	41%
Vandetanib	100 mg	73%	58%
	Klumpen e	et al., Cancer	Treat Rev 2010

Etude de phase II de l'axitinib dans les cancers du rein métastatiques et corrélation pharmacocinétique / pharmacodynamie (PK/PD)

D'après Rini BI et al., abstr. 4503, ASCO 2012

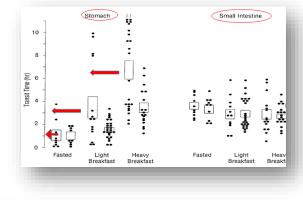

PLAN

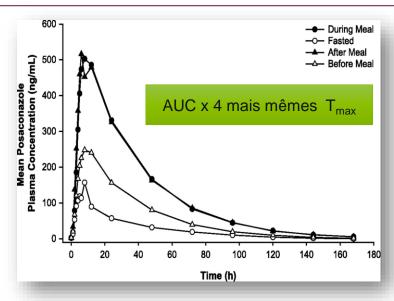

- Ce qu'il faut savoir avant
- Quelles variabilités ?
- Estimation de la variabilité pharmacocinétique
- Sources de variabilité
- Ce qu'il faut retenir

Sources de variabilité inter-individuelle : Observance/Alimentation

- Maitrise de la dose absorbée (voie orale)
 - observance
 - alimentation

AUC identiques mais C_{max} et T_{max} modifiés




Sources de variabilité inter-individuelle : Observance/Alimentation

- Maitrise de la dose absorbée (voie orale)
 - observance
 - alimentation (vidange gastrique)

400 mg de posaconazole à jeun ou 5 minutes avant un repas riche en graisses (50 g de graisses)

 $400~\rm mg$ de posaconazole avec un repas riche en graisses ou $20~\rm minutes$ après augmente l'AUC de 380~% / à jeun

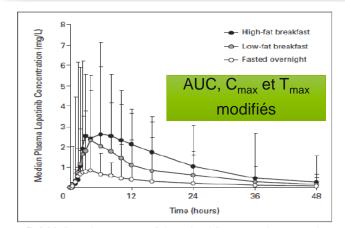


Fig 1. Median and upper ranges of plasma lapatinib concentrations versus time following a 1,500-mg dose administered after fasting overnight, after a low-fat broakfast, and after a high-fat broakfast.

Sources de Variabilité : IAM à L'Absorption

Interactions médicamenteuses dans le TD :

Complexation : Sels d'Al ou de Mg

Exemple de la Norfloxacine seule ou en présence de sels d'Al ou de Mg

pH-dépendant : anti-acides, anti-H2, IPP

Cas de l'IM esomeprazole /pazopanib

- Les ITK ont une solubilité pH-dépendante
- L'administration concomitante de traitements augmentant le pH est à éviter
- Diminution de l'absorption avec les IPP, les anti-H2 et anti-acides (hydroxyde d'Al ou de Mg)
- Eviter également les résines chélatrices, les topiques gastro-intestinaux

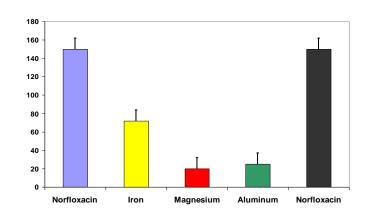
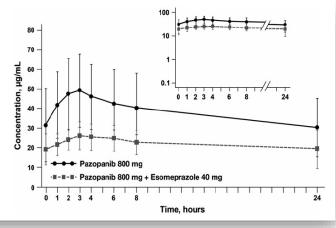



Fig. 2 Mean (±standard error) plasma concentrations of pazopanib following administration of pazopanib 800 mg for 7 days or coadministration of pazopanib 800 mg plus esomeprazole 40 mg for 5 days (linear scale). Inset semi-log scale

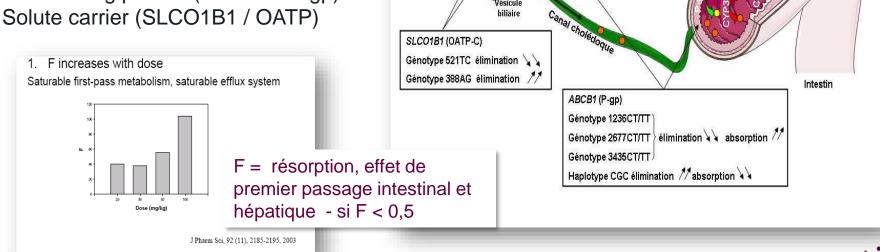
Sources de variabilité : EPP hépatique & **TRANSPORTEURS**

Tacrolimus

Métabolites du tacrolimus

NR112

Génotype 25385TT élimination


Effet de premier passage hépatique

Métabolisme CYP450-dépendant :

- Interactions
- Polymorphisme

Tranporteurs et polymorphisme :

- ATP binding protein (ABCB1 / P-gp)

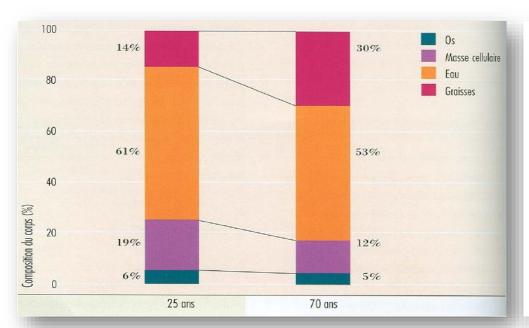
CYP3A5*1 élimination /


absorption

CYP3A4*1B

élimination 1

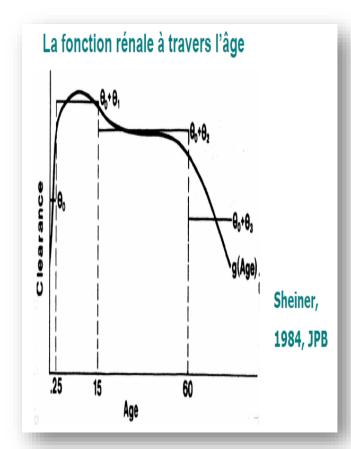
absorption \


F = résorption, effet de premier passage intestinal et hépatique - si F < 0,5

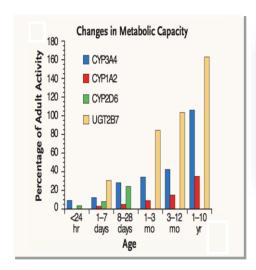


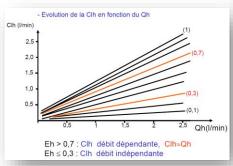
Influence de la valeur de la biodisponibilité absolue d'un médicament sur la variabilité de ce paramètre, d'après la compilation de 149 études.

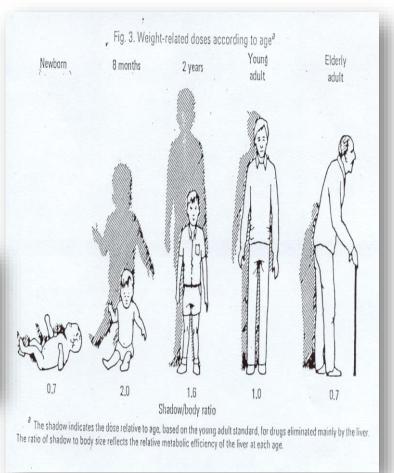
- Débit cardiaque (IC, grossesse)
- Répartition masse grasse / masse maigre (âge, obésité :poids idéal?)
- Lipoprotéines, protéines, dénutrition (hypo-albuminémie)
- Grossesse (fœtus)
- Réanimation (petits Vd)

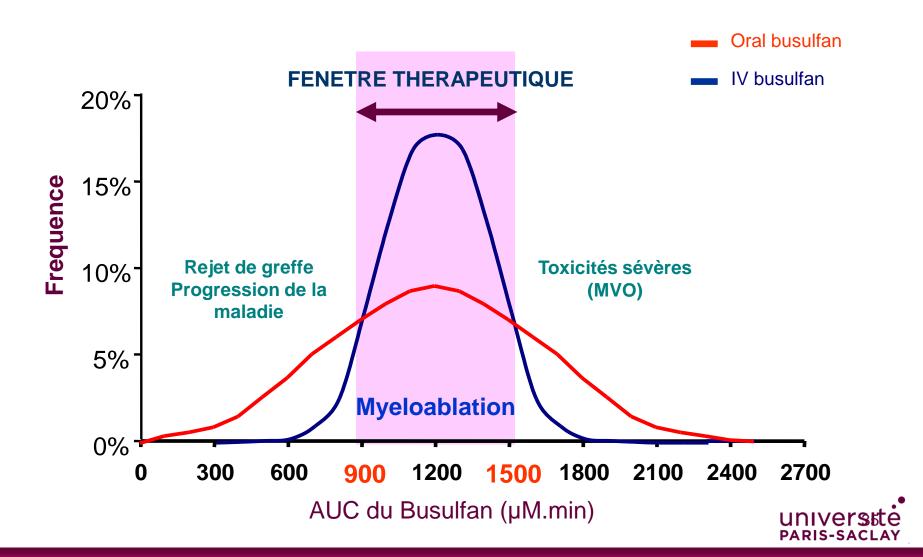


 $CI_T = CI_R + CI_{NR}$ $CI_R > 0.5 CI_T : \hat{a}ge, IRC, IRA$ CI_R Proche de $CI_{créat}$

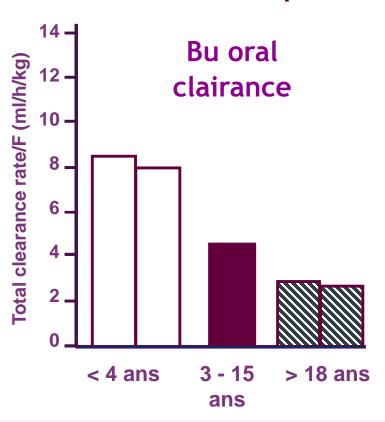

DFG

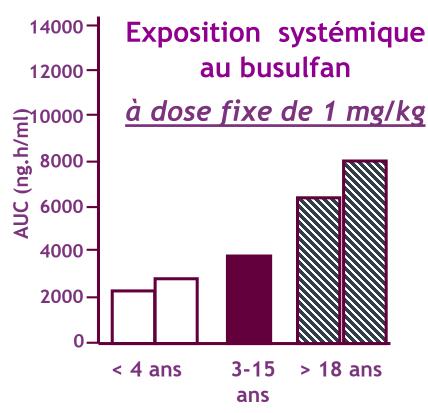

- 20 ml/min à 2 sem
- 40 ml/min à 1 mois
- 120 ml/min à 6 mois
- Sécrétion normale à 6 mois

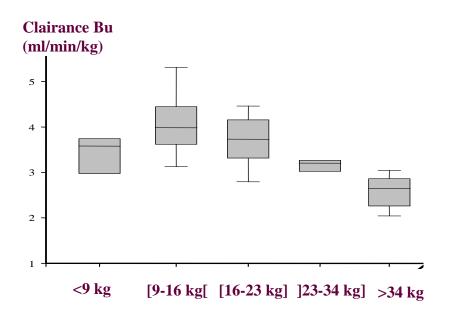



$$CI_{NR} = CI_{H}$$
 $CI_{H} = Q_{H} \times E_{H}$
 $CI_{H} = Q_{H} \times (f_{II} CI_{int}/Q_{H} + f_{II} CI_{int})$

- $E_H > 0.7 \Rightarrow Cl_H = Q_H$ dépendant (cirrhose, fibrose, sujet âgé)
- $E_H < 0.3 \Rightarrow Cl_H = f_u Cl_{int}$ dépendante

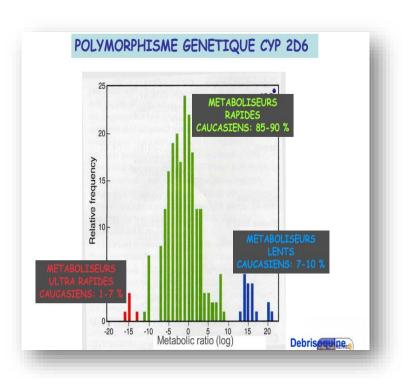






Variations de l'AUC : comparaison avec les adultes

Doses recommandées chez l'enfant pour atteindre la cible thérapeutique


Poids	Dose	
< 9 kg	1 mg/kg	
9 à < 16 kg	1,2 mg/kg	
16 à 23 kg	1,1 mg/kg	
> 23 à 34 kg	0,95 mg/kg	
> 34 kg	0,8 mg/kg	

o Pharmacocinétique dans la population pédiatrique

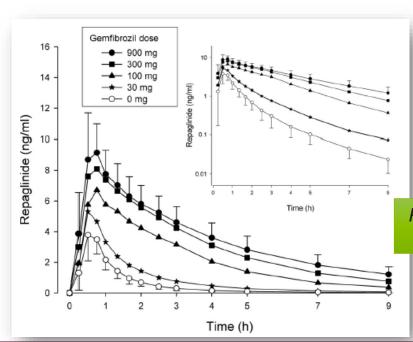
- La clairance varie de manière continue de 2,49 à 3,92 ml/minute/kg chez l'enfant < à 6 mois jusqu'à 17 ans.
- La demi-vie d'élimination varie de 2,26 à 2,52 h.
- Les variabilités inter et intra-patient de l'exposition plasmatique sont respectivement < à 30% et à 20%.
- Le poids est la covariable principale pour expliquer la variabilité pharmacocinétique du busulfan.

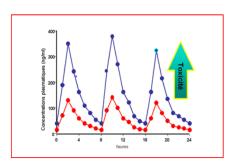
Cl_{NR} > 0,5 Clt : polymorphisme génétique CYP-UGT

TRANSFORMATION DE LA CODÉINE EN MORPHINE PAR LE CYP2D6

Taux de transformation de 10% mais variable en fonction des individus

- Métaboliseurs lents (10% des caucasiens) sont résistants à l'effet analgésique



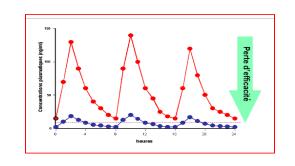

IAM si 2 principes actifs métabolisés ou IA alimentation

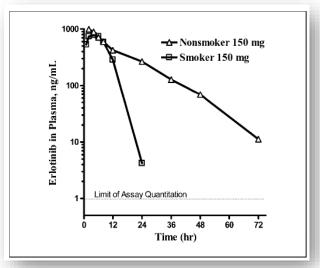
Inhibition enzymatique : Diminution de l'activité d'une isoenzyme (rapide / réversible)

 \rightarrow Cl_H \odot AUC_{0-inf} et t_{1/2} \nearrow \rightarrow sur-exposition

 \rightarrow $\$ AUC_{0-inf} du métabolite \rightarrow sous-exposition

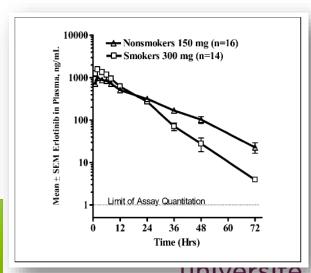
Profils cinétiques du repaglinide associé à des doses croissantes de gemfibrozil (Honkalami et al. DMD 2011)


IAM si 2 principes actifs métabolisés ou IA alimentation


Induction enzymatique :

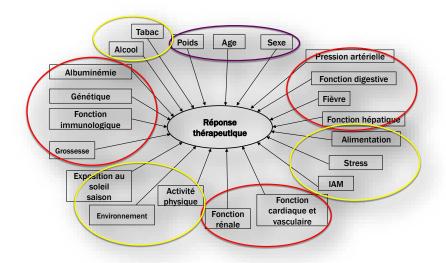
de l'activité d'une isoenzyme (instauration + lente, durable par induction des gènes codant pour ces enzymes → surexpression protéique)

Ø du métabolisme du principe actif et
 \(\text{de la C} \) sg
 → sous-exposition
 \(\text{de la C} \)


Ø du métabolisme de la prodrogue et Ø de la C° sg → sur-exposition

Profils cinétiques chez le fumeur et chez le non fumeur pour une même dose 150 mg/j

Nécessité d'augmenter la dose à 300 mg/j pour avoir un profil similaire


PLAN

- Ce qu'il faut savoir avant
- Quelles variabilités ?
- Estimation de la variabilité pharmacocinétique
- · Sources de variabilité
- Ce qu'il faut retenir

CE QU'IL FAUT RETENIR

- Sources de variabilité nombreuses :
 - · Compliance, ADME, génétiques
- Facteurs modifiant la Pk :
 - Morphométriques
 - Physiologiques physiopathologiques
 - Exogènes
- Pourquoi connaître la variabilité?
 - · Dose et posologie
- Quelle variabilité?
 - Totale = métrologique + biologique
 - Totale = exp. + technique + Pharmacocinétique
- Quels paramètres Pk?
 - F, Cl_T, Vd
- Pk complète :
 - Cinétiques riches, essais cliniques (n faible),
 - · Normalisation, ANOVA, uni/bimodale
- Pk de population :
 - · Cinétiques pauvres, varie vie (n élevé),
 - Analyse uni/multivariée
- Sources de variabilité :
 - Observance/alimentation/environnement/pratiques
 - F, Vd, CL_T
 - Interactions, métabolisme et transport/EPP (E_H)/ Cl_{int}

