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Accordingly, the magnitude of the Poynting vector is

1 Vol VI

o L2ma  2mal’

and it points radially inward. The energy per unit time passing in through the
surface of the wire is therefore

/S -da=SQmal) =VI,

which is exactly what we concluded, on much more direct grounds, in Sect. 7.1.1 4

Problem 8.1 Calculate the power (energy per unit time) transported down the
cables of Ex. 7.13 and Prob. 7.62, assuming the two conductors are held at potential
difference V, and carry current / (down one and back up the other).

Problem 8.2 Consider the charging capacitor in Prob. 7.34.

(a) Find the electric and magnetic fields in the gap, as functions of the distance s
from the axis and the time 7. (Assume the charge is zero at t = 0.)

(b) Find the energy density u., and the Poynting vector S in the gap. Note espe-
cially the direction of S. Check that Eq. 8.12 is satisfied.

(c) Determine the total energy in the gap, as a function of time. Calculate the total
power flowing into the gap, by integrating the Poynting vector over the appro-
priate surface. Check that the power input is equal to the rate of increase of
energy in the gap (Eq. 8.9—in this case W = 0, because there is no charge in
the gap). [If you’re worried about the fringing fields, do it for a volume of radius
b < a well inside the gap.]

8.2 R MOMENTUM

8.2.1 B Newton’s Third Law in Electrodynamics

Imagine a point charge ¢ traveling in along the x axis at a constant speed v.
Because it is moving, its electric field is not given by Coulomb’s law; never-
theless, E still points radially outward from the instantaneous position of the
charge (Fig. 8.2a), as we’ll see in Chapter 10. Since, moreover, a moving point
charge does not constitute a steady current, its magnetic field is not given by the
Biot-Savart law. Nevertheless, it’s a fact that B still circles around the axis in a
manner suggested by the right-hand rule (Fig. 8.2b); again, the proof will come in
Chapter 10.

4What about energy flow down the wire? For a discussion, see M. K. Harbola, Am. J. Phys. 78, 1203
(2010). For a more sophisticated geometry, see B. S. Davis and L. Kaplan, Am. J. Phys. 79, 1155
(2011).
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FIGURE 8.2

Now suppose this charge encounters an identical one, proceeding in at the same
speed along the y axis. Of course, the electromagnetic force between them would
tend to drive them off the axes, but let’s assume that they’re mounted on tracks,
or something, so they’re obliged to maintain the same direction and the same
speed (Fig. 8.3). The electric force between them is repulsive, but how about the
magnetic force? Well, the magnetic field of g, points into the page (at the position
of ¢g»), so the magnetic force on g, is toward the right, whereas the magnetic
field of g, is out of the page (at the position of g;), and the magnetic force on
q1 is upward. The net electromagnetic force of q, on q, is equal but not opposite
to the force of q> on qi, in violation of Newton’s third law. In electrostatics and
magnetostatics the third law holds, but in electrodynamics it does not.

Well, that’s an interesting curiosity, but then, how often does one actually use
the third law, in practice? Answer: All the time! For the proof of conservation of
momentum rests on the cancellation of internal forces, which follows from the
third law. When you tamper with the third law, you are placing conservation of
momentum in jeopardy, and there is hardly any principle in physics more sacred
than that.

Momentum conservation is rescued, in electrodynamics, by the realization
that the fields themselves carry momentum. This is not so surprising when you
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consider that we have already attributed energy to the fields. Whatever momen-
tum is lost to the particles is gained by the fields. Only when the field momentum
is added to the mechanical momentum is momentum conservation restored.

8.2.2 B Maxwell’s Stress Tensor

Let’s calculate the total electromagnetic force on the charges in volume V:

F:/(E—l—va)pdt:/(pE—l—JxB)dt. (8.13)
v %

The force per unit volume is
f=pE+JxB. (8.14)

As before, I propose to express this in terms of fields alone, eliminating p and
J by using Maxwell’s equations (i) and (iv):

1 oE
f=¢c(V-E)E+ | —V xB—¢— | xB.
o ot
Now
B oE oB
—(ExB)=—xB Ex — |,
o ExB) (atx >+< Xm)

and Faraday’s law says

B
— =-V xE,
ot
SO
oE B a(E B)+E x (VxXE)
— xB=—(E x X x E).
ot ot
Thus

f=¢I[(V-E)E—E x (V xE)]—i[Bx (V xB)]—eO%(ExB).
o
(8.15)

Just to make things look more symmetrical, let’s throw in a term (V - B)B;
since V - B = 0, this costs us nothing. Meanwhile, product rule 4 says

V(E*) =2(E-V)E+2E x (V x E),
SO

Ex (VxE)= %V(Ez) — (E-V)E,



