L3-Magistère de Physique Fondamentale L3 ENS Paris-Saclay L3 Double licence Maths-Physique

MECANIQUE QUANTIQUE I Examen partiel du 19 octobre 2020

Durée: 2 heures

L'utilisation de documents, téléphones portables…est interdite. Les calculatrices sont aussi interdites.

Les différentes parties du sujet sont indépendantes,

Le barème est fourni à titre indicatif.

La mesure en Mécanique Quantique (9-11 points)

On considère un système quantique décrit par un espace des états à trois dimensions. On considère deux observables du système: son Hamiltonien H et une autre observable A. Les matrices de H et A dans une base orthonormée $(|1\rangle, |2\rangle, |3\rangle)$ s'écrivent:

$$H = E_0 \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array} \right) \quad A = a \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right)$$

où E_0 et a sont des paramètres réels positifs.

- 1. Vérifier que H et A sont bien des opérateurs hermitiques.
- 2. Trouver les valeurs propres et les vecteurs propres de H et A.
- 3. Quelles sont les valeurs possibles pour une mesure de H? De A?
- 4. On suppose que le système est dans l'état

$$|\psi_0\rangle = \frac{1}{\sqrt{2}}|1\rangle + \frac{1}{2}|2\rangle + \frac{1}{2}|3\rangle$$

Si l'on effectue une mesure de A quel résultat est-on certain d'obtenir? Quel est état $|\psi_1\rangle$ du système juste après la mesure?

- 5. Après cette mesure de A, on mesure maintenant H (l'état étant donc $|\psi_1\rangle$) quelles sont les probabilités d'obtenir la valeur E_0 ? $2E_0$?
- 6. Supposons que l'on obtienne E_0 , quel est l'état $|\psi_2\rangle$ du système après la mesure ?
- 7. L'opérateur se ravise et en fait n'effectue aucune mesure (c'est la pause déjeuner) : il laisse le système évoluer librement, l'état initial étant donc $|\psi_0\rangle$. Quel est est l'état du système $|\psi(t)\rangle$ à l'instant t quand il revient de la cantine?
- 8. Il effectue alors à l'instant t une mesure de A: quels sont les résultats possibles et avec quelles probabilités? Comparer au résultat de la question (4).

Système à trois niveaux (9-11 points)

Le violet de gentiane (chlorure de méthylrosaniline) est un colorant de couleur violette utilisé en particulier en biologie. Sa couleur est due au cation $C[C_6H_4N(CH_3)_2]_3^+$, l'anion chlorure Cl^- ne jouant aucun rôle. La structure de ce cation est simple : trois "branches" identiques issues du carbone central, 2 branches successives formant un angle de $2\pi/3$ entre elles. La charge "+" peut être portée par l'une de ces trois branches donnant lieu à 3 configurations distinctes (voir figure) mais équivalentes du point de vue énergétique. On notera $|1\rangle$, $|2\rangle$ et $|3\rangle$ les états correspondant à ces trois configurations et on suppose qu'ils forment une base de l'espace des états. On choisit l'origine des énergies de sorte que, si H est l'hamiltonien du système, les éléments de matrice $\langle i|H|i\rangle=0$ pour i=1,2,3. La charge "+" peut en fait se déplacer d'une branche à l'autre (par effet tunnel) ce qui couple les trois états de base. Ainsi les éléments de matrice non diagonaux de l'hamiltonien sont non nuls et on pose $\langle i|H|j\rangle=-A$ pour $i\neq j$, où A est une constante réelle positive.

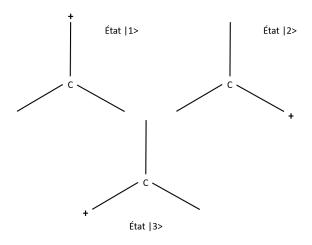


Figure 1: Les trois configurations du violet de gentiane

- 1. <u>Préliminaire</u>: on considère un système décrit par un espace des états à N dimensions (N fini). On suppose pour simplifier que le spectre de l'hamiltonien H est non dégénéré et note ($|n\rangle$, E_n) les couples vecteurs propres/énergies propres. On suppose enfin que l'état du système est un état stationnaire (l'un des vecteurs propres $|n\rangle$ de H).
 - Dans ce cas, calculer la valeur moyenne de l'énergie < H > ainsi que l'écart quadratique moyen ΔH . En déduire une condition nécessaire pour montrer qu'un certain vecteur est vecteur propre de H. Question bonus : est-ce une condition suffisante ? Si oui le démonter, si non donner un contre exemple. Dans tous les cas, le résultat obtenu pour ΔH est un guide pour trouver un vecteur propre de H. Ce guide se généralise évidemment à toute observable.
- 2. Ecrire la matrice représentant l'hamiltonien du système dans la base ($|1\rangle$, $|2\rangle$, $|3\rangle$). Expliquer pourquoi les éléments diagonaux sont nuls et les éléments non diagonaux tous égaux.
- 3. On considère l'état $|\psi\rangle=(|1\rangle-|2\rangle)/\sqrt{2}$. Calculer la valeur moyenne de l'énergie < H> et l'écart quadratique moyen ΔH pour cet état. Même question si l'état est maintenant $|\psi'\rangle=(|2\rangle-|3\rangle)/\sqrt{2}$. Que remarque-t-on ?
- 4. Déterminer les énergies propres du système en fonction de A (valeurs propres de l'hamiltonien). Indiquer leur degré de dégénérescence.
- 5. Déterminer une base de vecteurs propres associés aux énergies propres trouvées à la question précédente.
- 6. On donne $A \simeq 0.75$ eV. Expliquer la couleur violette du violet de gentiane. On rappelle les énergies correspondant grossièrement aux couleurs du spectre de la lumière blanche : rouge (1.7 à 2.0 eV), orange (2.0 à 2.1 eV), jaune (2.1 à 2.3 eV), vert (2.3 à 2.6 eV), bleu (2.6 à 2.7 eV) et violet (2.7 à 3.1 eV). On rappelle également les couples principaux de couleurs complémentaires : jaune-violet, rouge-vert et bleu-orange.

Rappels: $\langle A \rangle = \langle \psi | A | \psi \rangle$ et $\Delta A = \sqrt{\langle A^2 \rangle - \langle A \rangle^2}$.