Feuille d'exercices 2

Ensembles et applications

Exercice 2.1. Ensembles et tautologies

Soit X un ensemble et A, B deux sous-ensembles de X. Montrer que $A \subset B$ ssi $B^c \subset A^c$. Faire un dessin.

Exercice 2.2. Soient A et B deux ensembles.

1. Montrer que l'énoncé $A \subset B$ est équivalent à chacun des énoncés suivants :

$$A \cup B = B$$

$$A \cap B = A$$

$$A \setminus B = \emptyset$$

2. Montrer que A = B ssi $A\Delta B = \emptyset$.

Exercice 2.3. Ensembles et tautologies

Soit X un ensemble et A, B, C des sous-ensembles de X. En s'inspirant des tautologies du chapitre 1, écrire différemment les ensembles suivants. Faire des dessins.

- 1. $(A \cup B)^c$
- **2.** $(A \cap B)^c$
- **3.** $A \cap (B \cup C)$
- **4.** $A \cup (B \cap C)$

Exercice 2.4. Ensemble des parties

Donner la liste des éléments des ensembles suivants :

 $\mathcal{P}(\emptyset), \mathcal{P}(\mathcal{P}(\emptyset)), \mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset))).$

Exercice 2.5. Paire et couple

Soient deux objets a et b. On veut justifier qu'on peut définir le couple (a, b) comme l'ensemble $\{\{a\}, \{a, b\}\}\}$: montrer que si $\{\{a\}, \{a, b\}\}\}$ = $\{\{a'\}, \{a', b'\}\}$, alors a = a' et b = b' (indication : traiter à part le cas où a = b et le cas où $a \neq b$).

Exercice 2.6. Injection, surjection, bijection

Soient X, Y, Z trois ensembles et $f: X \to Y$ et $g: Y \to Z$ deux applications.

- 1. On suppose que f et g sont injectives. Montrer que $g \circ f$ est injective.
- **2.** On suppose que f et g sont surjectives. Montrer que $g \circ f$ est surjective.
- **3.** On suppose que f et g sont bijectives. Montrer que $g \circ f$ est bijective. Exprimer l'application réciproque $(g \circ f)^{-1}$ en fonction de f^{-1} et de g^{-1} .

Exercice 2.7. Image directe, image réciproque

Soit une application $f: X \to Y$.

- **1.** Soit A un sous-ensemble de X. Montrer que $A \subset f^{-1}(f(A))$.
- **2.** Soit B un sous-ensemble de Y. Montrer que $f(f^{-1}(B)) \subset B$.
- **3.** Un exemple : soit $f: \mathbb{R} \to \mathbb{R}$ l'application définie par $f(x) = x^2$. Déterminer $f^{-1}(f([0,2]))$ et $f(f^{-1}([-1,1]))$.

Exercice 2.8. Image réciproque

Soit $f: \mathbb{R} \to \mathbb{R}$ l'application définie par $f(x) = \sin(x)$. Détermier $f^{-1}(\{0\})$ et $f^{-1}(\mathbb{R}_+)$.

Exercice 2.9. Bijection

- 1. Soient a et b deux réels et $f: \mathbb{R} \to \mathbb{R}$ l'application définie par f(x) = ax + b. Donner une condition nécessaire et suffisante sur a et b pour que f soit bijective. Donner dans ce cas l'application réciproque f^{-1} .
- **2.** Soit l'application $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^2 + 2x$. En fonction des valeurs de y, déterminer le cardinal de $f^{-1}(\{y\})$. L'application f est-elle injective? surjective?

Exercice 2.10. Fonction indicatrice

Soit X un ensemble, et A un sous-ensemble de X. La fonction indicatrice de A, notée $\mathbf{1}_A$, est l'application

$$\mathbf{1}_{A} : X \to \{0, 1\}$$

$$x \mapsto \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{si } x \notin A \end{cases}$$

- **1.** Soient A et B deux sous-ensembles de X. Exprimer les fonctions indicatrices de A^c , de $A \cap B$ et de $A \cup B$ en fonction de $\mathbf{1}_A$ et de $\mathbf{1}_B$.
- 2. Soient F l'ensemble des applications de X dans $\{0,1\}$. Soit l'application

$$\begin{array}{cccc} I & : & \mathcal{P}(X) & \to & F \\ & A & \mapsto & \mathbf{1}_A \end{array}$$

Montrer que I est une bijection, et déterminer l'application réciproque $I^{-1}: F \to \mathcal{P}(X)$.

3. On suppose maintenant que X est un ensemble fini, de cardinal n. Déduire de ce qui précède que

$$\operatorname{card}(\mathcal{P}(X)) = 2^n$$

Exercice 2.11. Ensemble des parties

Le but de cet exercice est de montrer qu'il n'existe pas de surjection de X dans $\mathcal{P}(X)$.

- 1. On suppose ici que X est fini. En utilisant l'exercice 2.10, montrer qu'il n'existe pas de surjection de X dans $\mathcal{P}(X)$.
- **2.** On traite maintenant le cas général, c'est-à-dire que X peut être fini ou infini. On suppose par l'absurde qu'il existe une surjection $f: X \to \mathcal{P}(X)$.
- **a.** Soit $A = \{x \in X; x \notin f(x)\}$. Justifier qu'il existe $c \in X$ tel que f(c) = A.
- **b.** Étudier si $c \in A$ et conclure.
- **3.** Une conséquence : peut-on trouver une suite $(A_n)_{n\in\mathbb{N}}$ qui énumère tous les sous-ensembles de \mathbb{N} ?

Exercice 2.12. Cardinal d'une réunion

Tous les ensembles considérés dans cet exercice sont supposés finis.

- **1.** Rappeler la formule donnant le cardinal de $A \cup B$ en fonction des cardinaux de A, B et $A \cap B$.
- **2.** En utilisant la formule précédente, exprimer le cardinal de $A \cup B \cup C$ en fonction des cardinaux de A, B, C et de leurs différentes intersections.
- **3.** Pour tout $n \geq 2$, conjecturer, et éventuellement démontrer, une formule qui exprime le cardinal de $A_1 \cup \ldots \cup A_n$ en fonction des cardinaux de A_1, \ldots, A_n et de leurs différentes intersections.

Exercice 2.13. Nombre d'injection entre deux ensembles finis

Soit X un ensemble fini à p éléments et Y un ensemble fini à n éléments, et I(X,Y) l'ensemble des injections de X dans Y. Le but de cet exercice est de trouver le cardinal de I(X,Y) en fonction de p et de n.

- **1.** Quel est le cardinal de I(X,Y) quand n < p?
- **2.** On suppose que p=0. Justifier que $\operatorname{card}(I(X,Y))=1$.
- **3.** On va montrer que $\operatorname{card}(I) = \frac{n!}{(n-p)!}$ par récurrence sur p.

On suppose que $\operatorname{card}(X) = p+1$, on fixe un élément x_0 dans X et on pose $X' = X \setminus \{x_0\}$. Dénotons par y_1, \ldots, y_n les n éléments de Y, et posons, pour tout i entre 1 et n:

$$A_i = \{ f \in I(X, Y); f(x_0) = y_i \}$$

a. Montrer que les ensembles A_1, \ldots, A_n sont deux à deux disjoints et que $I(X, Y) = A_1 \cup \ldots \cup A_n$. **b.** Montrer que pour tout i entre 1 et n, l'application

$$\begin{array}{ccc} A_i & \to & I(X',Y\setminus\{y_i\}) \\ f & \mapsto & f_{|X'} \end{array}$$

est bien définie et est une bijection.

- c. Conclure la démonstration du résultat voulu.
- **4.** Un cas particulier. Soit X un ensemble fini de cardinal n. On appelle permutation de X une bijection de X dans X. Combien y a-t-il de permutations de X? (on rappelle que 0! = 1)

Exercice 2.14. Sous-ensembles à p éléments

Soient des entiers n et p tels que $0 \le p \le n$, et Y un ensemble de cardinal n. Le but de cet exercice est de compter les sous-ensembles de Y avec exactement p éléments, on note $Z = \{Y' \in \mathcal{P}(Y); \operatorname{card}(Y') = p\}$. On note $X = \{1, \ldots, p\}$, et, comme dans l'exercice 2.13, I(X,Y) l'ensemble des injections de X dans Y. On rappelle que $\operatorname{card}(I(X,Y)) = \frac{n!}{(n-p)!}$.

1. Montrer que l'application

est bien définie, et qu'elle est surjective.

- **2.** Soit $Y' \in Z$. Montrer qu'on peut identifier $G^{-1}(\{Y'\})$ avec I(X,Y'), et en déduire le cardinal de $G^{-1}(\{Y'\})$.
- **3.** En utilisant un résultat du cours, conclure que $\operatorname{card}(Z) = \frac{n!}{(n-p)!p!}$: c'est le coefficient binomial $\binom{n}{p}$.

Exercice 2.15. En utilisant le résultat des exercices 2.10 et 2.14, montrer que

$$2^n = \sum_{p=0}^n \binom{n}{p}.$$

Redémontrer cette formule en utilisant la formule du binôme de Newton.