Mécanique Analytique Les principes variationnels de la mécanique D2PFO

Cyril Falvo

cyril.falvo@universite-paris-saclay.fr

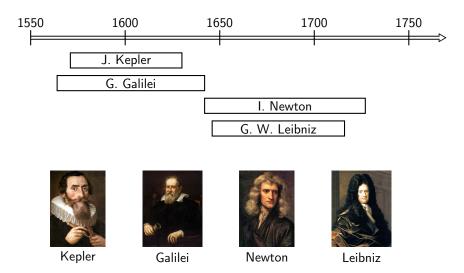
Institut des Sciences Moléculaires d'Orsay Université Paris Saclay

1. Introduction

2. Rappels de cinématique et de dynamique

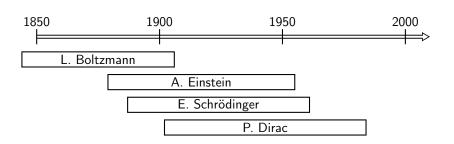
Mécanique classique : théorie physique qui décrit le mouvement des objets macroscopiques (projectiles et objets astronomiques) dont la vitesse est faible devant la vitesse de la lumière.

- Mécanique classique : théorie physique qui décrit le mouvement des objets macroscopiques (projectiles et objets astronomiques) dont la vitesse est faible devant la vitesse de la lumière.
- Newton publie sa théorie en 1687 (Philosophiæ Naturalis Principia Mathematica)



- Mécanique classique : théorie physique qui décrit le mouvement des objets macroscopiques (projectiles et objets astronomiques) dont la vitesse est faible devant la vitesse de la lumière.
- Newton publie sa théorie en 1687 (Philosophiæ Naturalis Principia Mathematica)
- \blacksquare La mécanique classique + la théorie universelle de la gravitation \to unification de deux sujets séparés de la physique
 - La chute des corps (Galileo Galilei)
 - Mouvement des objets astronomiques (Johannes Kepler)

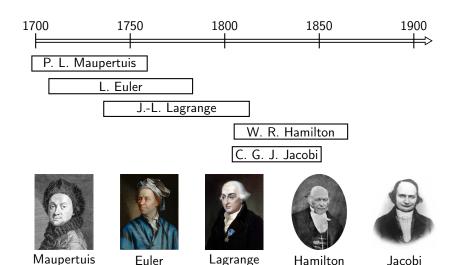
- Mécanique classique : théorie physique qui décrit le mouvement des objets macroscopiques (projectiles et objets astronomiques) dont la vitesse est faible devant la vitesse de la lumière.
- Newton publie sa théorie en 1687 (Philosophiæ Naturalis Principia Mathematica)
- \blacksquare La mécanique classique + la théorie universelle de la gravitation \to unification de deux sujets séparés de la physique
 - La chute des corps (Galileo Galilei)
 - Mouvement des objets astronomiques (Johannes Kepler)
- \blacksquare Découverte de la "vis viva" (énergie cinétique) par Gottfried Leibniz en \sim 1680


Un peu d'histoire : la physique moderne

- Au début du 20e siècle : 3 nouvelles théories
 - Physique Statistique (Boltzmann)
 - Mécanique Quantique (Schrödinger)
 - Théorie de la relativité (Einstein)

Un peu d'histoire : la physique moderne

Dirac



• Que s'est-il passé au cours des 18^e et 19^e siècles?

- Que s'est-il passé au cours des 18^e et 19^e siècles?
- Reformulation complète de la mécanique classique introduite par Maupertuis, Euler, Lagrange, Hamilton, Jacobi et d'autres.

Mécanique Newtonienne

Repose sur le concept de vecteur et sur le concept intuitif de force

Mécanique Newtonienne

- Repose sur le concept de vecteur et sur le concept intuitif de force
- La 2nd loi de Newton (${f F}=m{f a}$) n'est valide que dans un référentiel Galiléen

Mécanique Newtonienne

- Repose sur le concept de vecteur et sur le concept intuitif de force
- flux La 2nd loi de Newton ($f F=m{f a}$) n'est valide que dans un référentiel Galiléen
- Le PFD s'exprime naturellement dans un système de coordonnées Cartésien mais peut-être complexe à exprimer dans un autre système de coordonnées.

Mécanique Newtonienne

- Repose sur le concept de vecteur et sur le concept intuitif de force
- flux La 2nd loi de Newton ($f F=m{f a}$) n'est valide que dans un référentiel Galiléen
- Le PFD s'exprime naturellement dans un système de coordonnées Cartésien mais peut-être complexe à exprimer dans un autre système de coordonnées.

Mécanique Newtonienne

- Repose sur le concept de vecteur et sur le concept intuitif de force
- flux La 2nd loi de Newton ($f F=m{f a}$) n'est valide que dans un référentiel Galiléen
- Le PFD s'exprime naturellement dans un système de coordonnées Cartésien mais peut-être complexe à exprimer dans un autre système de coordonnées.

Mécanique Analytique

Utilise le concept d'énergie (énergies cinétique et potentiel)

Mécanique Newtonienne

- Repose sur le concept de vecteur et sur le concept intuitif de force
- flux La 2nd loi de Newton ($f F=m{f a}$) n'est valide que dans un référentiel Galiléen
- Le PFD s'exprime naturellement dans un système de coordonnées Cartésien mais peut-être complexe à exprimer dans un autre système de coordonnées.

- Utilise le concept d'énergie (énergies cinétique et potentiel)
- Le concept de potentiel d'interaction remplace le concept de force

Mécanique Newtonienne

- Repose sur le concept de vecteur et sur le concept intuitif de force
- flux La 2nd loi de Newton ($f F=m{f a}$) n'est valide que dans un référentiel Galiléen
- Le PFD s'exprime naturellement dans un système de coordonnées Cartésien mais peut-être complexe à exprimer dans un autre système de coordonnées.

- Utilise le concept d'énergie (énergies cinétique et potentiel)
- Le concept de potentiel d'interaction remplace le concept de force
- La mécanique analytique s'écrit sous la forme d'un principe variationnel (optimization d'une fonctionnelle) indépendant de tout système de coordonnées

Mécanique Newtonienne

- Repose sur le concept de vecteur et sur le concept intuitif de force
- flux La 2nd loi de Newton ($f F=m{f a}$) n'est valide que dans un référentiel Galiléen
- Le PFD s'exprime naturellement dans un système de coordonnées Cartésien mais peut-être complexe à exprimer dans un autre système de coordonnées.

- Utilise le concept d'énergie (énergies cinétique et potentiel)
- Le concept de potentiel d'interaction remplace le concept de force
- La mécanique analytique s'écrit sous la forme d'un principe variationnel (optimization d'une fonctionnelle) indépendant de tout système de coordonnées
- Formalisme puissant pour résoudre des problèmes complexes

Mécanique Newtonienne

- Repose sur le concept de vecteur et sur le concept intuitif de force
- flux La 2nd loi de Newton ($f F=m{f a}$) n'est valide que dans un référentiel Galiléen
- Le PFD s'exprime naturellement dans un système de coordonnées Cartésien mais peut-être complexe à exprimer dans un autre système de coordonnées.

- Utilise le concept d'énergie (énergies cinétique et potentiel)
- Le concept de potentiel d'interaction remplace le concept de force
- La mécanique analytique s'écrit sous la forme d'un principe variationnel (optimization d'une fonctionnelle) indépendant de tout système de coordonnées
- Formalisme puissant pour résoudre des problèmes complexes
- Pratique pour l'utilisation d'approximations

■ Plusieurs formulations de la mécanique analytique

- Plusieurs formulations de la mécanique analytique
- Toute la physique moderne repose sur ces formulations
 - lacksquare Formalisme de Lagrange o Théorie de la relativité et Mécanique quantique (Intégrale de chemin)
 - $lue{}$ Formalisme de Hamilton ightarrow Mécanique Quantique et Physique Statistique
 - lacksquare Formalisme Hamilton-Jacobi ightarrow Mécanique Quantique

Quelques ouvrages de références

Ouvrages incontournables :

- Golstein, H., Safko, J. L., and Poole, C. P. (2013). Classical Mechanics. Pearson, third edition.
- Landau, L. and Lifchitz, E. (1998). Mécanique. Physique Théorique. Ellipses.
- Lanczos, C. (1970). The Variational Principles of Mechanics. Dover, fourth edition.

Pour ceux qui aiment les mathématiques :

- José, J. V. and Saletan, E. J. (2002). Classical Dynamics, a contemporary approach. Cam- bridge University Press.
- Arnold, V. I. (1989). Mathematical Methods of Classical Mechanics. Springer-Verlag, second edition.

- 1. Introduction
- 2. Rappels de cinématique et de dynamique

2.1 Cinématique

■ <u>Cinématique</u> : décrit le mouvement d'un ensemble de points en fonction du temps quelque soit les causes qui les mettent en mouvement.

- <u>Cinématique</u> : décrit le mouvement d'un ensemble de points en fonction du temps quelque soit les causes qui les mettent en mouvement.
- En cinématique Galiléenne, l'espace est représenté par un espace vectoriel Euclidien de dimension 3 E^3 et le temps par l'ensemble des réels $\mathbb R$

- Cinématique : décrit le mouvement d'un ensemble de points en fonction du temps quelque soit les causes qui les mettent en mouvement.
- En cinématique Galiléenne, l'espace est représenté par un espace vectoriel Euclidien de dimension 3 E^3 et le temps par l'ensemble des réels $\mathbb R$
- La position d'un point dans l'espace est donné par un jeu de trois réels : les coordonnées

- <u>Cinématique</u> : décrit le mouvement d'un ensemble de points en fonction du temps quelque soit les causes qui les mettent en mouvement.
- En cinématique Galiléenne, l'espace est représenté par un espace vectoriel Euclidien de dimension 3 E^3 et le temps par l'ensemble des réels $\mathbb R$
- La position d'un point dans l'espace est donné par un jeu de trois réels : les coordonnées
- Le temps est donné par un paramètre t mesuré par un "observateur"

- <u>Cinématique</u> : décrit le mouvement d'un ensemble de points en fonction du temps quelque soit les causes qui les mettent en mouvement.
- En cinématique Galiléenne, l'espace est représenté par un espace vectoriel Euclidien de dimension 3 E^3 et le temps par l'ensemble des réels $\mathbb R$
- La position d'un point dans l'espace est donné par un jeu de trois réels : les coordonnées
- Le temps est donné par un paramètre t mesuré par un "observateur"
- Le mouvement au cours du temps est caractérisé dans un <u>référentiel</u> donné

- Cinématique : décrit le mouvement d'un ensemble de points en fonction du temps quelque soit les causes qui les mettent en mouvement.
- En cinématique Galiléenne, l'espace est représenté par un espace vectoriel Euclidien de dimension 3 E^3 et le temps par l'ensemble des réels $\mathbb R$
- La position d'un point dans l'espace est donné par un jeu de trois réels : les coordonnées
- Le temps est donné par un paramètre t mesuré par un "observateur"
- Le mouvement au cours du temps est caractérisé dans un <u>référentiel</u> donné
- En cinématique Galiléenne, le temps est <u>absolu</u> et partagé par tous les observateurs.

En cinématique Galiléenne, distances d'événements simultanés Δx et intervalles de temps Δt sont des quantités absolues et indépendantes

2.2 Mécanique Newtonienne

Principes élémentaires de dynamique

 La mécanique classique repose sur des principes établies à partir d'observations et d'expériences

Principes élémentaires de dynamique

- La mécanique classique repose sur des principes établies à partir d'observations et d'expériences
- On va considérer un ensemble de points matériels

Principes élémentaires de dynamique

- La mécanique classique repose sur des principes établies à partir d'observations et d'expériences
- On va considérer un ensemble de points matériels
- La mécanique Newtonienne est en général introduite par le biais des trois lois de Newton. On peut aussi utiliser les principes de bases suivants :

Principes élémentaires de dynamique

- La mécanique classique repose sur des principes établies à partir d'observations et d'expériences
- On va considérer un ensemble de points matériels
- La mécanique Newtonienne est en général introduite par le biais des trois lois de Newton. On peut aussi utiliser les principes de bases suivants :
 - Principe d'inertie

Principes élémentaires de dynamique

- La mécanique classique repose sur des principes établies à partir d'observations et d'expériences
- On va considérer un ensemble de points matériels
- La mécanique Newtonienne est en général introduite par le biais des trois lois de Newton. On peut aussi utiliser les principes de bases suivants :
 - Principe d'inertie
 - Conservation de l'impulsion

Principes élémentaires de dynamique

- La mécanique classique repose sur des principes établies à partir d'observations et d'expériences
- On va considérer un ensemble de points matériels
- La mécanique Newtonienne est en général introduite par le biais des trois lois de Newton. On peut aussi utiliser les principes de bases suivants :
 - Principe d'inertie
 - Conservation de l'impulsion
 - Principe de détermination de Newton

Principle d'inertie

Dans un référentiel Galiléen, une particule <u>isolée</u> reste au repos ou se déplace selon un mouvement rectiligne uniforme.

Principle d'inertie

Dans un référentiel Galiléen, une particule <u>isolée</u> reste au repos ou se déplace selon un mouvement rectiligne uniforme.

- Ce principe permet de définir le concept de référentiel Galiliéen.
- Il permet aussi de définir le concept de temps : le temps s'accroit linéairement avec le mouvement d'une particule isolée.

Conservation de l'impulsion

Dans un reférentiel Galiliéen, pour un système de N particules isolées, il existe un ensemble de N quantités m_i , $i=1,\ldots,N$ tel que $\mathbf{P}=\sum_i m_i \mathbf{v}_i = \mathbf{cste}$

Conservation de l'impulsion

Dans un reférentiel Galiliéen, pour un système de N particules isolées, il existe un ensemble de N quantités m_i , $i=1,\ldots,N$ tel que $\mathbf{P}=\sum_i m_i \mathbf{v}_i = \mathbf{cste}$

- lacktriangle Ce principe permet de définir la masse m_i de la particule i
- \blacksquare II permet également de définir l'impulsion $\mathbf{P} = \sum_i \mathbf{p}_i = \sum_i m_i \mathbf{v}_i$

Principe de détermination de Newton

L'évolution temporelle d'un système de particules est complètement déterminée par les positons initiales et vitesses initiales de celles-ci

L'évolution temporelle d'un système de particules est complètement déterminée par les positons initiales et vitesses initiales de celles-ci

■ L'accélération de chacune des particules est nécessairement une fonction des positions et des vitesses de l'ensemble des particules.

$$\ddot{\mathbf{r}}_i = f_i(\{\mathbf{r}_j\}, \{\dot{\mathbf{r}}_j\})$$

 Le principe fondamental de la dynamique peut-être vu comme une definition de la force

$$F_i(\{\mathbf{r}_j\}, \{\dot{\mathbf{r}}_j\}) = m_i \ddot{\mathbf{r}}_i$$

2.3 Formulation énergétique de la mécanique

■ Théorème de l'énergie cinétique

$$\frac{1}{2}m\mathbf{v}^{2}(t_{2}) - \frac{1}{2}m\mathbf{v}^{2}(t_{1}) = W_{12} = \int_{t_{1}}^{t_{2}} \mathbf{F} \cdot \mathbf{v} dt$$

■ Théorème de l'énergie cinétique

$$\frac{1}{2}m\mathbf{v}^{2}(t_{2}) - \frac{1}{2}m\mathbf{v}^{2}(t_{1}) = W_{12} = \int_{t_{1}}^{t_{2}} \mathbf{F} \cdot \mathbf{v} dt$$

■ Force indépendante de la vitesse

$$W_{12} = \int_{\mathcal{C}} \mathbf{F} \cdot \mathsf{d}\mathbf{l}$$

■ Théorème de l'énergie cinétique

$$\frac{1}{2}m\mathbf{v}^{2}(t_{2}) - \frac{1}{2}m\mathbf{v}^{2}(t_{1}) = W_{12} = \int_{t_{1}}^{t_{2}} \mathbf{F} \cdot \mathbf{v} dt$$

■ Force indépendante de la vitesse

$$W_{12} = \int_{\mathcal{C}} \mathbf{F} \cdot \mathsf{d}\mathbf{l}$$

■ Cas d'une force dérivant d'un potentiel $\mathbf{F}(\mathbf{r}) = -\nabla V(\mathbf{r})$, W_{12} est indépendant du chemin suivi

$$E = \frac{1}{2}m\mathbf{v}^2 + V(\mathbf{r}) = \text{cste}$$

■ Théorème de l'énergie cinétique

$$\frac{1}{2}m\mathbf{v}^{2}(t_{2}) - \frac{1}{2}m\mathbf{v}^{2}(t_{1}) = W_{12} = \int_{t_{1}}^{t_{2}} \mathbf{F} \cdot \mathbf{v} dt$$

■ Force indépendante de la vitesse

$$W_{12} = \int_{\mathcal{C}} \mathbf{F} \cdot \mathsf{d}\mathbf{l}$$

■ Cas d'une force dérivant d'un potentiel $\mathbf{F}(\mathbf{r}) = -\nabla V(\mathbf{r})$, W_{12} est indépendant du chemin suivi

$$E = \frac{1}{2}m\mathbf{v}^2 + V(\mathbf{r}) = \text{cste}$$

 ${f E}\equiv$ énergie mécanique, $V({f r})\equiv$ énergie potentielle